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Abstract
A string graph is the intersection graph of curves in the plane. Kratochvíl previously showed the
existence of infinitely many obstacles: graphs that are not string graphs but for which any edge
contraction or vertex deletion produces a string graph. Kratochvíl’s obstacles contain arbitrarily
large cliques, so they have girth three and unbounded degree. We extend this line of working by
studying obstacles among graphs of restricted girth and/or degree. We construct an infinite family
of obstacles of girth four; in addition, our construction is K2,3-subgraph-free and near-planar (planar
plus one edge). Furthermore, we prove that there is a subcubic obstacle of girth three, and that
there are no subcubic obstacles of high girth. We characterize the subcubic string graphs as having
a matching whose contraction yields a planar graph, and based on this characterization we find a
linear-time algorithm for recognizing subcubic string graphs of bounded treewidth.
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1 Introduction

String graphs, the intersection graphs of curves in the plane [13], developed out of the study
of the patterns of mutations in DNA sequences [5], and of the crossing patterns of wires in
circuit designs [26]. Beyond the two-dimensional nature of their definitions, string graphs and
planar graphs are closely related, although with several important differences. For example,
the two classes exhibit similar (but not identical) closure properties.

▶ Lemma 1. The class of planar graphs is closed under taking minors, and the class of
string graphs is closed under taking induced minors [20]. Explicitly:

If G is a planar graph, then any graph obtained from G by a sequence of vertex deletions,
edge deletions, and edge contractions is also a planar graph.
If G is a string graph, then any graph obtained from G by a sequence of vertex deletions
and edge contractions (but not edge deletions) is also a string graph.

In general, the class of string graphs is larger than the class of planar graphs, but there is
a class of non-string graphs that arises from the class of non-planar graphs. This relationship
is formalized in the following lemma, where for a graph G, we denote by sub1(G) the graph
obtained from G by subdividing each edge once.
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24:2 String Graph Obstacles of High Girth and of Bounded Degree

▶ Lemma 2. Let G be a graph, and let H denote any graph obtained from G by subdividing
each edge at least once, such as sub1(G). Then, the following hold:

If G is a planar graph, then H is a string graph.
If G is a non-planar graph, then H is a non-string graph [13,26].

Famously, the class of planar graphs is characterized by two forbidden minors:

▶ Theorem 3 (Wagner [27]). A graph G is non-planar if and only if G contains K5 or K3,3
as a minor.

As a consequence, planar graphs can be recognized in polynomial time [24].
Due to the relationship between planar graphs and string graphs described by Lemma 2,

a natural question that arises is whether the non-string graphs are exactly those that are
obtained by subdividing non-planar graphs. Given Theorem 3, this idea can be formulated
as follows.

▶ Premise 4. A graph G is a non-string graph if and only if G contains sub1(K5) or
sub1(K3,3) as an induced minor.

If Premise 4 were true, it would provide a full structural characterization of the string
graphs, allowing for many results from the study of planar graphs to carry into string
graphs. However, it is known to be false in general, with string graphs exhibiting much more
complex behavior than planar graphs; there are infinitely many string graph obstacles [18],
i.e. graphs that are not string graphs but for which any proper induced minor is a string
graph. Furthermore recognition of string graphs is NP-complete [19,25].

Given the extensive literature in the study of planar graphs, it is of interest to understand
for which subclasses of string graphs the statement of Premise 4 holds; or, more generally, for
which subclasses there are only finitely many obstructions. The infinite family of obstacles
constructed in [18] has unbounded clique size, so there is no non-trivial lower bound on the
girth of the family, and there is no upper bound on the maximum degree. On the other hand,
the non-string graphs sub1(K5) and sub1(K3,3) are both triangle-free and have maximum
degree five and three, respectively. Thus, two natural starting points to search for regimes
under which Premise 4 holds are the restrictions of string graphs to high girth and to bounded
degree. These regimes are the main subject of this paper–both in the context of Premise 4,
and more generally in determining whether these classes contain finitely many or infinitely
many string graph obstacles.

In Section 3, we study the regime of graphs with girth at least four, i.e. triangle-free
graphs, proving the following.

▶ Theorem 5. There exist infinitely many string graph obstacles of girth four.

We note that in addition to being triangle-free, our construction is also K2,3-free and
near-planar (planar plus one edge – for more on near-planar graphs see [6]). However, it does
not have bounded degree.

Next, in Section 4 we study the graphs of maximum degree three, the smallest non-trivial
upper bound on degree. We prove that even in this regime, Premise 4 does not hold. However,
we also show that obstacles in this regime cannot have arbitrarily large girth.

▶ Theorem 6. There exist string graph obstacles of maximum degree three apart from
sub1(K3,3). All such obstacles have girth smaller than 30.

To prove Theorem 6, we obtain a novel characterization of the subcubic string graphs:
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▶ Theorem 7. Let G be a graph with maximum degree three. Then G is a string graph if and
only if there exists a matching M of G such that the graph obtained from G by contracting
M is planar.

