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Abstract
In the work [O(m · n) algorithms for the recognition and isomorphism problems on circular-arc
graphs, SIAM J. Comput. 24(3), 411–439, (1995)], Wen-Lian Hsu claims three results concerning
the class of circular-arc graphs:

the design of so-called decomposition trees that represent the structure of all normalized intersec-
tion models of circular-arc graphs,
an O(nm)-time recognition algorithm for circular-arc graphs,
an O(nm)-time isomorphism algorithm for circular-arc graphs.

In [Discrete Math. Theor. Comput. Sci., 15(1), 157–182, 2013 ] Curtis, Lin, McConnell, Nussbaum,
Soulignac, Spinrad, and Szwarcfiter showed that Hsu’s isomorphism algorithm is incorrect. In this
note, we show that the other two results – namely, the construction of decomposition trees and the
recognition algorithm – are also flawed.

We also present the main ideas that made it possible to construct a data structure that maintains
normalized models of circular-arc graphs.
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1 Introduction

One of the most important and widely studied models of geometric graph representation
is the intersection model, in which vertices are represented by geometric sets and edges
correspond to pairs of intersecting sets. Formally, the intersection model or the representation
of a graph G within a family of geometrical objects R is a mapping ϕ : V (G) → R that maps
the vertices of G into objects in R such that for every two distinct vertices u and v in G we
have uv ∈ E(G) if and only if ϕ(u) ∩ϕ(v) ̸= ∅. Graphs which admit such a representation are
called intersection graphs of objects from R or R-intersection graphs. By considering families
containing some specific kinds of objects we obtain different intersection graph classes, such
as:

interval graphs, which are intersection graphs of intervals on a line,
permutation graphs, which are intersection graphs of segments spanned between two
disjoint parallel lines,
circular-arc graphs, which are intersection graphs of arcs of a circle,
circle graphs, which are intersection graphs of chords of a circle.

Clearly, every interval graph is a circular-arc graph. Since permutation graphs can be
equivalently defined as the intersection graphs of chords spanned between two disjoint arcs
of a circle, every permutation graph is a circle graph. A graph G is a comparability graph
if its edges can be oriented ≺ such that (V (G),≺) is a transitive and irreflexive relation
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on V (G). A co-comparability graph is the complement of a comparability graph. Notably,
every interval graph (permutation graph, respectively) G is a co-comparability graph. Indeed,
given an intersection model of an interval (permutation, respectively) graph G, the pairs of
non-intersecting intervals (segments, respectively) can be ordered naturally from left to right.
This ordering induces a transitive orientation of the edges in the complement G of G.

For a given intersection graph class, a fundamental combinatorial problem is to characterize
all intersection models of a graph in that class and to design a data structure that efficiently
represents all such models. Such data structures play a central role in algorithmic applications,
where the task is to construct, for a given abstract graph specified by its vertices and edges,
an intersection model satisfying prescribed criteria (see, e.g., partial representation extension
problems). When these data structures also possess a tree-like structure, they can be leveraged
to design graph isomorphism algorithms: testing whether two graphs are isomorphic then
reduces to checking isomorphism between the tree-like data structures representing their
intersection models. For each graph class introduced above – except for circular-arc graphs –
such a data structure is known: we have PQ-trees for interval graphs, modular decomposition
trees for permutation graphs, and split decomposition trees for circle graphs.

In the work [O(m · n) algorithms for the recognition and isomorphism problems on
circular-arc graphs, SIAM J. Comput. 24(3), 411–439, (1995)] [5], Wen-Lian Hsu claims
three results concerning the class of circular-arc graphs. The first claims a construction
of a decomposition tree, a data structure intended to represent the set of all normalized
intersection models of a circular-arc graph (an analogue of the PQ-tree for an interval graph).
Normalized intersection models (formally defined in Section 2) of a circular-arc graph reflect
the neighborhood relation between its vertices and can be seen as its canonical representations;
in particular, any intersection model can be made normalized by possibly extending some of
its arcs. Based on these decomposition trees, Hsu claims O(nm)-time algorithms for both
the recognition and isomorphism problem for circular-arc graphs.

In this work, we show that the description of the normalized intersection models given by
Hsu in [5] is not correct. Specifically, we show the following:

▶ Counterexample 1. There are circular-arc graphs whose all normalized models do not
follow the description given by Hsu.

