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—— Abstract

Treewidth is an important structural graph parameter that quantifies how closely a graph resembles
a tree-like structure. It has applications in many algorithmic and combinatorial problems. In this
paper, we study the treewidth of outer k-planar graphs, that is, graphs admitting a convez drawing
(a straight-line drawing where all vertices lie on a circle) in which every edge crosses at most k other
edges. We also consider the more general class of outer min-k-planar graphs, which are graphs
admitting a convex drawing where for every crossing of two edges at least one of these edges is
crossed at most k times.

Firman, Gutowski, Kryven, Okada and Wolff [GD 2024] proved that every outer k-planar graph
has treewidth at most 1.5k + 2 and provided a lower bound of k + 2 for even k. We establish a lower
bound of 1.5k + 0.5 for every odd k. Additionally, they showed that every outer min-k-planar graph
has treewidth at most 3k + 1. We improve this upper bound to 3 - |k/2] + 4.

Our approach also allows us to upper bound the separation number, a parameter closely related
to treewidth, of outer min-k-planar graphs by 2 - |k/2] 4+ 4. This improves upon the previous bound
of 2k + 1 and achieves a bound with an optimal multiplicative constant.
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1 Introduction

In this paper, we study classes of graphs admitting a convex drawing with a bounded number
of edge crossings. A convex drawing is a straight-line drawing with all vertices drawn on a
common circle. Bannister and Eppstein [1, 2] proved that the treewidth of graphs admitting
a convex drawing with at most k crossings in total is bounded by a linear function of v/k. For
fixed k, they also provided a linear-time algorithm deciding whether a given graph admits such
a drawing (using Courcelle’s theorem [5]). Another well-studied class of graphs in this context
is the class of outer k-planar graphs, that is, graphs that admit a convex drawing in which
every edge crosses at most k other edges. These graphs have treewidth bounded by a linear
function of k, which was first proven by Wood and Telle [13, Proposition 8.5]. The authors
of [4], also using Courcelle’s theorem, presented, for any fixed k, a linear-time algorithm that
tests whether a given graph is maximal outer k-planar. Recently, Kobayashi, Okada and
Wolff [10], for any fixed k, provided a polynomial-time algorithm to test whether a given
graph is outer k-planar and proved that recognising outer k-planar graphs is XNLP-hard.
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For disambiguation, we recall the definition of k-outerplanar graphs. A graph is out-
erplanar if it has a planar drawing with all vertices lying on the outer face. A graph is
1-outerplanar when it is outerplanar. A graph is k-outerplanar for k > 1 when it has a
planar drawing such that after removing the vertices of the outer face, each of the remaining
components is (k — 1)-outerplanar.

We mainly study the treewidth of outer k-planar graphs and outer min-k-planar graphs.
A graph is outer min-k-planar if it admits a convex drawing in which, for every crossing of
two edges, at least one of these edges is crossed at most k times. Firman, Gutowski, Kryven,
Okada and Wolff [7] proved that outer k-planar graphs have treewidth at most 1.5k + 2
and outer min-k-planar graphs have treewidth at most 3k + 1. To obtain these results, they
showed that every outer k-planar graph admits a triangulation of the outer cycle such that
every edge of the triangulation is crossed at most k times by the edges of the graph. A similar
property was proven for outer min-k-planar graphs.

Another property closely related to treewidth is the separation number of a graph.
A separation of a graph G is a pair (A, B) of subsets of V(G) such that AU B = V(G)
and there are no edges between the sets A\ B and B\ A. The order of a separation
is [ANB|. A separation is balanced if |A\ B| < 2|V(G)| and |B\ A| < 2|V(G)|. The
separation number of a graph G, denoted sn(G), is the minimum integer a such that every
subgraph of G has a balanced separation of order at most a. Robertson and Seymour [11]
proved that sn(G) < tw(G)+ 1 for every graph G. From the other side, Dvorédk and Norin [6]
showed that tw(G) < 15sn(G). Recently, Houdrouge, Miraftab and Morin [8] provided a
more constructive proof of an analogous inequality, but with a worse multiplicative constant.

Our contribution. The authors of [7] proved that every outer k-planar graph has treewidth
at most 1.5k + 2. They also presented a lower bound of k + 2 for every even k. We present
an infinite family of outer k-planar graphs with treewidth at least 1.5k 4+ 0.5, showing that
the multiplicative constant 1.5 in the upper bound cannot be improved; see Section 3.

We also improve the upper bounds for the treewidth and separation number of outer
min-k-planar graphs. It was previously known that the treewidth of such graphs is at most
3k+1 and the separation number is at most 2k+1 [7]. We give an upper bound of 3- | k/2] +4
for the treewidth (see Section 4) and an upper bound of 2 - |k/2] + 4 for the separation
number (see Section 5). Both multiplicative constants are optimal, as the lower bounds for
outer k-planar graphs also hold for outer min-k-planar graphs — namely, our lower bound of
1.5k + 0.5 for the treewidth and the lower bound of k + 2 for the separation number presented
in [7].

2 Preliminaries

Let G be a graph. By V(G) and E(G) we denote the set of vertices and edges of G,
respectively. For an edge that connects vertices u and v, we use the compact notation uwv,
instead of {u,v}. For a directed edge, we use the standard notation (u,v). Let deg(v) denote
the degree of a vertex v, and let A(G) denote the maximum degree of a vertex of G.