Finally, in Section 5, we finish by proving an algorithmic corollary of Theorem 7:

▶ Theorem 8. The problem of deciding whether a graph with maximum degree three is a
string graph is fixed-parameter tractable in treewidth. For any graph class of maximum degree
3 and bounded treewidth, the problem is decidable in linear time.

We note that recognition of string graphs of maximum degree four is an NP-complete
problem [19,23], whereas the complexity is open for graphs of maximum degree three. It is
known that it is NP-complete to check whether a graph has a matching that planarizes the
graph when contracted [1, 2], but this is without any restriction on the maximum degree of
the input graph.

2 Preliminaries

By N we denote the set of positive integers. We define a string representation of a string
graph to be a system of curves, called strings, associated with the vertices of the graph,
that have the given graph as their intersection graph. Rather than considering arbitrary
systems of curves in the plane, which may cross each other infinitely many times or even
cover nonzero area, it is convenient to consider certain more well-behaved but still fully
general string representations. A Jordan arc is a curve ambient isotopic to a line segment in
the plane. As a degenerate case we also consider a single point to be a Jordan arc. We define
a proper string representation to be a string representation in which each string is a Jordan
arc, each two strings have finitely many points of intersection, at most two strings intersect
at any point, and each intersection point is either a crossing of two strings or an endpoint of
at least one of the intersecting strings. The proof of the following fact is straightforward and
we omit it.

▶ Lemma 9. Every string graph has a proper string representation.

Each subset of the strings of a proper string representation defines a proper string
representation of an induced subgraph. That is not true for the next simplifying assumption
to make. A trimmed string representation is a proper string representation in which each
string is a Jordan arc, and in which it is not possible to replace any string by a proper subset
of itself and obtain a string representation of the same graph. That is, each string is minimal
among arcs having crossings with the same set of strings. A trimmed string representation
may be obtained from a proper string representation by replacing each string by a minimal
arc, one at a time.

▶ Observation 10. In a trimmed string representation, each string endpoint is an intersection
point of two strings. Two strings can intersect either in an endpoint of one or both strings,
or in one or more crossing points, but not both.

Proof. If two strings had an intersection point at an endpoint, and also another intersection
point at a crossing, they would not be minimal for the set of strings that they cross, because
the string that ends at an intersection point could be shortened without changing the set of
strings that it crosses. ◀
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24:4 String Graph Obstacles of High Girth and of Bounded Degree

Figure 1 An example of Observation 11. On the left is a string representation of sub1(K4),
and on the right is a planar representation within (the trimmed part of) a thickening of the string
representation.

It is known that, when a graph is formed from another graph by subdividing each edge
into a path of two or more edges, the subdivided graph is a string graph if and only if the
original graph is planar [26]. This idea can be formalized as the following observation:

▶ Observation 11. If a string graph has the property that every edge has a degree-two
endpoint, then it is a planar graph, and any trimmed string representation forms a contact
representation by a system of Jordan arcs. If these arcs are thickened to topological disks,
then the union of the resulting system of disks contains a planar drawing of the graph in
which each vertex is represented by a point within its disk and each edge is represented by a
curve within the union of two disks connecting two of these representative points.

Proof. No degree-two vertex can have a string with a crossing, because its two endpoints
represent its only two adjacencies. If every edge has a degree-two endpoint, there can be no
crossings, because each two intersecting strings include one that can have no crossings. ◀

Here the planarity of the resulting graph requires that we are considering contact graphs
of curves for which at most two can intersect in any point. Contact systems of curves without
a restriction to pairwise intersections may be nonplanar [17].

3 Triangle-free Obstacles

Our family of triangle-free obstacles is built from a family of vertex-colored planar graphs,
an example of which is depicted in Figure 2. This graph has the overall form of a cycle, in
which components in the form of two different types of subgraph are connected by pairs of
terminal vertices, colored white. Each component has two terminal vertices, each one shared
with one of its two neighboring components in the cycle. The two types of components are:

Any number of links, four-vertex cycles consisting of two non-adjacent white terminals, a
red vertex, and a blue vertex.
The pendant, a tree formed as the 1-subdivision of the claw K1,3. All but one vertex are
white; the remaining vertex, a leaf of the tree, is colored both red and blue, and we call it
the jewel. The two terminals are the other two leaves of the tree.
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Figure 2 The necklace graph N14.

For each i ∈ N, we define the necklace Ni to be a necklace whose cycle of components consists
of i links and one pendant. For instance the necklace in the figure can be denoted in this
way as N14. We observe that all planar drawings of this graph are topologically equivalent
if neither the vertex colors nor the distinction between bounded and unbounded faces is
considered. Each link bounds a quadrilateral face. There are two more faces, one polygonal
face with 4 + 2i sides not containing the jewel, and a face with 8 + 2i sides (some of them
repeated) containing the jewel. By convention we call these last two faces the inner face and
the outer face, respectively, matching the way that they are drawn in the figure. Alternative
planar embeddings may rearrange the colors of some of the vertices on these faces but not
their topological structure.

