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Abstract
A storyplan visualizes a graph G = (V, E) as a sequence of ℓ frames Γ1, . . . , Γℓ, each of which is a
drawing of the induced subgraph G[Vi] of a vertex subset Vi ⊆ V . Moreover, each vertex v ∈ V is
contained in a single consecutive sequence of frames Γi, . . . , Γj , all vertices and edges contained in
consecutive frames are drawn identically, and the union of all frames is a drawing of G. In GD 2022,
the concept of planar storyplans was introduced, in which each frame must be a planar (topological)
drawing. Several (parameterized) complexity results for recognizing graphs that admit a planar
storyplan were provided, including NP-hardness. In this paper, we investigate an open question
posed in the GD paper and show that the geometric and topological settings of the planar storyplan
problem differ: We provide an instance of a graph that admits a planar storyplan, but no planar
geometric storyplan, in which each frame is a planar straight-line drawing. Still, by adapting the
reduction proof from the topological to the geometric setting, we show that recognizing the graphs
that admit planar geometric storyplans remains NP-hard.
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1 Introduction

Planar storyplans, introduced in 2022 [4], represent an approach to draw possibly dense and
non-planar graphs as a sequence of ℓ ≥ 1 planar subdrawings called frames. In addition to
the planarity condition for each frame, their sequence must satisfy certain visual consistency
criteria in order to be a valid planar storyplan: (i) each vertex belongs to a single, non-
empty interval of frames, (ii) each frame shows the subgraph induced by the vertices of
the frame, (iii) the shared vertices and edges of any two consecutive frames have the same
geometric representation, and (iv) every edge must be visible in at least one frame, i.e.,
the incident vertices of every edge must co-occur in some frame. Storyplans belong to the
class of gradual graph visualizations, which depict a graph in a sequential story-like or
unordered small-multiples fashion. The goal of such gradual visualizations is to show a
complex graph G as a collection of simpler drawings, e.g., planar drawings of subgraphs
whose union represents G. Identical vertices and edges in the individual subdrawings can be
mentally linked by requiring that they are always drawn the same if they occur in multiple
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subdrawings. Such visualizations find applications both for visualizing dynamic graphs [1,17],
in which vertices and edges occur over time, and for graphs that are decomposed into multiple
simpler subgraphs without a sequential order [11,12]. Storyplans with their temporal sequence
of frames are related to drawing graphs in a streaming model. In the storyplan problem,
however, one can choose the sequence in which vertices enter and leave the story, whereas this
sequence is part of the input in streaming models [2, 3, 8, 15] and in graph stories [6, 7, 9, 10].

The authors of [4,5] investigated the complexity of deciding whether a given graph admits
a planar storyplan in a topological setting, with edges drawn as simple curves between their
endpoints. They showed NP-completeness and fixed-parameter tractability parameterized
by the vertex cover number or the feedback edge set number of the graph. Furthermore,
they proved that every graph of treewidth at most 3 admits a planar storyplan, and that
such a planar storyplan (actually with straight-line edges) can be computed in linear time.
In [14] the investigation of storyplans was extended to outerplanar and forest storyplans,
in which each frame is not just planar, but actually outerplanar or a forest. They proved a
strict containment relation between forest, outerplanar, and planar storyplans and identified
graph families that do or do not always admit these storyplans. In the affirmative case, their
storyplans use straight-line edges.

In this paper, we investigate an open question by several authors [4, 5] and explore
the differences between planar (topological) storyplans and planar geometric storyplans.
Obviously, every graph that admits a planar geometric storyplan also admits a planar
storyplan. We prove that the converse is not true by providing a counterexample of a graph
with 28 vertices that admits a planar storyplan, but none with straight-line edges. The main
challenge in our geometric construction is to enforce an obstruction to straight-line visibility
for any possible placement of the vertices and for any possible vertex-to-frame assignment.
As a second result, we adapt the hardness proof of from [4,5] to establish that deciding if a
given graph admits a planar geometric storyplan remains NP-hard.

