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Abstract
In a simple drawing of a graph, any two edges intersect in at most one point (either a common
endpoint or a proper crossing). A simple drawing is generalized twisted if it fulfills certain rather
specific constraints on how the edges are drawn. An abstract rotation system of a graph assigns to
each vertex a cyclic order of its incident edges. A realizable rotation system is one that admits a simple
drawing such that at each vertex, the edges emanate in that cyclic order, and a generalized twisted
rotation system can be realized as a generalized twisted drawing. Generalized twisted drawings have
initially been introduced to obtain improved bounds on the size of plane substructures in any simple
drawing of Kn. They have since gained independent interest due to their surprising properties.
However, the definition of generalized twisted drawings is very geometric and drawing-specific.

In this paper, we develop characterizations of generalized twisted drawings that enable a purely
combinatorial view on these drawings and lead to efficient recognition algorithms. Concretely, we
show that for any n ≥ 7, an abstract rotation system of Kn is generalized twisted if and only if
all subrotation systems induced by five vertices are generalized twisted. This implies a drawing-
independent and concise characterization of generalized twistedness. Besides, the result yields a
simple O(n5)-time algorithm to decide whether an abstract rotation system is generalized twisted and
sheds new light on the structural features of simple drawings. We further develop a characterization
via the rotations of a pair of vertices in a drawing, which we then use to derive an O(n2)-time
algorithm to decide whether a realizable rotation system is generalized twisted.
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1 Introduction

Simple drawings are drawings of graphs in which the vertices are drawn as distinct points in
the plane, the edges are drawn as Jordan arcs connecting their end-vertices without passing
through other vertices, and each pair of edges share at most one point (a proper crossing
or a common endpoint). We consider two simple drawings the same if they are strongly
isomorphic, that is, if there is a homeomorphism of the plane transforming one drawing
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25:2 Characterizing and Recognizing Twistedness
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Figure 1 Two realizations of the generalized twisted rotation system of K5. Left: Generalized
twisted drawing where the origin O and ray r are depicted. Right: The classical twisted drawing.

into the other. In this work we focus on simple drawings of Kn. Unless explicitly stated
otherwise, all considered drawings are of Kn and simple. A simple drawing D is generalized
twisted if it is strongly isomorphic to a simple drawing in which there is a point O such that
each ray emanating from O crosses each edge of D at most once and there exists a ray r

emanating from O such that all edges of D cross r. For an example see Figure 1(left), which
has been reproduced from [15].

Generalized twisted drawings have been used to find plane substructures in all simple
drawings of Kn: The currently best bounds on the size of the largest plane matching and
longest plane cycle and path in any simple drawing of Kn have been obtained via generalized
twisted drawings [5]. Moreover, generalized twisted drawings are the largest class of drawings
for which it has been shown that each drawing has exactly 2n − 4 empty triangles [14, 15],
which is conjectured to be the minimum over all simple drawings [6]. There are several more
interesting properties of generalized twisted drawings that have been shown already [4, 5, 15].
For example, all generalized twisted drawings contain plane cycles of length at least n − 1 [5].

Despite the usefulness of generalized twisted drawings, their definition is very geometrical
and drawing-specific. In this paper, we obtain combinatorial characterizations that no longer
depend on the specific drawing, which ease the work with them and also allow for efficient
recognition. Note that ad hoc it is not clear that such a combinatorial characterization needs
to exist. The study of special classes of simple drawings [3, 11, 12, 13] and their combinatorial
characterizations [8, 9, 10, 22, 23] has a strong tradition in the research of simple drawings
and contributes significantly to the understanding simple drawings in general.

A widely used combinatorial abstraction of drawings are rotation systems. The rotation
of a vertex in a drawing is the cyclic order of its incident edges. The rotation system of a
simple drawing is the collection of the rotations of all vertices. Rotation systems are especially
useful for describing simple drawings of complete graphs, since two simple drawings of Kn

have the same crossing edge pairs if and only if they have the same or inverse rotation
system [7, 16, 17, 19]. Rotation systems of graphs can also be considered without a concrete
drawing. An abstract rotation system of a graph G gives, for every vertex of G, a cyclic
order of its adjacent vertices. An abstract rotation system is called realizable if there exists a
simple drawing with that rotation system. For abstract rotation systems of complete graphs,
realizability can be checked in polynomial time. Specifically, an abstract rotation system of
Kn is realizable if and only if every subrotation system induced by five vertices is realizable.
This follows from a combinatorial characterization via subrotation systems of size six [20,
Theorem 1.1.] together with a complete enumeration of all realizable rotation systems of Kn

for n ≤ 9 [2].
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Figure 2 A simple drawing of K6 whose rotation system is not generalized twisted, even though
all subrotation systems on five vertices are.

In this work, we use rotation systems to characterize generalized twisted drawings. An
abstract rotation system of a graph is generalized twisted if there is a generalized twisted
drawing realizing this rotation system. As our first main result, we show that generalized
twisted rotation systems of Kn can also be characterized via subrotation systems of size five.
The main benefit of this result is to have a drawing-independent (and concise) characterization
of generalized twistedness. The substructures to be considered are of constant size and
straightforward to be checked, which improves the insight into generalized twisted drawings.

▶ Theorem 1. Let R be an abstract rotation system of Kn with n ≥ 7. Then R is generalized
twisted if and only if every subrotation system induced by five vertices is generalized twisted.