We are now ready to describe our family of triangle-free obstacles. They are the graphs
N̂i, obtained from a necklace Ni by adding two more vertices: a red apex and a blue apex.
The red apex is adjacent to all the red vertices of Ni, including the jewel. The blue apex is
adjacent to all the blue vertices of Ni, including the jewel. These are the only additional
adjacencies.

▶ Observation 12. For each i ∈ N, N̂i is triangle-free, K2,3-subgraph-free, and near-planar.

Proof. Each component of Ni is triangle-free, and the inner and outer face are too long
to have a triangle, so Ni is triangle-free. No two red vertices are adjacent, so there is no
triangle involving the red apex, and symmetrically no two blue vertices are adjacent, so there
is no triangle involving the blue apex. At most two blue vertices of Ni share a common
white neighbor, so no K2,3 subgraph can include the blue apex, and symmetrically with the
red apex, so any K2,3 subgraph of N̂i can only exist within Ni itself. However, the only
four-cycles in Ni are the links, which do not form K2,3 subgraphs.
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Figure 3 String representations of N̂1 (left) and N̂2 (right). The light gray strings represent
white vertices, and the solid red and blue strings represent red and blue vertices, respectively. The
dashed red and blue strings represent the red and blue apexes, respectively, and the purple string
represents the jewel.

When the necklace is drawn as in the figure, with all blue vertices on the inner face and
all red vertices on the outer face, the blue apex can be placed in the inner face and connected
planarly to all blue vertices except the jewel. The red apex can be placed in the outer face
and connected planarly to all red vertices including the jewel. Only one edge, from the blue
apex to the jewel, is missing. ◀

▶ Lemma 13. For i ∈ N, N̂i is a string graph if and only if i ∈ {1, 2}.

Proof. String representations of N̂1 and N̂2 are shown in Figure 3.
We now assume that i ≥ 3. Suppose that S is a string representation of N̂i. The induced

subgraph Ni obeys Observation 11; obtain a trimmed representation of Ni by removing the
strings for the two apexes and trimming, and let D be a planar drawing of Ni, within a
thickening of this trimmed representation, following Observation 11.

Observe that Ni contains a unique cycle CR comprised only of red and white vertices,
and similarly Ni contains a unique cycle CB comprised only of blue and white vertices. Then
any cycle in D separates the plane into two sides, restricting any string in S that does not
have a neighbor in the cycle to only one of these two sides. Thus, in D, CR separates the
plane into two faces, which we denote by F +

CR
and F −

CR
. Similarly, CB separates the plane

into two faces, which we denote by F +
CB

and F −
CB

. Since the jewel does not have a neighbor
in CR, its string in S cannot pass through both F +

CR
and F −

CR
; without loss of generality, we

assume that it only passes through F +
CR

. Similarly, we assume that the string of the jewel
only passes through F +

CB
and does not pass through F −

CB
. Thus, the jewel string lies entirely

in F +
CR

∩ F +
CB

.
We observe that the red apex only leaves F +

CR
∩F +

CB
in order to enter sections of the plane

that are bound by 4-cycles of D, and each such cycle C consists of one red vertex, one blue
vertex, and two white vertices. In particular, as the red vertex is the only vertex in C that is
adjacent to the red apex, the red apex must enter and exit the section bound by C through
the red vertex. It is easy to see that if this is the case, then S can be modified so that the
red apex string does not enter the section bound by C, by extending the red vertex’s string
to intersect the red apex string within F +

CR
∩ F +

CB
. Thus, without loss of generality, we may

assume that the red apex string lies entirely in F +
CR

∩ F +
CB

, and symmetrically that the blue
apex string also lies entirely in F +

CR
∩ F +

CB
. From here, we deduce that there exists a string
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Figure 4 An example demonstrating the idea of the reduction in the proof of Lemma 13. On the
left is an attempt at creating a satisfying H4 as described in the proof; the only condition violated
is Condition 5, that each of the monochromatic induced subgraphs (i.e. the subgraph on all red
vertices and edges, and the one on all blue vertices and edges) is connected, as each is the disjoint
union of a path on 3 vertices and an isolated vertex. However, any attempt to add edges to satisfy
Condition 5 causes the graph to violate Condition 6. On the right is the corresponding attempt to
draw a string representation of N̂4. Each apex string intersects (apart from the jewel) three of the
four strings that it needs to in order to achieve a string representation of N̂4, and these three strings
correspond to the path on three vertices in the monochromatic subgraph of the left graph, while the
string not intersected by the apex represents the isolated vertex in the monochromatic subgraph of
the left graph.

representation of N̂i if and only if there exists a graph Hi and a coloring c : V (Hi) → {R, B}
such that
1. V (Hi) = {v1

1 , v2
1 , v1

2 , v2
2 , . . . , v1

n, v2
n}, and

2. v1
1v2

1 . . . v1
nv2

nv1
1 is a cycle (which we will denote by Ci), and

3. c(v1
j ) ̸= c(v2

j ) for all 1 ≤ j ≤ n, and
4. c(x) = c(y) for all xy ∈ E(Hi) \ E(Ci), and
5. Hi[Ri]\E(Ci) and Hi[Bi]\E(Ci) are both connected, where Ri = {v ∈ V (Hi) : c(v) = R}

Bi = {v ∈ V (Hi) : c(v) = B}, and
6. there exists a planar drawing of Hi such that all edges lie entirely in the exterior of Ci.

