
Stabbing Faces by a Convex Curve
David Eppstein #

Computer Science Department, University of California, Irvine, CA, USA

Abstract
We prove that, for every plane graph G and every smooth convex curve C not on a single line, there
exists a straight-line drawing of G for which every face is crossed by C.
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1 Introduction

Every smooth convex curve C, not on a single line, contains arbitrarily many points in
general position (its tangent points at distinct slopes within a suitable interval). It follows
that every outerplanar graph has a straight-line drawing with all vertices on C [10]. A graph
that can be drawn in this way must be outerplanar, as its vertices all belong to a common
face outside C. But instead of asking for C to contain all vertices, here we ask: which planar
graphs can be drawn so that C intersects all faces? The answer turns out to be all of them.

Our motivation for this question comes from the problem of characterizing universal
point sets, sets of points Un for each n having the property that every n-vertex planar graph
has a straight-line drawing with its vertices in Un. These sets have size O(n2) [1, 3, 6, 16],
and ≥ cn for a constant c > 1 [5, 13, 15]. A recent line of research has investigated the
combinatorial structure of universal point sets, in terms of the number of lines necessary to
cover all points of such a set. Although point sets on O(1) parallel lines can support only the
planar graphs of bounded pathwidth [7], two crossed lines can support a much wider class
of graphs, including all leveled planar graphs [2]. However, supporting all n-vertex planar
graphs requires an unbounded number of lines, Ω(n1/3) [4, 9, 14]. Eppstein [8] asked: what if
we replace lines in these results by convex curves? Is it possible that universal point sets can
be supported by only O(1) convex curves?

This question could be answered by finding a single planar graph G? that could not be
drawn with all of its faces crossed by a single convex curve. If such a graph G? existed,
we could assume without loss of generality that G? is a triangulation, and then recursively
replace triangular faces of G? by more copies of G?. This recursive replacement process would
generate a family of graphs in which, for every drawing, every convex curve touches a number
of faces bounded by a sublinear polynomial of the number of vertices. This would imply
that universal point sets for graphs in this family could be supported only by a polynomially
growing number of convex curves. However, the hope for a proof along these lines is dashed
by our result: G? does not exist.

We remark that the corresponding question for edges rather than faces has an intermediate
answer: the class of graphs that can be drawn with all edges touching a smooth convex curve
C is broader than the outerplanar graphs but less broad than the planar graphs. In the full
version of this paper, we provide an example of a planar graph that cannot be drawn in this
way, regardless of the choice of C. It takes the form of the graph of nine regular octahedra,
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29:2 Stabbing Faces by a Convex Curve

with the outer eight octahedra each glued to a separate face of a central octahedron. But
unlike the case for faces crossed by C, we do not know how to leverage this example to prove
anything about the number of convex curves needed to support a universal point set.

2 Preliminaries

Given a plane graph G,1 to be drawn with all faces crossed by a convex curve, we may
assume without loss of generality that G is maximal planar, because if we complete any
other graph to a maximal planar graph, and draw the result with C crossing all faces of the
maximal planar completion, then C will also cross all faces of the original graph.

For a maximal plane graph G, with a fixed choice of outer face, we will draw G using a
canonical ordering [12], as used by de Fraysseix, Pach, and Pollack to find grid drawings of
planar graphs [6]. This is an ordering of the vertices of G such that the first three vertices
in the ordering induce a triangle with one edge (the base edge) on the outer face, and such
that each prefix of the ordering induces a triangulated disk2 in the drawing of G, with the
bounded faces of this triangulated disk also being faces of the full drawing of G. The next
vertex in the ordering, after any prefix, must have as its earlier neighborhood a contiguous
path along the boundary of the disk, not including the base edge, and the region between
this path and the next vertex is triangulated in a fan of triangles meeting at the added vertex.
This structure lends itself well to greedy incremental algorithms for planar graph drawing
and to induction proofs of properties of these drawings.

For every positive integer k, there exist maximal planar graphs in which, for every drawing,
the number of faces of the graph that can be crossed by a line is less than a 1/k fraction of
all faces [11]. These graphs therefore cannot have all faces crossed by a k-gon. To avoid these
examples, our results involve smooth convex curves. There are many ways of defining curves
and their smoothness; the properties we require are that the curve must form a connected
subset of the boundary of a convex set in the plane (for instance, its convex hull), it must
have a unique tangent line at each point, and the slope of the tangent line must be continuous
along the curve (C1 smoothness, meaning that the first derivative is continuous). We do not
require strict convexity: our curves may contain line segments (along which the tangent slope
is constant). For instance, a stadium, a convex shape obtained by attaching semicircular
end caps to two opposite sides of a rectangle, has a smooth convex boundary in this sense.
However, a polygon is not smooth at its vertices. An arc of a convex curve is any connected
proper subset. The total curvature of an arc can be measured by the change in slopes of the
tangent lines along the arc, as an angle.

With a stronger smoothness assumption of being twice continuously differentiable
(C2 smoothness), the ability to cross all faces of a planar drawing would extend to non-convex
smooth curves that do not lie on a line, because each such a curve has a smooth convex arc
(within a neighborhood of any point of nonzero curvature) to which we can apply our proof.
We omit the details.