This characterization of generalized twisted rotation systems nicely complements the
characterization of all realizable simple drawings in general, which can also be done by
considering subrotation systems of size five [2, 20]. Per se, such characterizations of bounded
complexity do not always need to exist. For example, if the combinatorics of an (abstract)
set of points is given by their triple orientations – so-called abstract order types – no simple
characterization to decide their realizability as a point set in the plane can exist, as this
decision problem is known to be ∃R-complete; see the recent survey [24] for details.

The main part of Theorem 1 is the “if” part. The “only-if” part follows from the fact
that subdrawings of generalized twisted drawings are generalized twisted by definition. As
mentioned in the article introducing generalized twisted drawings [4], there is exactly one
generalized twisted rotation system T5 of K5, namely, the one of the twisted drawing [18, 21]
of K5, which gave rise to the name “generalized twisted”; see Figure 1(right) for an illustration
as in [21]. We remark that Theorem 1 cannot be extended to n ≤ 6. Figure 2 depicts a
drawing from [4], where it has been shown that the rotation system of this drawing is not
generalized twisted, although all its subrotation systems are (generalized) twisted.

Our second main result is a characterization of generalized twisted drawings via rotation
systems and crossings as stated in Theorem 2 below and depicted on an example in Figure 3.

▶ Theorem 2. Let R be the rotation system of a simple drawing D of Kn and let V be the
set of vertices of D. Then R is generalized twisted if and only if there exist two vertices v1
and v2 in V and a bipartition A ∪ B of the vertices in V \ {v1, v2}, where some of A or B

can be empty, such that:
(i) For every pair of vertices a and a′ in A, the edge aa′ crosses v1v2.
(ii) For every pair of vertices b and b′ in B, the edge bb′ crosses v1v2.
(iii) For every vertex a ∈ A and every vertex b ∈ B, the edge ab does not cross v1v2.
(iv) Beginning at v2, in the rotation of v1, all vertices in B appear before all vertices in A.
(v) Beginning at v1, in the rotation of v2, all vertices in B appear before all vertices in A.

GD 2025



25:4 Characterizing and Recognizing Twistedness

v2v1
B

B
A

A

Figure 3 Illustration of Theorem 2: Possible rotations of v1 and v2. The vertices of partition
set A are drawn as red disks and the vertices of partition set B as blue squares.

Figure 4 A realization of the generalized twisted rotation system T5 of K5. The pairs of antipodal
vi-cells are marked with red squares and blue crosses, the maximum crossing edge is bold, and empty
triangles are indicated by (brown) circular arcs.

The main implication of Theorem 2 is that it leads to fast algorithms for recognizing
generalized twisted rotation systems. If it is already known that a rotation system is realizable
(which needs O(n5) time to be checked [2, 20]), we can even use it to obtain a quadratic time
recognition algorithm.

▶ Theorem 3. Let R be an abstract rotation system of Kn. Then it can be decided in O(n5)
time whether R is generalized twisted. If R is known to be realizable, then deciding whether
it is also generalized twisted can be done in O(n2) time.

Outline. We start by introducing some notation and showing first properties in Section 2.
Sections 3 and 4 are devoted to proving the two characterizations, Theorem 1 and Theorem 2,
respectively. In Section 5, we prove Theorem 3 by providing the algorithms. We conclude in
Section 6 with some open questions.

2 Preliminaries

Given a simple drawing D, the star at v, denoted by S(v), is the set of edges incident to v

in D. For a set V of vertices of D, we denote by D \ V the drawing D without the vertices
in V and without all edges incident to a vertex in V . A triangle ∆ in D is the simple closed
curve formed by three vertices and the three edges connecting them. Every triangle partitions
the plane and hence D into two regions which we call the sides of ∆. The whole drawing D

partitions the plane into regions called cells.
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In our proofs, we heavily rely on antipodal vi-cells, empty star triangles, and maximum
crossing edges, all of which we describe in the following paragraphs.

Antipodal vi-cells. A cell that is incident to a vertex (that is, has the vertex on its boundary)
is called vertex-incident cell or vi-cell. We observe that if there is a vi-cell at v containing
the initial parts of vu and vw in one drawing of a rotation system, then vu and vw are
neighboring in the rotation of v. Since the latter property depends only on the rotation
system of the drawing, there is a vi-cell at v in every drawing of this rotation system with
initial parts of vu and vw on the boundary. Note that the remainder of the boundary of
the vi-cell is not necessarily identical across different drawings of the rotation system. Two
cells are antipodal if for every triangle, the two cells are on different sides. A vi-cell that is
antipodal to some other vi-cell is called a via-cell. (In Figure 4, the two pairs of via-cells
are marked.) Since the set of crossing edge pairs determines the rotation system and vice
versa [17, 19], also the existence of via-cells is a property of the rotation system. A vertex
incident to a via-cell is called a via-vertex.

We will need the following known theorem [4, Theorem 15]1.

▶ Theorem 4 ([4]). The rotation system of a simple drawing D of Kn is generalized twisted
if and only if D contains a pair of antipodal vi-cells.

Note that the characterization in Theorem 4 implies that a rotation system is generalized
twisted if and only if all its realizations as simple drawings contain a pair of antipodal vi-cells.