The intuition behind the equivalence between these two problems is that, if a string
representation of N̂i exists, then the string representation gives rise to an Hi as above, with
the apex strings defining the non-cycle edges of Hi. Conversely, an Hi as described above
gives rise to a string representation of N̂i, with the non-cycle edges of each color defining
that color’s respective apex string. This relationship is shown in Figure 4.

Regardless of the choice of Hi and c, there exist vertices r1, r2, b1, b2 ∈ V (Hi) with
c(r1) = c(r2) = R and c(b1) = c(b2) = B such that r1r2, b1b2 ∈ E(Hi) and the cyclic order
of these vertices on Ci is r1, b1, r2, b2. It follows that in any planar drawing of Hi, it is
impossible for both r1r2 and b1b2 to lie entirely in the exterior of Ci without crossing. Thus,
N̂i is not a string graph when i ≥ 3. ◀

▶ Lemma 14. For each i ∈ N, every proper induced minor of N̂i is a string graph.

Proof. We need only consider induced minors that perform a single vertex deletion or a single
edge contraction in N̂i. Let e be the edge connecting the jewel to the blue apex; we will start
with the planar drawing of N̂i − e obtained in Observation 12, and its string representation
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24:8 String Graph Obstacles of High Girth and of Bounded Degree

obtained from this drawing by tracing a string around each vertex and its incident half-edges.
We will show that in each possible vertex deletion N̂i − v or edge contraction N̂i/f , it is
possible to modify the string representation of N̂i − e to obtain a string representation of
N̂i − v or N̂i/f .
For vertex deletions N̂i − v, we have the following cases:

If v is a white vertex belonging to both the inner and outer face of Ni, then deleting it
and its string produces a string representation of N̂i − v in which the inner and outer
faces are no longer separated from each other. We can extend the string for the jewel to
cross through the string for the red apex and through this gap, from the outer face to
the inner face, where it can cross the string for the blue apex without being obstructed
by any other string.
If v is a red vertex, then deleting it and its string produces a string representation of
N̂i − v that breaks the red–white cycle which blocked the blue apex from passing through
both the inner and outer faces. The string for the blue apex can be extended to cross
through the blue vertex in the same link as v, into the outer face of Ni − v. It cannot
cross the string for the red apex, but the string for the jewel can also be extended to
cross the string for the red apex and meet the extended string for the blue vertex, adding
the missing edge e to the string representation of N̂i − v.
If v is a blue vertex of Ni, then deleting it is symmetric to deleting a red vertex under a
symmetry of N̂i that swaps the two colors red and blue.
If v is the blue apex or the jewel, then deleting it obviates the need to represent the
missing edge e. The case where v is the red apex is symmetric.
The only remaining vertex that could be deleted is the white vertex neighboring the jewel.
If this vertex is deleted, the string for the jewel can be placed within any link. The strings
for each apex can be extended through the vertex of the link of the same color, into the
link, where they can separately intersect the string for the jewel.

For edge contractions N̂i/f , we have the following cases:
If f is a blue–white edge of a link, contracting it produces a contracted vertex that is
blue (incident to the blue apex) and that belongs to both the inner and outer face. The
string for the blue apex can cross through the string for this contracted vertex, into the
outer face, where it can be met by an extension of the string for the jewel, much like the
case of deleting a red vertex. Contracting a red–white edge of a link is symmetric.
If f is an edge connecting the blue apex to a blue vertex, contracting it produces a graph
in which the blue apex has a white neighbor on both the inner and outer face. The string
for the blue apex can extend through the string for this neighbor, into the outer face,
where it can be met by an extension of the string for the jewel. Contracting an edge
connecting the red apex to a red vertex is symmetric.
If f is an edge on the four-edge path connecting the two terminals of the pendant, then
contracting it produces a graph in which the degree-3 vertex of the pendant is adjacent
to one terminal. The string for this degree-3 vertex can cross through the neighboring
terminal, into its adjacent link. This allows the jewel and its neighbor to be placed within
this link, instead of in the inner or outer face. The strings for each apex can cross through
the strings for the red and blue vertices of this link, allowing the apex strings to reach
the string for the jewel.
If f is one of the two remaining edges of the pendant, then contracting it makes the jewel
adjacent to the white degree-3 vertex, which belongs to both the inner and outer face.
The string for the jewel can cross through the string for this white neighbor, into the
inner face, where it can be intersected by the string for the blue apex.
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Figure 5 The 1-subdivision of K3,3, the only previously known subcubic obstacle to string graphs.