1 By a plane graph we mean a planar graph together with a combinatorial embedding, which should be
respected in our drawing of the graph.

2 By a triangulated disk, we mean a plane graph in which the outer face is a simple polygon and all
interior faces are triangles.
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Figure 1 Adequate drawing of a triangulated disk (base edge shown in red) with respect to a
semicircle: all boundary vertices are exterior to the semicircle and all non-base boundary edges are
crossed, twice each, by disjoint arcs of the semicircle.

3 Adequate drawings

We will separate out into lemmas the steps of an induction proof that a given plane graph G

has a drawing with all faces crossed by a given smooth convex curve C. If we reinterpret the
proof as a greedy construction algorithm, each step of the construction has the following
property.

▶ Definition 1. Given an abstract triangulated disk D with a specified base edge B, and a
smooth convex curve C that is not on a single line, we define an adequate drawing of D to
be a straight-line drawing with the following properties:

Every boundary vertex of D is exterior to the convex hull of C.
Every boundary edge e of D other than B is crossed twice by C. The two crossing points
bound an arc of C that is disjoint from D and from the other arcs defined in the same
way from other boundary edges of D.
The crossings of C with D span an arc of C that bends through a total curvature of less
than π.

Figure 1 depicts an example. Not all faces in this example are crossed by the convex
curve C (a semicircle), but the faces incident to the non-base boundary edges are crossed. As
the name suggests, it will be adequate to prove that every triangulated disk formed by the
canonical ordering has an adequate drawing, as every face will be adjacent to the boundary
for the induced disk at some point in the ordering. This ensures the property we are really
trying to prove, that the whole drawing of G has every face crossed by C:

▶ Lemma 2. Let G be a maximal plane graph G with n vertices, with a straight-line drawing
in the plane, and let C be a smooth curve that is not on a single line. Suppose that G has
a canonical ordering with the property that, for each triangulated disk Di (with 3 ≤ i ≤ n)
induced by the first i vertices in the canonical ordering, the drawing of G restricted to Di is
adequate. Then the drawing of G has all faces crossed by C.

Proof. Each face ∆ of G has at least one edge e∆ that is a boundary edge of some Di, but
not the base edge of the canonical ordering. For the outer face, e∆ can be any non-base
edge of Dn; for any other face, e∆ is the edge of ∆ induced by the first two vertices of ∆ to
appear in the canonical ordering. Because it is a non-base boundary edge of Di, and because
of the assumption that the drawing of Di is adequate, e∆ is crossed (twice) by C. Near these
edge crossing points, ∆ itself is crossed by C. ◀

GD 2025
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Figure 2 Base case (Lemma 3): constructing an adequate drawing of a triangle by scaling an
inscribed triangle with three distinct tangent slopes.

u

vw
x

L

Figure 3 Ear case (Lemma 4): attaching triangle uvw to edge uv of an adequate drawing.

4 Induction proof

We will prove our main result by induction, using canonical orderings. The next lemma is
the base case for this induction proof.

▶ Lemma 3. For every smooth convex curve C that does not lie on a line, there exists an
adequate drawing of a triangle with a designated base edge.

Proof. Let A be any arc of C of nonzero curvature less than π, and inscribe a triangle in
A so that the tangent lines to A at its three vertices have distinct slopes; this is possible
because, by smoothness and nonzero curvature, A has tangents with a continuous range of
slopes. Choose the base edge of this triangle to be the edge connecting the two extreme
vertices in their ordering along A. Scale the triangle around its centroid by a factor 1 + ε for
a parameter ε > 0 chosen sufficiently small,

By convexity, the inscribed triangle lies in the closed convex hull of C, and no point in the
interior of one of its edges can lie on curve C itself: if such a point existed then the convexity
of C would force C to contain that edge, violating the assumption of distinct tangent slopes
at the three vertices. Scaling brings the triangle vertices exterior to C, but for sufficiently
small choices of ε, some points interior to each non-base edge remain interior to the convex
hull of C (Figure 2). Then each non-base edge of the scaled triangle will have two crossings
with C separating its endpoints (exterior to the hull) with the points along the edge interior
to the hull. These crossings will separate disjoint arcs of C, and together span an arc of C

that is a sub-arc of A, so all the requirements of an adequate drawing are met. ◀

The simpler of the two inductive cases involves adding a single triangle as an ear of the
triangulated disk, attached to it by a single boundary edge of the previous disk.
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▶ Lemma 4. Let D be a triangulated disk with an adequate drawing with respect to a smooth
convex curve C, and let uv be any boundary edge of the drawing of D that is not the base
edge of the drawing. Then it is possible to add a vertex w adjacent only to u and v, forming
a triangle attached to D across edge uv, and to place w in the drawing so that it becomes an
an adequate drawing of the resulting augmented triangulated disk.