For a graph G, a subgraph induced by a set U C V(G), denoted G[U], is a subgraph with
vertex set U and all edges of G between the vertices of U. A spanning tree of a graph G is a
subgraph of G containing all the vertices of G that is a tree. By distg (v, w), we denote the
distance (i.e. the length of the shortest path) between v and w in a graph G. For any tree T
rooted at vertex r, we define the depth of a vertex v as depth,(v) = distr(r,v). We may
omit subscripts if they are clear from the context.
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A tree decomposition T = (T, B) of a graph G is a collection of bags, {B, : x € V(T)},
indexed by the vertices of a tree T. The bags are subsets of V(G) and satisfy the following
properties:

1. for every vertex v € V(G), the set {z : v € B, } induces a non-empty subtree of T

2. for every edge uv € E(G), there exists a bag containing both v and v.

The width of a given tree decomposition is the size of the largest bag minus one. The treewidth

of a graph G, denoted by tw(G), is the minimum width of any tree decomposition of G.

A set B of non-empty subsets of V(G) is a bramble if:

1. for every X € B, the induced subgraph G[X] is connected;

2. for every X1, Xs € B, the induced subgraph G[X; U X3] is connected. In other words,
each X7, Xo € B either share a common vertex or there exists an edge of G incident to
both X; and Xs.

A hitting set of a bramble is a set of vertices with non-empty intersection with every element

of B. The order of a bramble is the size of its smallest hitting set. The bramble number of a

graph G, denoted by bn(G), is the maximum order of any bramble of G.

The following result by Seymour and Thomas shows the relation between the bramble
number and treewidth.

» Theorem 1 (Seymour and Thomas, [12]). For every graph G, tw(G) = bn(G) — 1.

We say that a graph G is a minor of a graph H if G can be obtained from H by a
sequence of vertex deletions, edge deletions or edge contractions. The contraction of an edge
uv is an operation that replaces vertices v and v with a new vertex adjacent to every vertex
other than u and v that was adjacent to u or v. It is a well-known fact that if G is a minor
of H, then tw(G) < tw(H). A proof of this fact can be found in [3].

In the remainder of this section, we introduce some notation and simple observations
regarding drawings. A conver drawing of a graph G is a straight-line drawing where the
vertices of G are placed on distinct points of a circle. Given a cyclic order (vy,...,v,) of
vertices, we say that an edge v;v; with i < j crosses an edge vy v, with i’ < j' if either
1<i<i<j<ji <norl<i <i<j <j<n. Weonly consider convex drawings
where no three pairwise non-adjacent edges pass through the same point. An outer k-planar
drawing of a graph is a convex drawing such that every edge crosses at most k other edges.
An outer min-k-planar drawing of a graph is a convex drawing such that for every crossing
of two edges, at least one of these edges crosses at most k other edges.

An outer min-k-planar graph G is mazimal outer min-k-planar if for every {u,v} C V(G)
with uv € E(G), the graph G + wv is not outer min-k-planar.

» Observation 2. Let G be a mazximal outer min-k-planar graph with at least three vertices.
Then, in every outer min-k-planar drawing of G, the outer face is bounded by a cycle.

Proof. Consider an outer min-k-planar drawing I of G. Let u and v be consecutive vertices
in the cyclic order defined by I'. Suppose, for contradiction, that wv ¢ E(G). Note that
the graph G 4 uv has an outer min-k-planar drawing defined by the same cyclic order as T,
contradicting the maximality of G. <

A graph G is expanded outer min-k-planar if G is an outer min-k-planar graph with
A(G) < 3 and its outer face is bounded by a cycle in some outer min-k-planar drawing of G.

» Observation 3. Every outer min-k-planar graph G is a minor of an expanded outer
min-k-planar graph G'.

28:3

GD 2025



28:4

Treewidth of Outer k-Planar Graphs

Figure 1 The transformation described in Observation 3.

Proof. Let us assume that G is maximal outer min-k-planar. Now, in order to obtain G’
from G, we perform the following transformation to every vertex v of G with deg(v) > 4.
The transformation is depicted in Figure 1. Let wg,ws, ..., ws, wsy1 be all neighbors of v
in clockwise order, with edges vwy and vwsy1 incident to the outer face of G. We replace
v with a path vy,...,vs, put it on the outer face of G in counterclockwise order, in the
place of v. We connect this path to vertices wy and wsy1 by adding edges v1wy and vswsy1.
Finally, for every 1 < i < s, we add an edge v;w; that corresponds to an edge vw; in the
original graph. It is easy to see that G is a minor of G’ and the ordering of corresponding
edges in G’ matches the one in G. Moreover, the crossings in the resulting graph naturally
correspond to the crossings in the original graph. |

The vertices v1,...,vs obtained in the proof as a replacement of v are called images
of v. The vertex v is the origin of these vertices, which we denote as org(v;) = v. If the
transformation was not performed for some vertex v of G, i.e. deg(v) < 3, then v is an image
and origin of itself.

Since removing edges increases neither the treewidth nor the separation number, we are
interested in the properties of maximal outer min-k-planar graphs. Also, taking a minor does
not increase treewidth, so we work with expanded graphs when establishing upper bounds
on treewidth.

3 Lower bound on the treewidth of outer k-planar graphs

In this section, we construct an infinite family of outer k-planar graphs with treewidth at
least 1.5k + 0.5. This improves the previous lower bound of k + 2 that was presented in [7].
We begin by defining the necessary graphs.