If f is the edge connecting the red apex to the jewel, then after it is contracted and the
two strings for the apex and jewel are combined into a single string, this combined string
still needs to intersect the string for the blue apex. It can do so by crossing the string for
any red vertex into any link, where it can be met by an extension of the blue apex string
that crosses the string for the blue vertex of the same link. The case where f connects
the blue apex to the jewel is symmetric.

Each case produces a valid string representation, from which the result follows. ◀

▶ Theorem 15. There are infinitely many triangle-free, K2,3-subgraph-free, near-planar
graphs that are minimal as non-string graphs in the induced minor order.

Proof. The graphs N̂i for i ≥ 3 are non-isomorphic (they have different numbers of vertices),
triangle-free, K2,3-free, and near-planar by Observation 12, non-string graphs by Lemma 13,
and minimal with this property for the induced minor order by Lemma 14. ◀

4 Subcubic Obstacles

A graph G is subcubic if its maximum degree is at most three, and a cubic matching of G is
a matching M using only cubic edges (edges that have two degree-3 endpoints). The only
previously known subcubic obstacle to string graphs was the 1-subdivision of K3,3 (Figure 5),
which has girth eight. In this section we present new subcubic obstacles to string graphs
including one that contains a triangle. Additionally, we limit the search for other subcubic
obstacles by proving that they do not have arbitrarily large girth.

We do not know whether the string graphs have a finite or infinite number of subcubic
obstacles. It is known that there exist infinite antichains of bounded-degree graphs in the
induced minor order [21], but even this much appears not to have been known for maximum
degree three. In Appendix B we describe an infinite antichain of cubic toroidal graphs, and
relate them to string graphs, however without determining whether they can be used to
construct additional subcubic obstacles.

We base many of our results in this section on the following characterization of subcubic
string graphs in terms of contractions of matchings.

GD 2025
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Figure 6 Left: A three-edge matching (shaded ovals) in the Petersen graph whose contraction
produces a planar graph (all crossings are inside ovals). Right: A string graph representation of the
Petersen graph constructed following the proof of Theorem 16. The green marks subdivide each
unmatched edge into half-edges, which the red strings trace around.

▶ Theorem 16. If a graph G has a matching M such that the contraction of the matched
edges, G/M , is planar, then G is a string graph. Every subcubic string graph has such a
matching that is cubic.

Proof. For the first claim of the theorem, suppose that G has a matching M for which
G/M is planar; we show that G is a string graph. Find a planar drawing of G/M , and
expand each vertex in the drawing, coming from a contracted edge in M , from a point into a
topological disk, disjoint from the remaining components of the drawing. Figure 6 depicts an
example, with these expanded disks shown in yellow. Let D be the resulting vertex-expanded
drawing. Place a point arbitrarily on each edge of D, disjoint from the endpoints of the
edge, separating the edge into two topological half-edges. Represent G as a string graph
in which each unmatched vertex is represented by a string that traces around the vertex
and its incident half-edges in D. For each vertex v in a matched edge vw, represent v as
a string which stays within the expanded disk representing the contracted vertex for vw,
crossing the string for w, and extends beyond this expanded disk only to trace around each
half-edge connecting this contracted vertex to a neighbor of v in G. The resulting system of
strings intersect within the expanded disks for each contracted edge, and near the subdivision
point along each uncontracted edge representing an adjacency in G/M ; there are no other
crossings. Thus, these strings form a string representation of G.

For the second claim of the theorem, suppose that G is a subcubic string graph. We must
show that there exists a cubic matching M such that G/M is planar. Consider any trimmed
representation of G. Each string in this representation, representing a vertex v, must touch
strings for two distinct neighbors of v at its two endpoints; it can intersect at most one other
string than these two neighbors, a third neighbor w of v, at proper crossings. If the string
for v crosses the string for w in this way, for the same reason, w can have no other crossings
than with v. Thus, the pairing of vertices of G whose strings cross each other is a matching
M . When the two strings for each matched pair are replaced by their union, a connected
subset of the plane, the result is a contact representation of G/M , by sets (curves and unions
of two curves) for which at most two sets intersect at any point, which is therefore planar as
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Figure 7 Subcubic obstacles KT3 (left) and SM10 (right).

in Observation 11. Furthermore, two strings can only intersect at a proper crossing if both
vertices have degree three. Thus, every edge of M is adjacent to two vertices of degree three,
so M is a cubic matching. ◀

4.1 New Subcubic Obstacles

As an example, this characterization can be used to show that the 1-subdivision of K3,3
(Figure 5) is a minimal non-string graph. It is not a string graph by Observation 11. If any
vertex is deleted, the remaining subgraph becomes planar, because it forms a subdivision of
a vertex deletion or edge deletion of K3,3. And if any of its edges is contracted, replacing a
two-edge subdivided path uvw by the single edge uw, then the matching consisting only of
edge uw meets the conditions of Theorem 16: contracting it produces a subdivision of the
planar wheel graph obtained by contracting one edge of K3,3. Thus, all induced minors of
the 1-subdivision of K3,3 are string graphs.