As a consequence, the decomposition trees proposed by Hsu, along with his polynomial-time
algorithms for recognizing and testing isomorphism of circular-arc graphs, are also incorrect.
We note that Curtis, Lin, McConnell, Nussbaum, Soulignac, Spinrad, and Szwarcfiter [1] had
already identified a different flaw in Hsu’s isomorphism algorithm in 2013. Hsu’s approach –
based on the modular decomposition by Gallai (see Section 3) – determines the main steps
required to describe the structure of normalized models of circular-arc graphs. In this paper,
we identify several errors in Hsu’s work, showing that some key steps of his work were
incorrectly carried out.

Although Hsu’s work [5] contains flaws, the overall approach it takes is appropriate. In [6],
we modify several crucial definitions within Hsu’s framework, which allows us to develop
a data structure that represents all normalized models of circular-arc graphs. We want to
mention that, despite the errors in Hsu’s original work, his ideas had a strong influence on
the work done in [6]. We refer the reader to [6] for more details.

Our paper is organized as follows:
in Section 2 we introduce notation and basic tools used throughout the paper,
in Section 3 we describe the prior research that influenced Hsu’s work on the problem of
characterizing normalized models of circular-arc graphs,
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in Section 4 we sketch the approach used by Hsu, we show the main errors in his work,
and we prove Counterexample 1,
in Section 5 we describe the main ideas used in [6] that allow, based on the same approach,
to devise a data structure representing all normalized models of a circular-arc graph.

2 Preliminaries

All graphs discussed in this paper are finite and simple. The vertex set and edge set of
a graph G are denoted by, respectively, V (G) and E(G). The neighborhood of a vertex v,
denoted by NG(v), comprises vertices adjacent to v, i.e., NG(v) = {u ∈ V (G) : uv ∈ E(G)},
and the closed neighborhood of v is NG[v] = NG(v) ∪ {v}. A vertex u ∈ V (G) is universal
in G if NG[u] = V (G). Vertices u, v ∈ V (G) are twins in G if NG[u] = NG[v]. For a subset
U ⊆ V (G), we denote by G[U ] the graph induced by the set U .

Let (V (G),≺) be a transitive orientation of a comparability graph G. For subsets
M1,M2 ⊆ V (G) we write M1 ≺ M2 if we have u ≺ v for every u ∈ M1 and v ∈ M2.

2.1 Modular decomposition tree
The definitions that follow are due to Gallai [4].

Let G be a graph and let G be the complement of G. A non-empty set M ⊆ V (G) is
a module of G if every vertex outside M is adjacent to all or to none of the vertices in M .
The singleton sets and the whole set V (G) are the trivial modules of G. A module M of G
is strong if M ⊆ N , N ⊆ M , or M ∩N = ∅ for every other module N in G. In particular,
two strong modules of G are either nested or disjoint. The modular decomposition tree of G,
denoted by M(G), consists of all strong modules of G. The set M(G), ordered by inclusion,
forms a tree in which V (G) is the root, the maximal proper strong submodules of a strong
module M are the children of M (they form a partition of M), and the singleton modules
{v} for v ∈ V (G) are the leaves. A strong module M in G is parallel if G[M ] is disconnected,
serial if G[M ] is disconnected, and prime if both G[M ] and G[M ] are connected. If G[M ]
(respectively, G[M ]) is disconnected, then the children of M in the modular decomposition
tree of G are the connected components of G[M ] (G[M ], respectively).

Now assume that G is a comparability graph. The relation between the transitive
orientations of the graph G and the modular decomposition tree of G was described by
Gallai [4].

▶ Theorem 2 ([4]). If modules M1,M2 in M(G) are such that uv ∈ E(G) for any u ∈ M1
and v ∈ M2, then every transitive orientation (V (G),≺) of G satisfies either M1 ≺ M2 or
M2 ≺ M1.

For a strong module M in G let GM denote the graph on M whose edge set E(GM ) contains
all the edges from G that join the vertices from two different children of M . If xy is an
edge in G, then xy ∈ E(GM ) for exactly one strong module M ∈ M(G). Hence, the set
{E(GM ) : M ∈ M(G)} forms a partition of the edge set E(G) of the graph G.