2 Preliminaries

For n ∈ N, we use [n] = {1, 2, . . . , n} as a shorthand. For a ≤ b ∈ N, we define [a, b] =
{a, a + 1, . . . , b}. For a graph G, let V (G) be its vertex set and let E(G) be its edge set. For
V ′ ⊆ V (G), G[V ′] is the subgraph of G induced by V ′. Given an induced subgraph G′ of
some graph G, and a vertex of G not contained in V (G′), G′ + v is defined as G[V (G′) ∪ {v}].
We denote by uv the edge {u, v} connecting vertices u and v.

The storyplan problem. A storyplan of a graph G on time steps [ℓ], ℓ ∈ N, consists of a
pair (A, D). For each v ∈ V (G), A(v) = [sv, ev] ⊆ [ℓ] is the visible interval of v. We say
that v appears at sv, is visible at each sv, sv + 1, . . . , ev, and disappears after ev. It must
hold for a pair of adjacent vertices u, v ∈ V that A(u) ∩ A(v) ̸= ∅, i.e., there is a time step
in which the edge uv can be drawn. We say in this case that u and v co-occur. For each
t ∈ [ℓ], G[t] = G[{v ∈ V | t ∈ A(v)}] is the frame graph at t. For a subgraph G′ of G, we say
that G′ is visible at t if all of its vertices are visible. The drawing function D represents a
drawing D(v) of each vertex v ∈ V (G) and drawing D(e) of each edge e ∈ E(G). Further,
for each subgraph G′ of G, D(G′) is the drawing of G′, i.e., the drawing function is applied
to each vertex and edge of G′. For each t ∈ [ℓ], we call Γt := D(G[t]) the frame at t. For a
storyplan, it must hold that each frame represents a simple drawing of the corresponding
induced subgraph. A storyplan is planar if each frame corresponds to a planar drawing. A
storyplan is geometric (or straight-line) planar if each frame corresponds to a planar drawing
such that each edge is represented by a straight-line segment.
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We consider the following two problems.

▶ Problem 1. Given a graph G, does G admit a planar storyplan?

▶ Problem 2. Given a graph G, does G admit a planar geometric storyplan?

Note that these definitions are slightly different from those in [5]. There, each vertex
appears in a unique frame, while we permit multiple vertices appearing in a single frame. It
is easy to see, though, that these two definitions are equivalent with regard to the existence
of a planar (geometric) storyplan for a given graph G.

3 Geometry Matters in Planar Storyplans

In this section, we show our following main result.

▶ Theorem 1. There is a graph that admits a planar storyplan and that does not admit a
planar geometric storyplan.

The graph G is defined as follows. It consists of three four-cycles A, B, and C with vertices
ai, bi, ci, i ∈ [4] and edges eA

i = aiai mod 4+1, eB
i = bibi mod 4+1, and eC

i = cici mod 4+1
for i ∈ [4]. Furthermore, the graph contains eight apex vertices qj

i , i ∈ [4], j ∈ [2], such
that each qj

i is connected to all vertices of A, B, and C. Lastly, eight more edge vertices rj
i ,

i ∈ [4], j ∈ [2] are added. Each rj
i is connected to qj

i and to all vertices from eA
i , eB

i , and eC
i .

We define Q = {qj
i | i ∈ [4], j ∈ [2]} and R = {rj

i | i ∈ [4], j ∈ [2]}. For each i ∈ [4] and
j ∈ [2], P j

i = {qj
i , rj

i } is an apex-pair.
Below, we give a formal definition of G. Further, the graph can also be parsed from one

of its planar storyplans in Figure 1.