Empty star triangles. A triangle ∆ with vertices x, y and z is a star triangle at x if the star
S(x) does not cross the edge yz; it is empty if one side of ∆ contains no vertices of D \ ∆
(and hence the other side contains all of them). (In Figure 4, each circular arc between two
edges at a vertex indicates that the triangle containing those two edges is an empty star
triangle at that vertex.) We call two star triangles at x adjacent if they are both incident to
some edge xy and span disjoint angles at x. We will use the following results on empty star
triangles in simple and generalized twisted drawings.

▶ Lemma 5 ([6]). Let v be a vertex of a simple drawing D of Kn. Then D contains at least
two empty star triangles at v. If vxy is a star triangle at v then it is empty if and only if the
vertices x and y are consecutive in the rotation of v.

▶ Lemma 6 ([15]). Let D be a generalized twisted drawing of Kn and let v be a vertex of D.
Then there are exactly two empty star triangles at v. If (C1, C2) is a pair of antipodal vi-cells
in D, then one of the two empty star triangles at v contains C1 on the empty side and the
other triangle contains C2 on the empty side.

Maximum crossing edges. An edge v1v2 is maximum crossing if v1v2 crosses every edge
not in S(v1) ∪ S(v2). (For example, the bold edge in Figure 4 is maximum crossing.) Any
simple drawing has at most one maximum crossing edge, as the following lemma states.

▶ Lemma 7. Any simple drawing of Kn with n ≥ 5 has at most one maximum crossing edge.

1 The original formulation uses drawings and weak isomorphism. Our formulation is equivalent due to
the equivalence of rotation systems and weak isomorphism [17, 19].

GD 2025
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Lemma 7 holds for n = 5 because none of the five simple drawings of K5 (up to strong
isomorphism) [6] contains more than one maximum crossing edge. Using this fact, the lemma
can be proven for n > 5 by contradiction, assuming that a simple drawing contains several
maximum crossing edges.

We next observe in Lemma 8 that maximum crossing edges imply generalized twisted
rotation systems. Figure 5 illustrates the lemma.

▶ Lemma 8. Let D be a simple drawing of Kn that has a maximum crossing edge, v1v2. Let
C1 and C ′

1 be the two cells incident to v1 along the edge v1v2 and let C2 and C ′
2 be the two

cells incident to v2 along the edge v1v2 such that when going along the edge from v1 to v2,
the cell C1 is on the other side of v1v2 than the cell C2 (and consequently C ′

1 is on the other
side of v1v2 than C ′

2). Then D is generalized twisted and (C1, C2) and (C ′
1, C ′

2) are two pairs
of antipodal vi-cells.

v2v1 C ′
2

C2
C ′

1

C1

Figure 5 A maximum crossing edge v1v2 (in bold) and the two pairs, (C1, C2) and (C′
1, C′

2), of
antipodal vi-cells.

Lemma 8 can be shown by taking an arbitrary triangle of the generalized twisted drawing
and considering where the cells adjacent to the edge v1v2 and its endpoints must lie with
respect to this triangle in order to allow the edge v1v2 to cross all non-adjacent edges.

3 Characterization via subrotation systems induced by five vertices

In this section, we prove Theorem 1 by induction. To this end, we use the following theorem,
whose proof we sketch in Section 3.1.

▶ Theorem 9. Let R be an abstract rotation system of Kn with n ≥ 12 such that every
induced subrotation system on at most n − 1 vertices is generalized twisted. Then R is
generalized twisted.

Proof of Theorem 1. By definition, if R is generalized twisted, then any subrotation system
induced by five vertices is generalized twisted. We prove the converse: if every subrotation
system induced by five vertices is generalized twisted, then R is generalized twisted.

For 7 ≤ n ≤ 11, the theorem is verified by computer. Following the lines of [1, 5], we
compute all generalized twisted rotation systems of Kn for n up to 15 in the following
way. First, we use the method of [2] to generate all realizable rotation systems, but discard
those with subrotation systems induced by five vertices different to T5, thus computing all
candidate rotation systems for generalized twisted drawings. In each candidate rotation
system, we then search for a pair of antipodal vi-cells. By Theorem 4, this identifies all
generalized twisted rotation systems. Any rotation system contradicting Theorem 1 does
not have antipodal vi-cells. The computational results give only one rotation system of size
n = 6 (drawn in Figure 2) that is not generalized twisted.
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For n ≥ 12, we use induction. Every induced subrotation system of R on at most n − 1
vertices is generalized twisted by induction. Thus, R is generalized twisted by Theorem 9. ◀

3.1 Proof sketch of Theorem 9
Let R be as in Theorem 9 and let D be a realization of R, which exists since any abstract
rotation system of Kn is realizable if all subrotation systems induced by five vertices are [2, 20].
Since each induced and proper subdrawing of D has a generalized twisted rotation system, it
also has a pair of antipodal vi-cells by Theorem 4. We use this to show that also D has such
a pair and thus, by Theorem 4, R is generalized twisted. The idea is to locate antipodal
vi-cells of D using those in its induced subdrawings and empty triangles. The following
lemma can be shown using Lemma 5 (for a lower bound) and Lemma 6 (for an upper bound).

▶ Lemma 10. Let D be a drawing of Kn with n ≥ 5 such that every induced and proper
subdrawing has a generalized twisted rotation system. Then at any vertex of D, there are
exactly two empty star triangles.

We separately consider the case where D contains a vertex u with two adjacent empty
star triangles at u and the case that there is no such vertex.