We use this characterization to show the existence of several novel subcubic obstacles,
depicted in Figure 7. The first is KT3, which is constructed from the 1-subdivision of K3,3
by adding an edge between two subdivision vertices at distance two from each other.

▶ Proposition 17. KT3 is a minimal non-string graph.

We note that additional obstructions can be obtained in a similar fashion by replacing
multiple vertices of the 1-subdivision of K3,3 with triangles (rather than just one).

Our second subcubic obstacle, SM10, is not obtained from K3,3, and its existence
demonstrates that the 1-subdivision of K3,3 is not the only triangle-free subcubic obstacle.
It may be formed from the 10-vertex Möbius ladder [16] by subdividing the five “rungs” of
the ladder; it consists of a 10-cycle of degree-3 vertices, together with five two-edge paths
connecting opposite pairs of vertices of the 10-cycle.

▶ Proposition 18. SM10 is a minimal non-string graph.

The proofs of Proposition 17 and Proposition 18 are direct applications of Theorem 16;
for the full proofs see Appendix A. For a partial proof that the 14-vertex Heawood graph is
also a minimal non-string graph, see Appendix B.

GD 2025



24:12 String Graph Obstacles of High Girth and of Bounded Degree

4.2 Girth of Subcubic Obstacles
Since KT3 contains a triangle, there is no nontrivial lower bound on the girth of subcubic
obstacles. On the other hand, in what follows we show an upper bound. We utilize the
following well-known bound on the edge density of planar graphs with high girth:

▶ Lemma 19. Let G be a connected planar graph with at least 3 vertices and with girth at
least g. Put n = |V (G)| and m = |E(G)|. Then

m

n
≤ g

g − 2 .

We show that the properties of being a subcubic obstacle imply that the edge density of
any such obstacle is bounded above c for a constant c > 1, then use Lemma 19 to obtain
an upper bound on the edge density of the obstacle that is smaller than c if its girth is too
large. The details are presented below.

▶ Theorem 20. Let G be a subcubic non-string graph such that every proper induced minor
of G is a string graph. Then G has girth smaller than 30.

Proof. We begin by noting several properties of G that follow from the fact that G is a
subcubic obstacle. Firstly, G is connected, and G \ v is connected for any v ∈ V (G) of degree
2. Additionally, G does not contain any vertex v with deg(v) ∈ {0, 1}. Further, G does not
contain two adjacent vertices u, v of degree two.

Since G has no vertices of degree 0 or 1, G is not a forest, and thus has finite girth.
Suppose for contradiction that G has girth at least 30; then n := |V (G)| ≥ 30. Since every
e ∈ E(G) has at least one endpoint of degree 3, G has density at least 6

5 , which is the density
of the graph obtained from a cubic graph by subdividing each edge once. If G is cubic, let
v ∈ V (G) be any vertex such that G \ v is connected, and otherwise let v ∈ V (G) be a vertex
of degree 2. If G is cubic then it is easily verified that G \ v has density at least 6

5 . If G is
not cubic, then G \ v has n − 1 vertices and at least 6

5 n − 2 edges. Thus the density of G \ v

is at least
6
5 (30)−2

30−1 = 34
29 .

Since G \ v is a proper induced minor of G, it is a string graph, and so by Theorem 16
there is a matching M of G\v such that (G\v)/M is planar. Since G\v has girth bigger than
3, contracting M does not create any parallel edges, and so (G \ v)/M has n − |M | vertices
and at least 34

29 n − |M | edges, thus the density of G is at least
34
29 n−|M |
n−|M | ≥ 34

29 . (G \ v)/M has
girth at least 15, since G \ v has girth at least 30 and at most half of the edges in any cycle
of G \ v can be contained in M . Since G \ v is connected, (G \ v)/M is also connected. As
(G \ v) is planar, by Lemma 19 we have that the density of (G \ v)/M is at most 15

13 , which
is smaller than 34

29 and thus a contradiction. ◀

5 Subcubic Recognition

Courcelle’s theorem [11] is a powerful algorithmic metatheorem for converting logical state-
ments about graphs into algorithms. It concerns the monadic second-order logic of graphs
MSO2, which allows quantified formulas over vertices, edges, vertex sets, and edge sets, with
predicates for testing set membership and vertex–edge incidence. According to Courcelle’s
theorem, the problem of testing whether a graph models a formula of this type can be solved
in time that is linear in the number of vertices in the graph, multiplied by a (non-elementary
but computable) function of the formula length and the treewidth of the graph. Thus, for
any fixed formula, recognizing the graphs that model the formula is fixed-parameter tractable
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in the treewidth of the graph. In order to design an algorithm of this type for a graph
recognition problem, it is necessary only to find a logical formula characterizing the graphs
to be recognized. This methodology has been frequently used for problems in graph drawing
and topological graph theory [4, 7, 8, 14,22], including by Courcelle himself [9, 10].

▶ Observation 21. The characterization of subcubic string graphs of Theorem 16 can be
expressed as a formula in MSO2.