V (G) ={ai, bi, ci | i ∈ [4]} ∪ {qj
i , rj

i | i ∈ [4], j ∈ [2]}

E(G) ={aiai mod 4+1, bibi mod 4+1, cici mod 4+1 | i ∈ [4]} ∪ {rj
i qj

i | i ∈ [4], j ∈ [2]}∪

{rj
i ai, rj

i ai mod 4+1, ribi, ribi mod 4+1, rj
i ci, rj

i ci mod 4+1 | i ∈ [4], j ∈ [2]}∪

{qj
i ak, qj

i bk, qj
i ck | i, k ∈ [4], j ∈ [2]}

We prove both statements of Theorem 1 in the following two sections.

3.1 G Has a Planar Storyplan
A planar storyplan of G with eight frames Γ1, . . . , Γ8 is given in Figure 1. The four-cycles A,
B, C are visible in all frames. Each apex-pair qj

i , rj
i for i ∈ [4] and j ∈ [2] is visible only

in frame Γ(j−1)4+i. As the neighborhoods of apex pairs q1
i , r1

i and q2
i , r2

i , i ∈ [4], w.r.t. the
four-cycles are the same, they can be represented by the same drawing. This is why we show
only four drawings in the figure.

3.2 G Does Not Have a Planar Geometric Storyplan
This section serves the purpose of showing the following.

▶ Theorem 2. The graph G does not admit a planar geometric storyplan.

We proceed to assume that G admits a planar geometric storyplan (A, D), and we will arrive
at a contradiction. We require a sequence of lemmas that will lead to this contradiction.

GD 2025
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Figure 1 A planar storyplan for the graph G with eight frames. Frames k and k + 4 show the
same drawing for each k ∈ [4]. For frames 1, 2, 3, 4, j = 1; for frames 5, 6, 7, 8, j = 2.

▶ Lemma 3. Let I = {A(qj
i ) | qj

i ∈ Q} be the visible intervals of the vertices in Q. Then
there exists a set I ′ ⊂ I of cardinality at least 6, such that for all [s, e] ∈ I ′ and all t ∈ [s, e],
A, B, and C are visible at t.

Proof. First, there is a time step in which all cycle vertices from a single cycle, say A, are
visible. Otherwise, consider the time step eA after which the first cycle vertex of A, say a1,
disappears, yet a3 has not yet appeared. Then, in eA, the three cycle vertices a1, a2, a4 of
A and all eight apex vertices must be visible since they need to see both a1 and a3; they
induce a non-planar K3,8, contradicting that every frame is planar. This holds analogously
for the cycles B, C. Secondly, there is a time step in which all cycle vertices of all three cycles
are visible. Otherwise, consider the time step after which the first cycle vertex disappears.
Again, at this time step, we have at least a non-planar K4,8 by the same argumentation that
the apex vertices need to see both the disappearing cycle vertex and at least one cycle vertex
that has not yet appeared.

Now sort the intervals in I by their start points. Consider the first two intervals [s, e], [s′, e′]
in this order. Let q and q′ be their respective apex-vertices. We show that [s, e] ∩ [s′, e′] = ∅.
By our previous arguments, there is a time step t ∈ [s, e] in which q and all cycle vertices are
visible. If s ≤ s′ ≤ e, then there is furthermore a time step t′ with s′ ≤ t′ ≤ e, such that q,
q′, and all cycle vertices are visible. Notice that this amounts to 14 vertices and 36 edges.
Further, the induced drawing of the four-cycles and the two apex-vertices must clearly have
a face incident to four vertices – four vertices of one of the four-cycles. Adding a chord,
keeping the structure planar, we would end up with 14 vertices and 37 edges, a contradiction
to Euler’s formula. Symmetrically, by considering the last two intervals when sorted by their
end points, we also see that their intersection is empty. The statement follows directly, as
each apex must co-occur with each cycle-vertex. ◀

▶ Corollary 4. There exist at least 6 frames, each containing a different apex pair and all
four-cycles.
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D2

D1 D2
D1

x

D1 ≺ D2

s

s′

Figure 2 The two cases of a D1 ≺ D2. In the second case, the point x is closer to D1 than to D2.