Case 1: Two adjacent empty star triangles at a vertex u.
This is the easy case. We first show the following lemma on generalized twisted rotation
systems of Kn. Its proof is based on considering two adjacent empty star triangles at a
vertex v1 and analyzing all possibilities of how to extend these triangles to a drawing of T5
and then to a drawing of K6 with a generalized twisted rotation system.

▶ Lemma 11. Let v1 and v2 be two vertices of a simple drawing of Kn with generalized
twisted rotation system such that the two empty star triangles at vertex v1 are sharing the
edge v1v2. Then the following properties hold.
1. The edge v1v2 is maximum crossing.
2. The two empty star triangles at v1 are also empty star triangles at v2.
3. For each of the two empty star triangles at v1, the vertices v1 and v2 are adjacent in the

rotation of the third vertex of the triangle in such a way that all edges emanate from the
third vertex in the empty side of the triangle.

Then we consider the drawing D and the two adjacent empty star triangles at u in D. As
every proper subdrawing of D has a generalized twisted rotation system, Lemma 11 implies
that the edge shared by the two adjacent empty star triangles at u is maximum crossing.
Thus, the rotation system of D is generalized twisted by Lemma 8.

Case 2: No vertex with two adjacent empty star triangles.
This is the involved case. Let v1 be an arbitrary vertex of D and let ∆1 = v1u1u′

1 and
∆2 = v1u2u′

2 be the (nonadjacent) empty star triangles at v1. Our goal is to show that using
via-cells of some induced and proper subdrawings of D, we can find a pair (C1, C2) of vi-cells
in D such that C1 lies in ∆1 and C2 in ∆2, and prove that C1 and C2 are antipodal.

Let V0 be the set of vertices of ∆1 and ∆2, and let D0 be the subdrawing induced by V0.
Since the rotation system of D0 is generalized twisted and has only five vertices, we have all
the information about that drawing. This includes in particular the maximum crossing edge
of D0, which we denote by m, the two pairs of antipodal vi-cells of D0, and the empty star
triangles. As ∆1 and ∆2 are not adjacent, v1 is one of the vertices {a, b, d} in Figure 6.

GD 2025
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a b

c

d

e

Figure 6 A drawing of the unique generalized twisted rotation system T5 of K5, which is strongly
isomorphic to the one in Figure 1, but redrawn to make empty star triangles and the relevant cells
more visible. Empty star triangles at a vertex are marked with brown arcs at the angle that spans
the triangle. The two pairs of antipodal vi-cells are marked with red squares and blue crosses.

d

c

e
∆1 ∆2

a

a

e

b
∆1 ∆2

c

m
d

c

b

∆1 ∆2

e

m

v1 = a
m

v1 = d v1 = b

Figure 7 Three drawings realizing T5 in such a way that v1 is drawn in the center. The underlying
unlabeled drawings are strongly isomorphic. The labels correspond to those in Figure 6 with v1 = a

(left), v1 = d (middle), or v1 = b (right). The maximum crossing edge m is drawn bold, the two
pairs of antipodal vi-cells are marked with red squares and blue crosses.

Observe that the vertices a and d behave analogously to each other while vertex b behaves
differently (see Figure 7). We argue via the triangles ∆1 and ∆2 separately but simultaneously,
because we will consider only one triangle but require that the other triangle has the same
properties. We sketch the case where v1 is a or d and focus mostly on ∆1. The properties for
∆2 can be shown analogously and the case of v1 behaving like b then follows immediately.

For identifying all pairs of antipodal vi-cells in subdrawings of D, we state in Lemma 12
properties of simple drawings with more than one such pair.

▶ Lemma 12. Let D be a simple drawing of Kn with different antipodal vi-cell pairs (C1, C2)
and (C ′

1, C ′
2). Then

1. For one of the vertices on the boundary of a cell in {C1, C2, C ′
1, C ′

2}, there are two empty
star triangles at that vertex that share an edge.

2. There is a maximum crossing edge which is the shared edge of the two empty star triangles
at one of the endpoints of the edge.

3. The via-cells are adjacent to the maximum crossing edge (as described in Lemma 8).
4. D has only those two (and no more) pairs of antipodal vi-cells.

Proof Sketch. The proof of (1) is by contradiction. Assuming that the two empty star
triangles at any vertex on the boundary of a cell in {C1, C2, C ′

1, C ′
2} are not adjacent, we can

find an induced subdrawing on 5 or 6 vertices that is not generalized twisted, a contradiction.
(2) and (3) follow from Lemma 11, as by (1) there are two empty star triangles that are
adjacent. (4) follows from the fact that if there is a third pair of antipodal vi-cells, then D

would contain two maximum crossing edges, contradicting Lemma 7. ◀
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Let V ′ be a nonempty subset of V \ V0. By Lemma 12 and Lemma 6, one of the following
holds for the subdrawing D \ V ′ of D:
1. D \ V ′ contains exactly one pair of antipodal vi-cells. One of those cells is in the empty

side of triangle ∆1 and the other one is in the empty side of triangle ∆2.
2. D \ V ′ contains exactly two pairs of antipodal vi-cells. For each pair, one cell is in the

empty side of ∆1 and the other one is in the empty side of ∆2. Further, for each of ∆1
and ∆2, the two vi-cells in its empty side are adjacent along the maximum crossed edge
of D \ V ′ and incident to the endpoints of this edge.

The next lemma states the possibilities of how arbitrary antipodal vi-cell pairs of two
subdrawings D \{v} and D \{w} of D can be contained in all pairs of the subdrawing
D\{v, w}. The proof uses observations on the containment of cells of a drawing D′ in cells of
its subdrawings and consequences of two cells being antipodal. We denote by (Cv1v2...