Proof. At a high level, we express in logic the existence of a set of edges M such that
contracting M produces a graph that has neither K5 nor K3,3 as a minor. The existence of
a K5 minor, or a K3,3 minor, in the contracted graph, can be expressed in MSO2 logic as
the existence of five or six vertex sets of the original uncontracted graph, corresponding to
the vertices of the minor, with the following properties:

Any two of these vertex sets are disjoint: there does not exist a vertex belonging to any
two of them.
Each of these five or six vertex sets forms a connected subgraph of the given graph. That
is, for each such set S, there is no cut (S ∩ T, S \ T ) of the subgraph induced by S. Here,
the existence of a cut may be expressed logically as the existence of a vertex set T for
which S ∩ T and S \ T are nonempty and for which there does not exist an edge with one
endpoint in S ∩ T and the other endpoint in S \ T .
For each edge (u, v) in the minor, represented by the vertex sets U and V , there exists
an edge in the given graph whose two endpoints belong to U and V .
The minor respects the contraction specified by M : for each edge e in M , it is not the
case that one of the endpoints of e belongs to one of the five or six vertex sets of the
minor but the other endpoint does not belong to the same set.

Each of these properties is straightforward to formalize in MSO2 logic. ◀

▶ Corollary 22. Subcubic string graphs can be recognized in time that is fixed-parameter
tractable with respect to treewidth. Within any subcubic graph family F of bounded treewidth,
string graphs can be recognized in time that is linear in the representation of the input graph.
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A Full proofs of subcubic obstacles

Proof of Proposition 17. We first show that KT3 is not a string graph via Theorem 16.
We refer to vertices of KT3 according to their colors in Figure 7. The only choices of cubic
matchings to contract are: one of the red–red edges, one of the red–blue edges, both of the
red–blue edges, or one red–blue edge and the opposite red–red edge. For each of these choices,
contracting the matching produces a graph that contains (as a subgraph) a subdivision of
K3,3, and so is non-planar. It follows that KT3 is a non-string graph.

It remains to show that every proper induced minor of KT3 is a string graph. Any vertex
deletion results directly in a planar graph. Let f be an edge of KT3; we show that there is
a cubic matching M of KT3/f such that (KT3/f)/M is planar. For convenience, in what
follows we give the vertex arising from the contraction of f the color white, and the other
vertices retain their colors. We have the following cases:

If f is a red–red edge, then contracting either one of the two white–blue edges planarizes
the graph.
If f is a red–blue edge, then contracting either one of the two white–red edges planarizes
the graph.
If f is the red–yellow edge, then contracting the white–blue edge and the two red–blue
edges planarizes the graph.
If f is a blue–yellow edge, then the white vertex has three neighbors. If any of its
neighbors is blue, then contracting the white–blue edge planarizes the graph. Otherwise,
the white vertex has a red neighbor, and then contracting the white–red edge and the
two red–blue edges planarizes the graph.

By Theorem 16, in each case KT3/f is a string graph, from which the result follows. ◀

Proof of Proposition 18. To prove that SM10 is a non-string graph, by Theorem 16, it
suffices to show that every cubic matching is not planarizing. Any such matching contracts
some of the edges of the cycle of ten degree-3 vertices in SM10, leaving it still in the form of
a shorter cycle. Following the Auslander–Parter planarity testing algorithm [3,12], for the
result to be planar, the pieces of the graph with respect to this cycle (the two-edge paths
through degree-2 vertices) must have an interlacing graph that is bipartite. Here, two pieces
are adjacent in the interlacing graph when the vertices where they attach to cycle are in
alternating order around the cycle. In SM10 itself, the interlacing graph is isomorphic to K5,
with each piece interlacing with two pieces that are consecutive to it around the 10-cycle
and two more pieces that are non-consecutive. The non-consecutive interlacing pairs form a
5-cycle that is unaffected by contracting a matching, so the interlacing graph is non-bipartite
and the contracted graph is non-planar.

To prove that SM10 is minimal as a non-string graph, we consider cases:
If a degree-3 vertex is deleted from SM10, the result is planar.
If an edge incident to a degree-2 vertex is contracted, the result is a subcubic graph that
can be planarized by contracting the other edge incident to the same degree-2 vertex.
Therefore, the result of the first contraction is a string graph by Theorem 16.
If a cubic edge is contracted, the resulting induced minor is not cubic, but it nevertheless
has a planarizing matching depicted in Figure 8 (left). Therefore, it is a string graph.
If a degree-2 vertex is deleted, the resulting induced minor has a planarizing matching
depicted in Figure 8 (right). Therefore, it is a string graph. ◀
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Figure 8 Left: a planarizing matching for the induced minor obtained by contracting a cubic
edge of SM10. Right: a planarizing matching for the induced minor obtained by deleting a degree-2
vertex of SM10.

B A cubic antichain

Matoušek, Nešetřil, and Thomas [21] describe an infinite antichain in the induced minor
order, consisting of planar graphs of maximum degree eight. None of these graphs can be
transformed into another graph in the family by taking induced minors.