B
A

Apex qji

Figure 3 D(A) ≺ D(B) is implied by A lying inside of one of the faces of the drawing of A + qj
i .

▶ Lemma 5. There exists a pair from {A, B, C} that is not nested, i.e., in the drawing of
only these two four-cycles, the outer face is incident to all vertices.

Proof. This follows directly from Lemma 3, as there exists a frame with some apex vertex
and all three four-cycles. Clearly, the statement holds, as there is otherwise no face (in the
induced drawing of A, B, and C) that contains all four-cycle vertices. ◀

In the remainder of the proof, we assume that A and B form a non-nested pair.
Next, we want to define one of the drawings of A or B to be “smaller”, see Figure 2.

This will be useful in showing that for one of the four-cycles A and B, in the drawing of this
four-cycle plus an apex-vertex, the other four-cycle will always lie on the outer face.

▶ Definition 6. Consider two simple quadrilaterals D1 and D2, such that the outer face is
incident to all eight vertices. Define D1 ≺ D2 if one of the following conditions holds.
1. D1 is contained within the convex hull of D2.
2. The convex hull of D1∪D2 contains two non-parallel line segments s and s′ each connecting

a point from D1 with a point from D2. Let x be the intersection point of the supporting
lines of s and s′. Point x is closer to D1 than to D2 (in terms of the classic definition
between a point and the set of points defined by the inside region of the quadrilateral).

It is clear that we cannot have D1 ≺ D2 and D2 ≺ D1. It can, however, be that we have
neither. As the drawings of A, B, and C correspond to simple quadrilaterals, we can show
the following lemma (refer to Figure 3 for an illustration). Note that the statement makes
sense, as A and B share the outer face.

▶ Lemma 7. Let F be a frame containing an apex pair P j
i and all four-cycles. We have

that D(A) ≺ D(B) if D(A) is contained within an inner face of D(B + qj
i ). Equivalently,

D(B) ≺ D(A) if D(B) is contained within an inner face of D(A + qj
i ).

GD 2025
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eA4
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Figure 4 (a) The half-planes defined by D(A), an apex vertex must lie in a specific intersection
of half-planes. (b) A convex and concave drawing of A with exactly two good edges.

Proof. Assume that D(A) is contained within an inner face of D(B + qj
i ). For the frame F ,

consider the drawing induced by qj
i , A, and B. Consider the edges on the outer face of

this drawing. Two of these connect a vertex of B with qj
i ; we denote these vertices as b

and b′. Now, either A is contained within the convex hull of B, or the convex hull of A + B

contains two line segments s and s′, each connecting a vertex of A with a vertex of B. In
the former case, D(A) ≺ D(B) is immediate. In the latter case, s and s′ are contained
within the triangle defined by b, b′, and qj

i . Now notice that, if the intersection point of the
lines defined by s and s′ was closer to D(B) than to D(A), or if s and s′ were parallel, the
points on s and s′ which are vertices of B would not be visible from qj

i . Hence, we have
D(A) ≺ D(B). ◀

As we cannot have both D(A) ≺ D(B) and D(B) ≺ D(A), we assume, w.l.o.g., that
D(B) ̸≺ D(A). Thus, in any frame containing A, B, and some apex vertex qj

i , B will lie on
the outer face of the drawing defined by A and qj

i .
We will now show the last ingredient, which can be seen as the key lemma of the

construction. Essentially, we want to show that at most two edges of A are “good” – in the
sense that they can lie on the outer face of the drawing of A plus some apex vertex (see
Figure 4b). More formally, for a fixed drawing of A, the edge eA

k , k ∈ [4], is good if it can be
the edge on the outer face of the planar straight-line drawing D(A + qj

i ) for some possible
placement of some apex vertex qj

i in the outer face of D(A). We show the following.