For positive integers m and n, let X,, , denote the grid of m rows and n columns, i.e. a
graph with

V(X)) ={zi; :1<i<m,1<j<n} and E(Xn) ={aijor: |0 —k|+|j =1 =1}.

For a positive integer k, let @, be a copy of the grid Xoj of and let Ry be a copy of X2k(k+1)7k.
Denote by v; 5, for 1 <i,j < 2k, the vertex in the i-th row and j-th column of @y, and by
u; 5, for 1 <4 <2k(k+1), 1 < j <k, the vertex in the i-th row and j-th column of Ry. Let
G, be a graph such that V(Gy) = V(Qx) UV (R) and

E(Gy) = E(Qk) U E(Ri) U {viartugi—1)(hs1)1j1 0 1 S <2k, 1<j<k+1};
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u1,1 U1,k

V1,1 V1,2

2k 2k(k +1)

11

2k

k

Figure 2 The graph Gy, for k = 3, with a subgraph of B; colored green and a subgraph of B2
colored orange.

see Figure 2. For 1 < i < 2k(k + 1), let the i-th extended row of G be the union of the
i-th row of Ry and the [ﬁrl}th row of Q. Note that each row of Q)i is contained in k + 1
extended rows and the graph induced by each extended row is a path.

The graph G was previously introduced by Kammer and Tholey [9] as an example of
tightness of the upper bound on the treewidth of k-outerplanar graphs. They used the cops
and robber game to establish a lower bound on the treewidth of Gi. Below, we present a
proof using brambles.

» Theorem 4 (Kammer and Tholey, [9]). For every k > 1, tw(Gy) = 3k — 1.

Proof. Notice that the drawing of G in Figure 2 is k-outerplanar. By the fact that

k-outerplanar graphs have treewidth at most 3k — 1 [3, Theorem 83], we get tw(Gy) < 3k — 1.

To prove that tw(Gy) > 3k — 1, we construct a bramble of order 3k. Then, using
Theorem 1, we get tw(Gy) > 3k — 1. Let B; be a family consisting of every subset of V(Gy)
that is a union of an extended row of Gy and a column of Q. Let Bs be a family consisting
of every subset of V(G}) that is a union of a row of Ry and a column of R;. The set
B = By U By forms a bramble of Gy, since each subgraph induced by an element of B is
connected and every two such subgraphs have at least one common vertex.

Consider any hitting set S of B. Let ¢ and r be the number of vertices of S in V(Q)
and in V(Ry), respectively. We would like to show that |S| = ¢ + r > 3k. Note that r > k,
as otherwise there is a row and a column of Ry not containing any element of S, and thus
there is an element of By not hit by S.

If ¢ > 2k, then q + r > 3k. Otherwise, let ¢ = 2k — [ for some positive integer [. Now, we
can find at least [ columns and at least [ rows of @ not intersecting S. These [ rows are
contained in I(k 4 1) extended rows. Each of them has to intersect S at some vertex of Ry,
because otherwise we can find a column of @)y and an extended row not intersecting .S that
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ui,1 U1,k

wi,1
Wy R,
Wi,2
Q
Pa——"c Vi2k 219z, 21,001
upper Zl -
part 22,0 . W21
! Qk 22,1 4! 2
’ Wa. o
2k Zy -
22,0(2)
lower
part
e Z2k,0 #2k.1 #2k,(2k)
Zok
2k

Figure 3 The graph F}, which is a modification of the graph G, for k = 3.

form an element of B;. The extended rows restricted to Ry are pairwise disjoint, so we have
r > I(k+ 1). Summing up, we get ¢ +r > 2k — I+ I(k + 1) = 2k + Ik > 2k + k = 3k, which
concludes the proof. |

Let Fj, be the following modification of G, depicted in Figure 3. We set £(i) = (k—1i)(k+1)
for 1 <i<k,and £(i) = (i—k—1)(k+1) for k+1 < i < 2k. We remove every edge between
the grids Qx and Ry. For every 1 < i < 2k, we add a path Z; of length £(i) on new vertices
20,05 %15 - - -5 Zi,0(7)- Note that

K2 = 1=|V(Z)| =V (Zaw)| > [V(22)] = V(Zar—1)| > ... > [V(Zi)| = |V (Zi4a)| = 1.

We also add a path W; of length k£ on new vertices w; 1, w; 2,...,w; x+1. We connect v; op
with Z; by adding the edge v; 2r2:,0. Next, we connect Z; with W; by adding the edge
2i o(iyWi k1 for 1 <4 <k, or the edge 2; y;w; 1 for k+1 <4 < 2k. Finally, we connect W;
with Ry, by adding the edges w; ju(i—1)(x41)+j,1 for every 1 <j <k + 1.

To see that G is a minor of F}, it is enough to contract, for every 1 < i < 2k, vertex
v; 21, with all vertices of the paths Z; and W;. Since taking a minor does not increase the
treewidth, we obtain the following corollary.

» Corollary 5. For every k > 1, tw(Fy) > 3k — 1.
» Theorem 6. For every k > 1, The graph Fy, has an outer (2k — 1)-planar drawing.

Proof. We describe an outer (2k — 1)-planar drawing of Fy, as depicted in Figure 4. We call
the set of vertices {v; ; : 1 < i <k,1<j <2k} the upper part of Q. The other vertices of
Q. are called the lower part of Q. We define a cyclic order of the vertices of Fj by arranging
them in clockwise order from some selected starting point on a circle.
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group
E—1—"— ..
[group k]| ’
upper part
of Qk
starting
point Rk;
lower part
of Qg
group 2k
group
1 .
kt ~—___[group| -

k+2

(a) Overview of the outer (2k — 1)-planar drawing of F.