Proof. For the notation used here, see Figure 3. By the assumption that the drawing of D

is adequate, an arc of curve C crosses twice through edge uv. By smoothness, this arc has
a tangent line L parallel to uv, touching the arc at a point x between the two crossings of
C with uv. Polyline uxv starts outside C at u, crosses inside C to touch C at x from the
interior of its convex hull, and then crosses C again to reach the point v exterior to C. Place
w on a perpendicular line to L through x, outward from C at a sufficiently small distance ε

from x.
If ε is sufficiently small, the polyline uwv crosses C from exterior to interior at a point

near the crossing of C with line segment ux, and crosses again from interior to exterior at a
point near the crossing of C with line segment xv. In order for polyline uwv to be exterior
to C at w, between these two crossings, each of the two new edges uw and wv must have a
second crossing near w. Thus, the requirements of an adequate drawing at the new boundary
edges uw and wv are met, and the crossings of C with the other boundary edges of D remain
unaffected, so the result is an adequate drawing. ◀

In the remaining inductive case, we add a fan of triangles, connecting an added vertex to
a path of two or more edges of the triangulated disk.

▶ Lemma 5. Let D be a triangulated disk with an adequate drawing with respect to a smooth
convex curve C, and let P = v0v1 . . . vk be a path of k boundary edges of the drawing of D

(for k ≥ 2) that does not pass through the base edge of the drawing. Then it is possible to
add a vertex w adjacent to each vertex vi of the path, forming a fan of triangles attached to
P across edge uv, and to place w in the drawing so that it becomes an adequate drawing of
the resulting augmented triangulated disk.

Proof. For the notation used here, see Figure 4. Draw a ray from vertex v0 through vertex v1,
and a second ray from vertex vk through vertex vk−1. Each ray crosses C at the two crossing
points of an edge of P . By the assumption that the drawing is adequate and therefore its
crossings with C span an arc of C that bends through an angle less than π, the two rays cross
rather than diverging. Let x be the crossing point of the two rays. At x, the two crossing
rays subdivide the plane into four wedges. Place w interior to the wedge opposite from P , at
a sufficiently small distance from w.

Vertices v1, . . . vk−1 all lie in the wedge containing P , and are visible to x with respect to
the given drawing of D; however, the two endpoints v0 and vk of the path are blocked from
visibility by v1 and vk−1 respectively. Placing w anywhere in the wedge opposite from P

preserves the visibilities with v1, . . . vk−1 and allows w to also see the two path endpoints,
producing a valid drawing of D. The segments v0x and xvk cross C twice, along edges v0v1
and vk−1vk (which lie on these segments), and if w is sufficiently close to x then the segments
v0w and wvk will also cross C twice, meeting the requirements of an adequate drawing at
the two new boundary edges of the augmented drawing. The crossings of C with the other
boundary edges of D remain unaffected, so the result is an adequate drawing. ◀

With the lemmas above, we are ready to prove our main result:

▶ Theorem 6. Let G be a plane graph, and let C be a smooth convex curve that does not lie
on a line. Then G has a straight-line drawing in which all faces are crossed by C.

GD 2025



29:6 Stabbing Faces by a Convex Curve
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Figure 4 Fan case (Lemma 5): attaching a fan of triangles to path P = v0v1 . . . vk of an adequate
drawing.

Figure 5 Drawing of the graph of an octahedron with all faces crossed by a semicircle. The
shading indicates the order in which triangles were added to the drawing in its canonical ordering,
with darker triangles added earlier than lighter ones.

Proof. Augment G to a maximal plane graph, and construct a canonical ordering. We prove
by induction that there exists a drawing D of the augmented graph such that, for each
triangulated disk Di (with 3 ≤ i ≤ n) induced by the first i vertices in the canonical ordering,
the drawing restricted to Di is adequate. The base case i = 3 is Lemma 3, and the induction
step for each i > 4 is either Lemma 4 (if vertex i has two neighbors in Di) or Lemma 5 (if
vertex i has three or more neighbors in Di. This proves that D meets the hypotheses of
Lemma 2, so every face of the augmented graph is crossed by C. Each face of G itself is a
union of faces of the augmented graph, so it is also crossed by C. ◀

Our induction proof can be turned into an algorithm in which we add vertices one at
a time to a drawing, using the construction of Lemma 3 to add the first three vertices,
and either Lemma 4 or Lemma 5 to add each subsequent ear. An example of the resulting
drawing, for the graph of an octahedron with its faces crossed by a semicircle, is shown in
Figure 5. However, to analyze the numerical precision of vertex coordinates needed for this
construction, and the angular resolution of the result, we would need additional assumptions
about C. As the figure shows, even for a well-behaved curve such as a semicircle, the angular
resolution can be quite low: this construction is more useful in producing counterexamples
than as a method for producing readable graph drawings.
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5 Conclusions and open problems

We have shown that for every planar graph and every smooth convex curve, there exists a
drawing of the graph in which all faces are crossed by the curve. The most salient remaining
open problem is the one that motivated this research: is there a constant k such that all
planar graphs can be drawn with their vertices on ≤ k convex curves? It would also be of
interest to more precisely characterize the graphs that can be drawn with all edges crossed
by a convex curve (for which see the full version of this paper) and to extend these results to
beyond-planar graphs.
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