1 , Cv1v2...
2 )

an antipodal vi-cell pair in the drawing D\{v1, v2, . . .}.

v1
u1

u′
1

1

2

3 4 5 6 7

9

8

v

v1
u1

u′
1

1

2

3 4 5 6 7

8

v
w

m m

Figure 8 The grid cells of D and D\{w} inside triangle ∆1.

▶ Lemma 13. For any pair (Cv
1 , Cv

2 ) of antipodal vi-cells in D\{v} and any pair (Cw
1 , Cw

2 )
of antipodal vi-cells in D\{w}, then
1. If D \{v, w} has only one antipodal vi-cell pair, (Cvw

1 , Cvw
2 ), then (Cv

1 , Cv
2 ) and

(Cw
1 , Cw

2 ) both are contained in (Cvw
1 , Cvw

2 ).
2. If D\{v, w} has two antipodal vi-cell pairs (Cvw

1 , Cvw
2 ) and (C ′

1
vw

, C ′
2

vw), then either
(Cv

1 , Cv
2 ) and (Cw

1 , Cw
2 ) both are contained in one of (Cvw

1 , Cvw
2 ) and (C ′

1
vw

, C ′
2

vw), or
(Cv

1 , Cv
2 ) is contained in one of (Cvw

1 , Cvw
2 ) and (C ′

1
vw

, C ′
2

vw), and (Cw
1 , Cw

2 ) in the other.

We identify grid structures in the empty sides of ∆1 and ∆2 in D that we will work with
to locate candidates for antipodal vi-cells of D. As ∆1 is an empty star triangle at v1 and
as D is a simple drawing, no edge incident to v1 can cross an edge of ∆1. However, every
generalized twisted drawing of K4 contains a crossing [5]. Hence, for every vertex v /∈ ∆1,
exactly one of vu1 or vu′

1 crosses ∆1 (on v1u′
1 or v1u1, respectively). We denote this edge

by rv. The set of edges rv for every v form a grid in the empty side of ∆1 in D. We denote
the cells of this grid that have some vertex (of ∆1) on the boundary as grid cells; see Figure 8.
Grid cells in ∆2 are defined analogously. Note that grid cells may consist of several cells
of D, as edges of D can cross through ∆1 and/or ∆2.

Next, we obtain an order on the grid cells of ∆1 (and analogously on ∆2). Consider the
dual graph of the grid cells (where the vertices are the grid cells and two vertices share an
edge if the corresponding grid cells are adjacent). This dual graph is either a path or a path
plus an isolated vertex (e.g. grid cell 9 in Figure 8 left). We label the grid cells G1, . . . , Gl,
along this dual path, beginning with the grid cell with vertex u1 and adjacent to edge u1v1,

GD 2025



25:10 Characterizing and Recognizing Twistedness

and finishing with the cell that has v1 on its boundary; see Figure 8 left for an example. The
distance between two grid cells Gi, Gj is the number of edges rv separating Gi and Gj . If
edge rv is incident to both Gi and Gi+1, we say that Gi and Gi+1 are glued along rv. We
denote the two grid cells that are glued along the edge m (which is the maximum crossed
edge of D0) by Gc and Gc+1 (cells 4, 5 in Figure 8 left). We say that grid cell Gi is placed
before m if i ≤ c; and placed after m otherwise.

When removing a vertex v ∈ V \ V0, we obtain a grid in D\{v} whose only difference to
the grid in D is that two grid cells of D that are adjacent at the edge rv become one grid
cell in D\{v}, and that some grid cells may enlarge their size, depending on the removed
vertex; see Figure 8 right for an illustration. For each via-cell Cv of D\{v} in the empty
side of ∆1, we denote by Gv the grid cell of D\{v} containing Cv. Observe that Gv is either
an (enlarged) grid cell of D or two such grid cells glued along an edge rv. With the following
lemma, we obtain that the grid cells containing via-cells of the subdrawings have common
intersections in the grid cells of D.

▶ Lemma 14. Let w1, w2, . . . , ws be the set of vertices in V \V0 such that for every wi, the
grid cell Gwi in D\{wi} is placed before m. Let x1, x2, . . . , xt be the set of vertices in V \V0
such that for every xi, the grid cell Gxi in D\{xi} is placed after m. Then
1. If s ≥ 2, the common intersection of Gw1 , Gw2 , . . . , Gws is a grid cell of D placed before m.
2. If t ≥ 2, the common intersection of Gx1 , Gx2 , . . . , Gxt is a grid cell of D placed after m.
3. It s ≥ 2 and t ≥ 2, then the two obtained grid cells of D are Gc and Gc+1, respectively.

Proof Sketch. (1) Given wi and wj , we show that Gwi ∩ Gwj is a grid cell of D by analyzing
the intersections among Gwi , Gwj and Gwiwj , for the different possibilities of the positions
of rwi and rwj . Then we show by contradiction that Gw1 , Gw2 , . . . , Gws have a common
intersection, which is a grid cell of D placed before m. Assuming that Gwi ∩Gwj ≠ Gwj ∩Gwk ,
we show that Gwi and Gwk cannot be contained in Gwiwk , a contradiction. (2) is proved in a
similar way. To prove (3), we show by contradiction that Gc (respectively Gc+1) is contained
in Gwi (respectively Gxi) for any i, so Gc and Gc+1 must be the common grid cells. ◀

Next we show that with enough vertices in total, we also obtain vi-cells of D in the
(shared) grid cells we found in D.