Vk,1 V2,1 V11 Vk,2 V22 V12 Vk,2k V22k V1,2k

Vk+1,1 Vk+1,2 Vk+1,3 Vk+1,k

(b) Drawing of the upper part of the grid Q.

group k group 2 group 1

Vk,2k V22k V1,2k  2k,0 22,0 21,0 Wkk+1 22,1 21,1 22,2 21,2 Wkg,1 22,k+1  W2k+1 w21 W1 k+1 wy,2 W11

Vk41,k Uk(k+1),1 U2k+4,1 U2k+3,1 U2k+2,1 Uk+3,1 Uk42,1  Ugy1,1 U3l U201 UL

(c) Drawing of the groups k,k — 1,...,1 connected to the upper part of Q.

Uyl U2 ULk U2,1 U2 U2k U2k (k4+1)—1,1 U2k (k+1),1  U2k(k+1),k
w11 w1,2 W2k, k Wak,k+1

(d) Drawing of the grid Ry.

Figure 4 Fragments of the outer (2k — 1)-planar drawing of Fj, where k = 3. The drawings are
not shown as straight-line drawings, but illustrate the order in which the vertices are placed. A
straight-line drawing can be easily obtained by placing vertices in this order on the circle.
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First, we place the vertices of the upper part of Q) in column-by-column order (see
Figure 4b):

Vk,15--+5021,01,1, Vk,2,---,V22,V12, ... VUk2k,--.,V22k,V12k-

We divide the vertices of paths Z; and W;, for 1 <14 < k, into k groups, as follows. The
i-th group contains the vertices of W; and the vertex z; ;). If i > 2, the i-th group also
contains vertices zgp for 1 < a <iand (k—1i)(k+1) <b< (k—i+1)(k+1). In the drawing,
we place the groups of indices k,k — 1,...,1, in this order. We arrange the vertices in the
i-th group, for 2 <4 < k, in the order (see Figure 4c):

ENIOE
Zi—1,(k—i)(k+1)s Bi—2,(k—i)(k+1)s - + = » 1, (k—i) (k+1)> Wi k+1,

Zi—1,(k—3) (k+1)+15 Zi—2,(k—i) (k+1)+15 - - = s Z1,(k—3) (k+1)+1> Wi k)

Zi—1,(k—i+1)(k+1)—15 Zi—2,(k—i+1)(k+1)—15 « - s 21, (k—i+1) (k+1)—1, W4, 1-

The group of index 1 has vertices arranged in the order: 2y g1y, W1 k41, W1k, -- -, W1,1-
Next, we put the vertices of Ry in row-by-row order (see Figure 4d):

Ur,1,%1,25-.-, ULk, U21,U2,2,-.-,U2k, ..  Uk(k+1),1 U2k(k+1),2) - - > U2k(k+1),k-

The vertices of Fj that are not placed yet are in the lower part of Qi or in the paths Z;,
W; with k 4+ 1 <14 < 2k. We arrange them in counterclockwise order from the starting point
and place them between the starting point and the vertices of Rj. The order is symmetric,
with respect to the starting point, to the one used to arrange the upper part of Q) and the
paths Z;, W; with 1 <1 < k. Every vertex v; j, where k +1 <4 < 2k and 1 < j < 2k, is
placed symmetrically to vog—it1,;. Vertex z; ;, where k+1 <4 <2k and 0 < j < £(4), is
placed symmetrically to zop—it+1,5, and vertex w; 4, where k+1<i<2kand 1 <j <k +1,
is placed symmetrically to waog—i11,k—j+2. The symmetrical drawing of the i-th group, for
every 1 < i <k, forms the group of index 2k —i + 1.

Now, we partition the edges into several numbered types. For the edges of each type, we
show that they cross at most 2k — 1 other edges.

Edges of Qy:

1. The “column” edges of the upper or lower part of Qy, that is, the edges v; jv;11 ;, for
1<i<2k—1,i# kand 1<j <2k. They cross no other edges.

2. The “column” edges between the upper part and the lower part of Qj, that is, the edges
Vk,jUk+1,5, for 1 < j < 2k. Each of these edges crosses & — 1 edges of type 3 of the upper
part of i, and k — 1 edges of type 3 of the lower part of Q). The edge vy 1vx41,1 does
not cross any edges.

3. The “row” edges of Q)i, that is, the edges v; jv; j+1, for 1 <7 <2k and 1 <j <2k —1.
Each of these edges crosses at most 2(k — 1) edges of type 3 (and type 4, for j = 2k — 1),
and additionally at most one edge of type 2.

Edges between Qj and the groups:

4. Each edge v; 2x.2:,0, for 1 < i < k, crosses 2(k—1) edges in total: 2(i—1) edges of types 3, 4
incident to vertices vj o, for all j € {1,...,i — 1}; and 2(k — i) edges incident to vertices
zjo, forall j € {i +1,...,k}. By symmetry, each edge v; 220, for k +1 <i < 2k, also
crosses exactly 2(k — 1) edges.
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Edges of the groups:

5. Each edge z; ¢(jyw; k41, for 1 < i < k, crosses exactly 2(i—1) edges incident to the vertices
Zi—1,0(i)s - - 5 21,0(1)- By symmetry, each edge z; g;w; 1, for k +1 < i < 2k, also crosses
exactly 2(2k — 1) edges.