In this section we describe an infinite family of cubic graphs which form an antichain in
the induced minor order. These graphs are described in LCF notation [15] by the notation
[5, −5]n; this means that they consist of a 2n-vertex Hamiltonian cycle together with chords
that alternate between advancing five steps forward along the cycle and five steps backward.
Several well-known graphs have this form: the Heawood graph or 6-cage is [5, −5]7, the
Möbius–Kantor graph is [5, −5]8 (Figure 9), and the smallest zero-symmetric graph is [5, −5]9.
We will assume n ≥ 7 to ensure that the girth of the resulting graphs equals six.

▶ Theorem 23. The graphs [5, −5]n with n ≥ 7 form an antichain in the induced minor
ordering.

Proof. First, observe that in the neighborhood of any vertex v of one of these graphs,
we can decompose the graph into three vertex-disjoint paths using edges that advance in
alternating +1 and +5 steps along the Hamiltonian cycle. (Globally, these paths might
connect into a single Hamiltonian cycle, as they do in Figure 9, or three disjoint cycles,
depending on n.) Thus, within this neighborhood, the part of the neighborhood ahead of
v around the Hamiltonian cycle and the part of the neighborhood behind v are connected
by three vertex-disjoint paths. Call the edges of these paths path edges and the remaining
edges non-path edges; the non-path edges are the ones between a forward and backward
five-step chord of the Hamiltonian cycle, highlighted in the yellow matching in Figure 9. If
any vertex of the graph were removed in the process of forming an induced minor, or if any
non-path edge connecting vertices from two different local paths were contracted, the local
connectivity would be reduced to two, and could not be restored by additional deletions or
contractions. Therefore, no such operation can be used in forming a graph [5, −5]m as an
induced minor of another graph [5, −5]n.
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Figure 9 The Möbius–Kantor graph. Left: the vertices are arranged in order around a Hamiltonian
cycle, with chords alternating five steps forward and back, according to its LCF notation [5, −5]8.
The non-path edges highlighted in yellow form a planarizing matching. Right: the corresponding
string representation. The cycle of end-to-end contacts of strings is a different Hamiltonian cycle
consisting of the path edges.

Figure 10 Torus embedding of [5, −5]10.

It remains to show that contractions of path edges cannot produce [5, −5]m from [5, −5]n.
Along with the obvious 6-cycles formed by a chord and five edges of the Hamiltonian cycle,
[5, −5]n has many additional 6-cycles whose edges, in terms of the difference in positions
of their endpoints along the Hamiltonian cycle, follow the pattern +1, +1, +5, −1, −1, −5.
These additional 6-cycles form the faces of a torus embedding of [5, −5]n (Figure 10), so we
call them face cycles. If any edge of one of these face cycles is contracted, this contraction will
reduce the girth of the graph, unless at least four edges of the same face are all contracted.
Because every edge of [5, −5]n belongs to a face cycle, and each face cycle has exactly four
path edges, the only way to avoid reducing the girth of the graph, using only contractions of
uncrossed edges, is to contract all four path edges of at least one face cycle. But this also
contracts an edge of the face cycle two steps ahead in the Hamiltonian cycle, which must
again have all four of its path edges contracted, and so on. So any contraction of path edges
that avoids reducing the girth of the graph must contract all path edges in the entire graph,
which cannot result in another graph of the form [5, −5]m. ◀

In an unpublished preprint, Moshe White proves that the Heawood graph [5, −5]7 is not
a string graph [28]. Assuming this proof to be valid, this graph provides another new cubic
obstacle to string graphs:
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Figure 11 Planarizing matchings for proper minors of the Heawood graph. Left: Deletion of the
light red vertex. Right: Contraction of an edge into the light blue degree-4 vertex.

▶ Observation 24. Every proper induced minor of the Heawood graph is a string graph.

Proof. Because the Heawood graph is both vertex-transitive and edge-transitive, we need
consider only two proper induced minors, obtained by deleting one vertex or by contracting
one edge. Planarizing matchings are shown for each in Figure 11, with matched pairs of
vertices indicated by the yellow shading. The solid and dashed coloring of the chords of the
remaining Hamiltonian cycle indicates a bipartition of the interlace graph with respect to
this cycle, indicating that the result is planar. It can be drawn planarly (after contracting
the matched pairs) by rerouting the dashed edges outside the Hamiltonian cycle. ◀

As Figure 9 shows, the Möbius–Kantor graph [5, −5]8 is a string graph, and this can be
generalized to [5, −5]n for even n:

▶ Observation 25. Every graph [5, −5]n for even n is a string graph.

Proof. It has a planarizing matching consisting of all non-path edges, such as the one
in Figure 9. Contracting this matching produces a planar graph isomorphic to an (n/2)-
antiprism. ◀

We do not know whether [5, −5]n is a string graph for other odd values of n, or if so
whether a subcubic obstacle can be obtained from it.
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