▶ Lemma 15. Suppose that for the via-cells Cw1 , Cw2 , . . . , Cws with s ≥ 2, the corresponding
grid cells Gw1 , Gw2 , . . . , Gws in D\{w1}, D\{w2}, . . . , D\{ws}, respectively, contain a common
grid cell G of D. Then Cw1 , Cw2 , . . . , Cws also contain a common vi-cell C of D.

Proof Sketch. We first prove that if Gwi and Gwj contain a common grid cell G, then the
interior of Cwi (or Cwj ) and the interior of G are not disjoint. Using this result, if G has
only one vertex on its boundary, then the lemma trivially holds. If G contains two vertices
on its boundary, we partition Cw1 , Cw2 , . . . , Cws into three sets S1, S2, and S3, where S1
contains the cells Cwi that are incident to only one of the vertices, S2 contains the cells Cwi

that are incident to only the other vertex, and S3 contains the cells Cwi that are incident to
both vertices. We then prove that one of S1 and S2 must be empty, so Cw1 , Cw2 , . . . , Cws

must all be incident to the same vertex of G and share a common vi-cell C of D. ◀

The following lemma shows that D contains a pair of antipodal vi-cells.

▶ Lemma 16. For n ≥ 12, there exists a pair (C, C ′) of antipodal vi-cells in D.

Proof Sketch. For i = 1, . . . , 7, let wi be a vertex not in V0 and let (Cwi
1 , Cwi

2 ) be a pair of
antipodal vi-cells in the subdrawing D\{wi}. For any pair of antipodal vi-cells of V0, one of
the cells is in ∆1 and the other in ∆2. Hence, by Lemma 13, Cwi

1 must lie in ∆1 and Cwi
2 in
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∆2 for any i. Using Lemmas 14 and 15, we show that at least four of the vi-cells Cwi
1 share a

common vi-cell C in ∆1 and a common vi-cell C ′ in ∆2 for the corresponding vi-cells Cwi
2 .

By the antipodality of the pairs (Cwi
1 , Cwi

2 ) that contain (C, C ′), we prove the antipodality
of (C, C ′) by showing for all triangles of D that C and C ′ are on different sides. ◀

4 Characterization via bipartition

This section is devoted to the proof of Theorem 2. Before starting with the proof, we
introduce the concept of compatibility of vertices. Given a realizable rotation system of Kn,
let Rv1 = {v2 = w1, w2, . . . , wn−1} and Rv2 = {v1 = t1, t2, . . . , tn−1} be the (clockwise)
rotations of v1 and v2, respectively. We say that v1 and v2 are compatible (or that v1
is compatible with v2) if {v1, t2, . . . , tn−1} = {v1, wi, wi−1, . . . , w2, wn−1, wn−2, . . . , wi+1},
for some i ∈ {1, 2, . . . , n}. Note that if v1 and v2 are compatible and i is 1 or n, then
{v1, t2, . . . , tn−1} = {v1, wn−1, wn−2, . . . , w2}.

Next we consider pairs of antipodal vi-cells in simple drawings (and thus in generalized
twisted drawings) and show that each such pair contains a pair of compatible vertices. For
any antipodal vi-cell pair (C1, C2) in a simple drawing of Kn, there exist two vertices v1 ≠ v2
such that v1 and v2 are incident to C1 and C2, respectively [4]. The following lemma implies
that v1 and v2 are compatible.

w2

w3

wi

wi+1

wn−1

v2v1C1
C2

Figure 9 The rotations of v1 and v2.

wi tj+1
wk

v2v1C1
C2

wi tj+1

wk

v2v1C1
C2

Figure 10 wk cannot appear after C2 around v2.

▶ Lemma 17. Let D be a realization of a generalized twisted rotation system of Kn with n ≥ 3.
Let (C1, C2) be a pair of antipodal vi-cells of D, and let v1 and v2 be vertices of D incident
to C1 and C2, respectively, with v2 ̸= v1. Assume that Rv1 = {v2 = w1, w2, . . . , wn−1} is the
(clockwise) rotation of v1, and that the edges v1wi and v1wi+1 define part of the boundary of
C1, for some i ∈ {1, . . . , n − 1}. Then the following statements hold.
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(i) If i ∈ {2, 3, . . . , n − 2} then the (clockwise) rotation of v2 is {v1, wi, wi−1, . . . , w2, wn−1,

wn−2, . . . , wi+1} and the edges v2w2 and v2wn−1 define part of the boundary of C2.
(ii) If i = 1 then the (clockwise) rotation of v2 is {v1, wn−1, wn−2, . . . , w2} and the edges

v2v1 and v2wn−1 define part of the boundary of C2.
(iii) If i = n − 1 then the (clockwise) rotation of v2 is {v1, wn−1, wn−2, . . . , w2} and the

edges v2v1 and v1w2 define part of the boundary of C2.