6. Each edge of the path Z;, for 1 < i < 2k, crosses at most 2(k — 2) edges incident to
at most k — 2 vertices of some paths Z; with j € {1,...,2k}, and at most three edges
incident to some vertex wq, € V(W;) with j € {1,...,2k}.

7. Each edge of the path W;, for 1 <i < k, crosses 2(7 — 1) edges incident to ¢ — 1 vertices
of some paths Z; with j € {1,...,k}. By symmetry, each edge of the path W;, for
k+1 <4 <2k, also crosses 2(2k — i) edges.

Edges between the groups and Ry:

8. Each edge w; jui—1)(k+1)+j,1, for 1 <i <2k and 1 < j < k + 1, crosses at most k — 1
edges of some paths Z, with a € {1,...,2k}, and at most k — 1 edges of Ry of type 10.

Edges of Ry:

9. The “row” edges of Ry, that is, the edges w; ju; j+1, for 1 <i <2k(k+1)and1 < j <k-—1.

They cross no other edges.

10. The “column” edges of Ry, that is, the edges u; ju;y1,, for 1 <i < 2k(k+1) —1 and
1 < j < k. Each of these edges crosses at most 2(k — 1) other edges of this type and at
most one edge of type 8. <

» Theorem 7. For every odd positive integer k, there exists an outer k-planar graph G with
tw(G) > 1.5k +0.5.

Proof. By Theorem 6, the graph Fr+1 is outer k-planar, and by Corollary 5, it has treewidth
at least 3- £+ — 1 = 1.5k +0.5. <

4 Upper bound on the treewidth of outer min-k-planar graphs

In this section, we establish an upper bound on the treewidth of outer min-k-planar graphs.

We improve the previous bound of 3k + 1 presented in [7] to 3 - |k/2] + 4. We begin by
introducing required notation.

For an outer min-k-planar graph G with a given drawing I', we define the planarization
G p (with respect to T') as the graph whose vertex set is the union of V(G) and all crossing
points of edges of G. We say that a vertex w € V(Gp) lies on an edge uwv € E(G) if w
is an endpoint of uw, or if the crossing point corresponding to w belongs to the segment
representing the drawing of uv in I'. Graph Gp contains an edge between two vertices if
and only if they are consecutive vertices lying on the drawing of some edge of G. Observe
that Gp is a planar graph. We say that an edge zy € E(Gp) lies on an edge uv € E(G) if
both z and y lie on wv in I'. Furthermore, we say that a vertex v € V(Gp) is outer if it
is incident to the outer face of Gp. Otherwise, v is an inner vertex. As we consider only
maximal outer min-k-planar graphs G, the outer vertices of Gp are exactly the vertices of G,
while the inner vertices of Gp are exactly the crossing points of edges of G. By f, we denote
the outer face of Gp.

For a planar graph G, let G* denote its dual graph. Let f* € V(G*) denote the vertex
dual to the face f of G, and let e* € E(G*) denote the edge dual to the edge e € E(G). We
remark that G* can be drawn on the drawing of G in a way that f* is on the face f and the
drawing of e* is a curve that crosses the edge e exactly once and passes only through the
faces corresponding to the endpoints of e*.
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The following lemma shows a bijection between a spanning tree T of a planar graph G
and a spanning tree T* of G*, where T* = dual(T"). We also use the notation dual(T™*) to
denote T

» Lemma 8 (Folklore). Let T be a spanning tree of a planar graph G. Then T* with
V(T*) =V (G*) and E(T*) ={e*: e € E(G)\ E(T)} is a spanning tree of G*.

The next lemma proves that there exists a spanning tree preserving shortest paths from
a given vertex. Such a tree can be found using a breadth-first search.

» Lemma 9 (Folklore). Let G be a graph and let r be a vertex of G. Then there exists a
spanning tree T of G rooted at r such that depthy(v) = distg(r,v) for every vertez v of G.

» Lemma 10. Let G be an expanded outer min-k-planar graph with its planarization Gp.
Then dist(f*, f¥) < |k/2| + 1 for every vertex f* € V(G%).

Proof. Let f be an inner face of Gp. If f is adjacent to f,, then dist(f*, f¥) = 1. Otherwise,
let v be a vertex of Gp incident to f. Since G is expanded, the vertex v is inner, and hence it
lies on an edge e of G that crosses at most k other edges. Let v, v1,..., Vs, Ust1,- ., Vsttt1
be all vertices lying on e, listed in the order along e, where vs = v and vs1; is a neighbor of
v that is incident to f. We may assume that s < ¢, i.e. v, is closer to an endpoint of the
edge e than vs;1 to the other endpoint of e. Note that at most k + 2 vertices lie on e (two
endpoints and at most k crossing points), so s + ¢ + 2 < k + 2. Together with the previous
inequality, this implies s < k/2. The number s is an integer so s < |k/2].