▶ Lemma 8. For a fixed drawing D(A) of A, A has at most two good edges.

Proof. The proof distinguishes two cases, depending on whether D(A) is convex or not.
We start with the convex case. We show that it is not possible that eA

1 and eA
3 are both

good. By symmetry, this means that eA
2 and eA

4 cannot be both good, and the statement
follows. Thus, assume that eA

1 and eA
3 are good. We observe that in the drawing of A, each

edge defines two open half-planes – the “outer half-plane” and the “inner half-plane” (see
Figure 4a for the outer half-planes). More precisely, the outer half-plane defined by eA

i

contains as subset the points which can be connected by straight lines to ai and ai (mod 4)+1



A. Dobler, M. Holzmüller, and M. Nöllenburg 27:7

without crossings, while the inner half plane does not. Thus, for k ∈ [4], define HO
k as

the outer half-plane defined by eA
k , and HI

k as the inner half-plane. As the half-planes are
open, they do not contain the line defined by their corresponding edge. Since e1 is good,
HI

1 ∩ HO
2 ∩ HO

3 ∩ HO
4 is non-empty (an apex vertex must be able to lie in this region for the

drawing to be straight-line planar and for the edge eA
1 to be on the outer face). Similarly,

as e3 is good HO
1 ∩ HO

2 ∩ HI
3 ∩ HO

4 is non-empty. Note that HO
2 ∩ HO

4 is disjoint from the
inner region defined by D(A). For HO

1 and HI
1 to both share points with the intersection

of HO
2 and HO

4 , the line defined by the drawing of eA
1 must pass through HO

2 ∩ HO
4 . Because

the drawing of A is convex, and because HO
2 ∩ HO

4 does not share points with the region
defined by D(A), this is not possible. We obtain a contradiction.

For the concave case, w.l.o.g., assume that the concave corner is at a2, with its two
incident edges eA

1 and eA
2 . We claim that none of eA

1 and eA
2 can be good. For eA

1 to be good,
we again have that HI

1 ∩ HO
2 ∩ HO

3 ∩ HO
4 is non-empty. This is not possible: Consider any

point x outside D(A) and in HI
1 . Notice that the line segment from x to a2 intersects an edge

of A. Hence, eA
1 cannot be good. The proof that e2 cannot be good proceeds equivalently. ◀

Proof of Theorem 2. Assume for a contradiction that G admits a planar geometric storyplan.
By our assumption, the drawings of A and B are in each other’s outer face. Further
D(B) ≺ D(A) does not hold. Thus, in each of the six frames existing by Corollary 4, D(B)
is in the outer face of the drawing induced by A and the apex vertex. For the frame to be
planar, the edge vertex of the apex-pair must be on the outer face of the drawing induced by
the apex and A. Hence, the edge vertex must be connected with a good side of A. But, as
there are only two good sides (Lemma 8), this is only possible for at most four apex-pairs.
Hence, two of the edge vertices of the six apex pairs of Corollary 4 cannot be connected to a
good side of A, a contradiction. ◀

4 NP-hardness

Furthermore, we can show that Problem 2 remains NP-hard.

▶ Theorem 9. Deciding whether a graph admits a planar geometric storyplan is NP-hard.

Essentially, we apply the same reduction from a variant of SAT as in [5]. Since every planar
geometric storyplan is a planar storyplan, we get one direction of the correctness proof
for free. However, we have to construct a geometric planar storyplan for every satisfying
assignment. This requires a new construction, as the one in [5] does not use straight-line
edges. For details, refer to the full version [13].

5 Conclusion

We have shown that not all graphs that admit a planar storyplan also admit a planar
geometric storyplan, yet the decision problem remains NP-hard. A natural open question is
whether the problem remains in NP, or whether it is complete for some other complexity
class, such as ∃R.

For further open problems on storyplans in general, we refer to those given in [5] and [14].
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