Proof Sketch. We sketch the proof of (i); the proofs of (ii) and (iii) are very similar. Figure 9
shows an example of the rotations of v1 and v2. Assume that the clockwise rotation of v2 is
{v1 = t1, t2, . . . , tn−1} and that the edges v2tj and v2tj+1, for some j ∈ {1, . . . , n − 1}, define
part of the boundary of C2. To place wk in the rotation of v1 and v2 with respect to C1
and C2, we consider for wk with 2 ≤ k ≤ i the triangle spanned by v1, v2 and wk. As C1
and C2 are antipodal, they must lie on different sides of the triangle. This is not possible if
wk corresponds to a vertex tk′ with j + 1 ≤ k′ ≤ n − 1 (see Figure 10 for a depiction). Thus,
if a vertex appears before (via analogous arguments after) C1 around v1 clockwise from v2,
then it also appears before (after) C2 around v2 clockwise from v1.

wk

v2

v1C1
C2

wl

wk

v2

v1C1
C2

wl

Figure 11 wk cannot appear before wl around v2.

For two vertices wk and wl with 2 ≤ k < l ≤ i, we show that wl appears before wk in
the clockwise rotation of v2 from v1 by contradiction. Consider the edges v1wl and v2wl.
If wk appears before wl in the clockwise rotation of v2 from v1, then the edges v1wl and
v2wl emanate in different sides of the triangle v1v2wk from v1 and v2. From simplicity of the
drawing and the fact that each realization of a generalized twisted rotation system of K4
contains exactly one crossing [5], we can determine how that edge wlwk must behave (see
Figure 11 for a depiction). We then show that with this drawing, C1 and C2 must lie on the
same side of the triangle v1wkwl, which contradicts that they are antipodal cells. ◀

a

v2

v1C1
C2

a′

b

v2

v1C1
C2

a

Figure 12 Illustrating the proof of Theorem 2 (i) and (iii).

Using Lemma 17 we can prove Theorem 2.

Proof Sketch of Theorem 2. If R is generalized twisted, then there exists a pair (C1, C2)
of antipodal vi-cells in D, and we show that a bipartition of the vertices satisfies (i)–(v).
Let v1 be a vertex of V incident to C1 and let v2 ̸= v1 be a vertex of V incident to C2.
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z

v2

v1C1
C2

x

y

z

v2

v1C1
C2

x

y

Figure 13 C1 and C2 are on different sides of ∆xyz. Left: x, y, and z belong to the same set of
the bipartition. Right: x and y belong to one of the sets and z to the other.

Suppose that {v2 = w1, w2, . . . , wn−1} is the (clockwise) rotation of v1 such that v1wi and
v1wi+1 define part of the boundary of C1, for some i ∈ {1, . . . , n − 1}. Let A and B be
defined as follows: if i ̸∈ {1, n − 1}, set A := wi+1, ..., wn−1, B := w2, ..., wi; if i = 1, set A :=
{v1, wn−1, wn−2, . . . , w2}, B := ∅; if i = n − 1, set A := ∅, B := {v1, wn−1, wn−2, . . . , w2}.
We show that this bipartition satisfies (i)–(v).

v2

v1C1
C2

x y v2

v1C1
C2

x

y

Figure 14 C1 and C2 are on different sides of ∆v1xy. Left: x and y belong to the same set of the
bipartition. Right: x and y belong to different sets of the bipartition.

v2

v1C1
C2

x
v2

v1C1
C2

x

Figure 15 C1 and C2 are on different sides of ∆v1v2x.

To prove that (i) holds, we take two vertices a and a′ in A. (If A contains at most one
vertex, (i) is vacuously true.) We use Lemma 17 to obtain the rotation of v1 and v2 and
information on the bounding edges of C1 and C2. We conclude that the edge aa′ crosses
v1v2 because otherwise C1 and C2 would be on the same side of the triangle v1aa′ (see
Figure 12(left) for an example) contradicting that C1 and C2 are antipodal. Thus, (i) follows
and, by analogous arguments for B, (ii) follows.

To prove that (iii) holds for A and B, we take vertices a ∈ A and b ∈ B. By Lemma 17, b

is before C1 and a is after C1 around v1. Thus, the edge ab cannot cross v1v2 so that C1 and
C2 are on different sides of ∆v1ab (see Figure 12(right) for an example). Hence, (iii) follows.
Finally, (iv)–(v) follow directly from the definitions of A and B.

To prove the other direction, we assume that R and D are a rotation system and drawing
fulfilling (i)–(v), and show that R is generalized twisted. Let {v2, b1, . . . , bn1 , a1, . . . , an2}
be the (clockwise) rotation of v1 beginning at v2, and {v1, b′

1, . . . , b′
n1

, a′
1, . . . , a′

n2
} be the
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(clockwise) rotation of v2 beginning at v1. Let C1 be the vi-cell of D defined by the edges
v1bn1 and v1a1, and C2 be the vi-cell of D defined by the edges v2b′

n1
and v2a′

1. We show
that C1 and C2 are antipodal and thus R is generalized twisted by showing for all possible
triangles in D that C1 and C2 are on different sides of that triangle. We analyze the triangles
and show the following. If v1 and v2 are not incident to ∆, the number of crossings give that
v1 and v2 – and thus C1 and C2 – are on different sides of ∆ (see Figure 13). If v1 or v2 are
incident to ∆, we use C1 and C2 being on different ends of v1v2 to show that C1 and C2 are
on different sides of ∆ (see Figures 14 and 15). ◀

5 Efficient algorithms

In this section, we turn to the algorithmic aspect and prove Theorem 3.
To check whether an abstract rotation system of Kn is generalized twisted, by Theorem 1,

only the subrotation systems induced by five vertices need checking. This can be done in O(n5)
time. (The only exception where subdrawings are not sufficient are abstract rotation systems
of K6, but for n = 6 all three generalized twisted rotation systems are known.) Alternatively,
one can first check in O(n5) time whether the rotation system is realizable [2, 20]. If it is
not, it cannot be generalized twisted. If it is, we can use the following faster algorithm for
realizable rotation systems of Kn, which we developed using Theorem 2. The algorithm runs
in O(n2) time and in two steps, which we describe in the remainder of this section.