We inductively define a sequence wg, ws_1,...,wqy of vertices. Vertex w;y is the neighbor
of vy that is incident to f and does not lie on e. For every i = s — 1,...,0, the vertex
w; is one of the two neighbors of v; not lying on e, chosen so that w;, v;, v;—1 and w;_1
are incident to the same face of Gp. Let e; denote the edge v;w;. Note that the path
formed by the edges e¥, ..., e} connects f* with f* (since eg is incident to f,). Hence,
dist(f*, f2) <s+1<|k/2] +1. <

Let v be an inner vertex of Gp. Since we forbid common crossing points of three edges
of G, the vertex v has four neighbors, which we denote by w1, ws, w3, wy in clockwise order.
The splitting of the vertex v replaces it with two vertices v; and vy connected by an edge,
and adds edges viwy, viwe and vows, vew,. We fix a planar embedding of the new graph by
placing vy, vo very close to where v was drawn. We say that vertices v; and vs lie on the same
edges as the vertex v. Moreover, we call the edge vyvy an auziliary edge. After splitting v,
every edge of Gp has an edge corresponding to it, and every face of Gp corresponds to a new
one in a natural way. Additionally, the dual graph has one new edge, which is dual to vivs.

Let Gg denote the split planarization of the outer min-k-planar graph G, that is, the
graph G p with all inner vertices split. See Figure 5 for an example. Observe that there is
a one-to-one correspondence between V(G5) and V(GY). Further, every edge of G} has a
corresponding edge of G. The following lemma shows how the properties of a spanning tree
Tp of Gp and a spanning tree dual(Tp) of the dual graph G% are preserved after splitting
the vertices of Gp.

» Lemma 11. Let G be an expanded outer min-k-planar graph with its split planarization Gg.
Then there exists a spanning tree Ts of Gs and a spanning tree TS = dual(Ts) of G% rooted
at f¥, such that depth(f*) < |k/2] + 1 for every vertex f* € V(G¥%) and E(Ts) contains all
auzxiliary edges of Gg.
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(a) The graph Gp with its spanning tree Tp col- (b) The graph Gg with its spanning tree Ts col-
ored black and a spanning tree Tp5 of Gp in red. ored black and a spanning tree T¢ of G in red.

Figure 5 Drawings of an example graphs with their spanning trees and spanning trees of the
dual graphs. An example walk, constructed in the proof of Theorem 12, that is connecting w and z,
is marked in blue. The vertex f; is missing in both drawings.

Proof. Let Gp be a planarization of G. By Lemmas 9 and 10, there exists a spanning tree T
of G% that is rooted at fF whose vertices have depth at most |k/2] + 1. Let Tp = dual(T})
denote the spanning tree of Gp.

Let Gg denote the graph obtained from G p by splitting each of its inner vertices. After

this transformation, let 7§ be a tree constructed of edges corresponding to those of Tp.

Clearly, T¢ is a spanning tree of the graph G%. The spanning tree Ts = dual(T§) of Gg
contains all auxiliary edges of Gg, because none of the duals of auxiliary edges are in E(T¢),
as they were not in E(T}). <

Now, we are ready to prove the main result of this section.

» Theorem 12. Let G be an outer min-k-planar graph. Then tw(G) <3 - |k/2] + 4.

Proof. By Observation 3 we may assume that G is an expanded outer min-k-planar graph.

Let Gg be the split planarization of G. By Lemma 11 there exists a spanning tree Ts of Gg
and a spanning tree T = dual(Ts) of G% rooted at f such that depth(f*) < |k/2] +1 for
every vertex f* € V(G%) and E(Ts) contains all auxiliary edges of Gg.

We orient the edges of G as follows. Edges incident to the outer face are oriented clockwise,
while all other edges are oriented arbitrarily. Observe that every vertex of G has at most
two incoming edges.

Now, we construct the tree decomposition T = (T, B) of the graph G. The bags of T
are indexed by the vertices of the spanning tree Ts. We place vertices of G into bags using
the following rules.

1. For every outer vertex v € V(Gg), we place v into the bag B,.
2. For every oriented edge (z,y) of G, we place  into the bag Bj,.
3. For every oriented edge (z,y) of G, and for every inner vertex v € V(Gg) lying on (z,y),

we place x into the bag B,.

4. For every inner face f and every edge e* on the path from f* to f; in T, where e lies

on the edge (x,y) of G, we place z into the bag B, for each vertex v incident to f.
Note that, in rule 4, the edge e is not in E(Tg), so it is not an auxiliary edge, which implies
that it is lying only on a single edge of G.
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For every edge (x,y) of G, by rules 1 and 2, the bag B, contains both z and y. Moreover,
every vertex of GG is present in some bag. So, to prove that 7 is a tree decomposition of G,
it suffices to show that for every vertex z € V(G), the set {w : « € B,,} induces a connected
subtree in Tg.

Fix a vertex x and an edge (z,y) of G. Let e = uv be an edge lying on (z,y) such that
e ¢ E(Ts). Assume that e* = f f5 and depthy. (f3) = depth, (ff)+1. Let T be a subtree
of T¢ induced by the set of all descendants of f3, including f5. Define F, = {f : f* € V(T¢)}
and let boundary(F,) be the set of vertices incident to some face in F.. Observe that, by
rule 4, x is placed into all bags indexed by boundary(F,). The set boundary(F,) induces
a connected subgraph of T, i.e. Ts[boundary(F.)] is connected, containing both u and v.
Note that the bags of 7, into which we placed = by rule 4, are exactly the bags of vertices of
Ts that are in boundary(F,) for some edge e ¢ E(Ts) lying on some edge (z,y) of G.

By rules 1, 2 and 3, x is contained in all bags B,, such that w lies on (z,y) for some
edge (z,y) of G. We claim that the vertices indexing these bags, together with the vertices
indexing bags we placed x into by rule 4, form a connected subgraph of Ts. To see that, we
show that for every vertex w with z € B,,, w is connected to x by a walk in Tg such that
bags indexed by the vertices of this walk contain x.

If w lies on an edge (x,y) of G then, in order to construct this walk, we start at vertex
w. We iterate over consecutive edges lying on (z,y) between w and z, starting at the edge
incident to w. If the current edge e is in E(Ts), then we extend the walk by e. Otherwise,
e & E(Ts). As Ts[boundary(F.)] is connected and every bag of a vertex in boundary(F,)
contains x, we can extend the walk by some path in Tg[boundary(F.)] connecting the
endpoints of e. See Figure 5b for an example of such a walk.

If w is in the set boundary(F,) for some edge e lying on (z,y), then we begin the walk
with a path contained in boundary(F,) between w and an endpoint v of e. We extend this
walk by a walk between v and z, whose existence we have already proven.

Next, we bound the size of the bags in 7. Consider an inner vertex v of Ts. It lies on
exactly two edges of G, so by rule 3 we placed two vertices into B,. Also, v is incident to three
non-outer faces of Gg. For every such face f and every edge e* on the path from f* to f in
T3, by rule 4 we placed one vertex into B,. By Lemma 11 we have depth(f*) < |k/2] +1, so
each such path has at most |k/2| + 1 edges. Thus, |B,| <2+ 3-(|k/2] + 1). Now, consider
an outer vertex v of Ts. By rules 1 and 2, the bag B, contains v and at most two other
endpoints of edges incoming to v in G. Also, v is incident to two non-outer faces of Gg.
Hence, we derive a bound |B,| < 3+ 2 (|k/2| +1). The width of the constructed tree
decomposition is at most

max{2+3-([k/2] +1),3+2-([k/2) + 1)} =1 =243 ([k/2] + 1) —1 =3 [k/2] + 4.«

5 The separation number of outer min-k-planar graphs

The inequality sn(G) < tw(G) + 1, that bounds the separation number, holds for every
graph G. We remark that Theorem 12 directly implies that sn(G) < 3 - |k/2]| + 5 for every
outer min-k-planar graph G. By carefully choosing some bag B, of a tree decomposition,
we can construct a balanced separation (C, D) satisfying C N D = B,. To establish a
better upper bound, we first prove a general lemma showing how we can obtain a balanced
separation (C, D) such that C' N D = B, N B, for some two neighboring vertices x,y of a
tree decomposition, which needs to satisfy some additional properties.
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» Lemma 13. Let T = (T, B) be a tree decomposition of a graph G. Assume that A(T) < 3
and that every vertex v € V(G) is in at least two bags of T. Let a be an integer such that
|B; N By| < a for every edge vy € E(T). Then G has a balanced separation of order at
most a.

Proof. For every edge zy € E(T), after removing it from T, we obtain two connected
components C, and C, of T such that z € V(C,;) and y € V(Cy). We define S, , =
Uvev(cm) B, and Sy, = Uvev(cy) B,. It is a well known fact that the pair (S; ., Sy.z) is a
separation of G of order |S; , N Sy | = |Bz N By| < a.

We claim that there exists an edge zy € E(T') such that (S;,,S,) is a balanced
separation of G. Suppose the contrary. Then for every xy € E(T) it holds that |Sy 4 \ Sy 2| >
2n or [Sy.e \ Suyl > 2n, where n = |V(G)|. Now, we orient every edge of T. If the first
inequality holds then we orient zy as (y,x), in the other case as (z,y). Also, note that
Sz, \ Sy.z| > 2n implies |5, | < 7.

The tree T' with oriented edges is an acyclic graph, so there exists a sink, that is, a vertex
in T such that all edges incident to z are oriented towards x. Let {y1,...,yq}, where d < 3,
be the set of neighbors of z in T. We have |Sy, »| < %n Moreover,

U Sue= U B.=V(©G),

1<i<d veV(T)\{z}

since every vertex of GG is in at least two bags of 7. We obtain the following inequalities

1
V(G)| = U Syia| < Z Syal <d-gn<m,
1<i<d 1<i<d
which is a contradiction. <

Now, we are ready to establish an upper bound on the separation number of outer
min-k-planar graphs.

» Theorem 14. Let G be an outer min-k-planar graph. Then sn(G) < 2. |k/2| + 4.

Proof. The class of outer min-k-planar graphs is closed under taking subgraphs. Therefore,
it suffices to find a balanced separation of order at most 2 - |k/2] + 4 for every maximal
outer min-k-planar graph G. Let H be an expanded outer min-k-planar graph obtained from
G by Observation 3. By Theorem 12, there exists a tree decomposition 7 = (T, B) of H,
where T is a spanning tree of the split planarization of H. From the proof of Theorem 12,
it follows that A(Ts) < 3 and that every vertex v € V(H) is in at least two bags of T (since
there is an oriented edge (v, w) in H, so v € B, and v € By,).