Step 1. In the first step, the empty star triangles at an arbitrary vertex x are computed.

▶ Lemma 18. Given a realizable rotation system R of Kn and a vertex x of R, the set of
all empty star triangles at x is the same in each realization of R and can be computed from
R in O(n2) time.

Proof Sketch. By Lemma 5, a star triangle xyz at x is empty if and only if y and z are
consecutive in the rotation of x. Hence, there are at most n − 1 empty star triangles at x.
Whether a triangle xyz is a star triangle at x is determined by whether there exists a vertex
w such that xw crosses yz. Since deciding for two edges if they cross each other can be done
in constant time via the rotation system, deciding if a star triangle is empty requires O(n)
time. Thus, computing all empty star triangles at x can be done in O(n2) time. ◀

Step 2. In the second step, the previously computed empty star triangles at x and Theorem 2
are used to decide whether R is generalized twisted.

▶ Lemma 19. Given a realizable rotation system R of Kn and the set of empty star triangles
of a vertex x of R, it can be determined in O(n2) time whether R is generalized twisted.

Proof Sketch. By Lemma 17, every drawing with generalized twisted rotation system has a
pair (v1, v2) of compatible vertices. If (C1, C2) is a pair of antipodal vi-cells, then v1 and v2
lie on the boundary of C1 and C2 (or vice versa). We look for compatible vertices using
empty triangles. Let x be the vertex with given empty star triangles. If there are not exactly
two empty star triangles at x, then R is not generalized twisted by Lemma 6. Otherwise,
we denote by ∆ = xyz and ∆′ = xy′z′ the two empty star triangles at x. (Possibly, y or z

coincides with y′ or z′.) Using Lemma 6, we can show that if there is a compatible pair of
vertices it must be in S = {(y, y′), (y, z′), (y, x), (z, y′), (z, z′), (z, x), (x, y′), (x, z′)}. Checking
compatibility of any pair in S by comparing their rotation systems takes linear time.
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For every such potentially compatible pair (v1, v2), we check properties (i)–(v) of The-
orem 2. Let {v = w1, w2, . . . , wn−1} be the rotation of v1. We define A and B as follows. If
the rotation of v2 is {v1, wn−1, . . . , w2}, then B = {w2, . . . , wn−1} and A = ∅ (or vice versa),
and if the rotation of v2 is {v1, wi, . . . , w2, wn−1, . . . , wi+1}, for some i different from 1 and
n − 1, then B = {w2, . . . , wi} and A = {wi+1, . . . , wn−1}. Then A and B clearly satisfy (iv)
and (v) of Theorem 2. Checking if (i), (ii), and (iii) of Theorem 2 are satisfied requires O(n2)
time.

Therefore, since |S| is a constant, deciding if there is a pair (v1, v2) in S such that v1 and
v2 are compatible and the properties (i)–(v) of Theorem 2 are satisfied for this pair can be
done in O(n2) time. ◀

6 Conclusion and open problems

We presented two new characterizations for generalized twisted drawings based solely on their
rotation systems. From these, we derived an O(n5)-time algorithm that decides whether an
abstract rotation system of Kn is generalized twisted and an O(n2)-time algorithm to decide
whether a realizable rotation system is generalized twisted. The obvious open question is
whether the decision can also be done faster for abstract rotation systems. The quadratic
time algorithm we give does not directly apply to them. There is a non-realizable rotation
system of K5 for which the output of the algorithm depends on the choice of vertex x and
might be ’generalized twisted’ or ’not generalized twisted’.

Generalized twisted drawings have been useful before, for example to find large plane
substructures in simple drawings [5, 15]. Overcoming their rather geometrical definition, our
new combinatorial characterizations might ease work with generalized twisted drawings and
foster further results with this flavor. For example, Pach, Solymosi, and Tóth [21] showed that
every simple drawing of a complete graph on n vertices contains O(log

1
8 n) vertices inducing

a complete subdrawing that is either convex or twisted. Recently, Suk and Zeng [25, 26]
improved this result to (log n) 1

4 −o(1) vertices. As both convex and twisted drawings contain
large plane paths and cycles, this provides lower bounds on the size of plane paths and cycles
that every simple drawing contains. It would be interesting to generalize this to show that
every simple drawing contains a large generalized twisted or generalized convex subdrawing.
Generalized convex drawings are – like generalized twisted drawings – a family of drawings
of graphs that are well investigated [9, 11, 12]. Similarly to generalized twisted drawings,
they admit characterizations via small constant sized subrotation systems [9]. Thus, a result
guaranteeing the existence of a large generalized convex or generalized twisted drawing would
help to extend our knowledge on simple drawings and, for example, to improve the lower
bounds on the size of plane paths and cycles. We expect that this and several other questions
on simple drawings can be tackled using the characterizations of this paper – independently
or in combination. Especially, since the two given characterizations are very different from
each other, with Theorem 1 being on all small subrotation systems and Theorem 2 being on
two specific points and their rotation in the whole rotation system, they might foster the
application of different other tools to obtain new results.
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