We construct a tree decomposition 7' = (Ts, B’) of G with B, = {org(v) : v € B},
where org(v) denotes the original vertex that v replaced in the transformation described in
Observation 3. Every vertex v € V(G) is in at least two bags of 77, since every image of v
is in at least two bags of 7. Every edge vw € E(G) is realized in some bag of 7’, because
in H there is an edge corresponding to vw between an image of v and an image of w. To
prove that, for every vertex v of G, the bags of T’ containing v are spanning a connected
subtree of T, we denote the images of v by vy, ..., vs, ordered along the outer face. Since
H is maximal, for every i € {1,...,s — 1}, there is an edge v;v;41 in E(H). Thus, the two
subtrees of Tis induced by the bags of 7 containing v; and those containing v;; share a
common vertex. Bags containing v in 7’ are spanning a connected subtree of Ts, because
this subtree is a union of subtrees spanned by the images of v. Hence, 7" is a valid tree
decomposition of G.
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We say that a vertex v was placed into a bag B, of 7 due to rule 4 of constructing the
tree decomposition being applicable to the vertex v and a face f if:

the face f is incident to x;

there exists an edge e* on the path between f7 and f* in T such that e lies on an edge

(v,w) of H, for some w € V(H).
Now, we want to show that, for every edge zy € E(Ts), we have | B} N B?’J| <2-|k/2| +4.
Let f; and f5 be the faces of Hg incident to zy.

> Claim. If v € B}, N By, then there exists an image v; of v such that either
xy lies on an edge (v, w) of H, for some w € V(H); or
vy was placed into both B, and B, due to rule 4 of constructing 7 being applicable to v,
and face fi or face fs.

Proof. If x has degree 3 in Hg, then let f, & {f1, fo} be the face of Hg incident to vertex x.
Similarly, if y has degree 3 in Hg, then let f, & {f1, fo} be the face of Hg incident to y.
Assume that v € B; N By, but no image of v was placed into B, and B, due to the reasons
stated in the claim. So there exist v;, and v;, that are, not necessarily distinct, images of v
such that v;, € B, and v;, € By. For t € {z,y}, vertex v;, was placed into B; because either
1. t lies on an edge (v;,,w:) of H such that 2y does not lie on (v;,,w;); or
2. when t has degree 3 in Hg, rule 4 of constructing 7 is applicable to the vertex v;, and
face fi, i.e. there exists an edge (v;,,w;) of H and an edge e; of Hg lying on (v;,,w;)
such that e is on the path between f; and f; in T7§.

Now, we draw a curve C on the drawing of Hg. The curve C consists of the drawing of
the edge ry and the drawing of an arc of the outer face between v;, and v;, that contains
only images of v (the images of v are spanning a single arc of the outer face). Next, we add
to C curves connecting v;, with = and v;, with y. For t € {,y}, the way we draw these
curves depends on the reason v;, was placed into B, considered in the same order as above.
1. If ¢ lies on an edge (v;,,w;) of H, we draw along (v;,,w;), starting at vertex v;, and

ending at vertex t.

2. If rule 4 of constructing 7T is applicable to the vertex v;, and face f;, let p; be a path
between f; and fr in T§. We draw along (v;,, w;), starting at vertex v;, and ending at
the crossing point with the drawing of p;. We continue along p; till vertex f;. Finally,
we connect vertices f; and ¢ with a segment.

Note that if x = v;, and y = v;,, then C is degenerated to the arc between v;, and Vi,
implying that zy connects two consecutive images of v — contradiction. Otherwise, we claim
that one of the closed regions induced by C contains f; or fo. Indeed, C follows edges of Hg
and edges of T, but cannot contain f;" nor f3, because then rule 4 of constructing 7 would
be applicable to vertex v;, or v;, and face fi or fa. The segments between f; and ¢ does
not intersect fi nor fo. We may assume that f; is contained inside a closed region induced
by C. Consider a path p; between fi" and f; in T§. Since f is inside C and f; is outside C,
drawing of p; has to intersect C. We consider where the first intersection point is located.

Path p; cannot intersect e nor the segments between f; and ¢.

If p; intersects an edge (v;,,w;) then rule 4 of constructing T is applicable to v;, and f.

If py intersects p¢, then p; follows along p: up to the intersection point with (v;,,w:), so

the previous case applies.

If p; intersects the arc of the outer face between v;, and v;, then it has to intersect an

edge (vr, Up41), where v, and v,41 are consecutive images of v on the outer face. Hence,

rule 4 of constructing 7 is applicable to v, and f;.

In all cases, we obtain a contradiction. <



R. Pyzik

images of v

Figure 6 Drawing of an example curve C.

We proved that if v € B, N B?’J then there is an image v; of v such that either

zy lies on an edge (v, w) of H, for some w € V(H); or

vy was placed into both B, and B, due to rule 4 of constructing the tree decomposition
T being applicable to vertex vy and face fi or fs.

Note that zy lies on at most two edges of H (two if xy is an auxiliary edge, one otherwise).

Moreover, the two paths from f¥ to fi and from f} to f3 in T each have at most |k/2] +1
edges. Therefore, | B}, N B?’J| <2+4+2-(lk/2]+1)=2-|k/2] +4. By applying Lemma 13 to
T’, we obtain that G has a balanced separation of order at most 2 - |k/2] + 4. <

To give a lower bound we define a graph called stacked prism. A stacked prism Y, , is
an m X n grid with additional edges connecting the vertices of the first and the last row that
are in the same column. The Y,, ,, has an outer (2n — 2)-planar drawing, thus also an outer
min-(2n — 2)-planar drawing. In the cyclic order of the drawing, we place rows consecutively,
one after another. The edges from rows cross no other edges and the edges from columns
cross exactly 2n — 2 other edges. The authors of [7] showed that for every number n and for

every sufficiently large even number m, sn(Y,, ,,) = 2n. This leads to the following theorem.

» Theorem 15. For every even number k, there exists an outer min-k-planar graph G such
that sn(G) = k + 2.

We remark that the multiplicative constant of 1 in the upper bound given in Theorem 14
is tight, as it matches that of the lower bound in Theorem 15.
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