▶ Theorem 3 ([4]). There is a one-to-one correspondence between the set of transitive
orientations (V (G),≺) of G and the families{

(M,≺M ) : M ∈ M(G) and ≺M is a transitive orientation of GM

}
given by x ≺ y ⇐⇒ x ≺M y, where M is the module in M(G) such that xy ∈ E(GM ).

GD 2025
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The above theorem asserts that every transitive orientation of G restricted to the edges of
the graph GM induces a transitive orientation of GM , for every M ∈ M(G), and that every
transitive orientation of G can be obtained by independent transitive orientations of the
graphs GM , for M ∈ M(G). Gallai [4] characterized all possible transitive orientations of
the graph GM , where M is a module of M(G).

▶ Theorem 4 ([4]). Let M be a prime module in M(G). Then, GM has two transitive
orientations, one being the reverse of the other.

If M is parallel, then E(GM ) = ∅, and the graph GM has exactly one (empty) transitive
orientation. If M is serial, the transitive orientations of GM correspond to the total orderings
of its children, that is, every transitive orientation of GM is of the form Mi1 ≺M . . . ≺M Mik

,
where i1 . . . ik is a permutation of [k] and M1, . . . ,Mk are the children of M in M(G).

A graph G is prime if every module of G is trivial. By Theorem 4, every prime compar-
ability graph admits a unique (up to reversal) transitive orientation.

2.2 Join decomposition
Since our counterexamples involve graphs that admit “join decompositions”, we reproduce
the following definitions exactly as stated in Hsu’s paper [5] (see page 417, lines –7 to –1).

A graph G is said to have a join if V (G) can be partitioned into sets V0, V1, V2, and V3
with |V0 ∪ V1| ⩾ 2 and |V2 ∪ V3| ⩾ 2 so that every possible edge exists between V1 and V2, no
edge exists between V0 and V2 ∪ V3, and no edge exists between V3 and V0 ∪ V1. In this case,
we say that the graph G is decomposable into graphs H1 and H2 where H1 is the induced
subgraph of G[V0 ∪ V1] with an extra vertex v adjacent to every vertex in V1 and H2 is the
induced subgraph of G[V2 ∪ V3] with an extra vertex u adjacent to every vertex in V2. If
the above holds, then (V0, V1, V2, V3) is a join in G and H1 and H2 is a decomposition of G
induced by the join (V0, V1, V2, V3). See Figures 6(c)-(d) for an illustration. A graph G is said
to be j-inseparable if it does not contain a join.

2.3 Normalized models of circular-arc graphs
Let G be a circular-arc graph and let ψ be a circular-arc model of G such that all the arcs in
the set {ψ(v) : v ∈ V (G)} have distinct endpoints. We refer to Figure 1 which shows possible
relations between two arcs in {ψ(v) : v ∈ V (G)}.

ψ(v)

ψ(u)

ψ(v)

ψ(u) ψ(v)

ψ(u) ψ(v)

ψ(u)

ψ(v)

ψ(u)

Figure 1 From left to right: ψ(v) and ψ(u) are disjoint, ψ(v) contains ψ(u), ψ(v) is contained in
ψ(u), ψ(v) and ψ(u) cover the circle, and ψ(v) and ψ(u) overlap.

In so-called normalized models, defined in [5], the relative relation between the arcs reflects
the closed neighbourhood relation between the vertices of G, as follows.

▶ Definition 5. Let G be a circular-arc graph. A circular-arc model ψ of G is normalized
with respect to G (shortly, normalized) if all the arcs from {ψ(v) : v ∈ V (G)} have distinct
endpoints and for every pair (v, u) of distinct vertices in G the following conditions are
satisfied:
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1. if uv /∈ E(G), then ψ(v) and ψ(u) are disjoint,
2. if NG[u] ⊊ NG[v], then ψ(v) contains ψ(u),
3. if NG[v] ⊊ NG[u], then ψ(v) is contained in ψ(u),
4. if NG[v] ∪NG[u] = V , NG[w] ⊊ NG[v] for every w ∈ NG[v]∖NG[u], and NG[w] ⊊ NG[u]

for every w ∈ NG[u] ∖NG[v], then ψ(v) and ψ(u) cover the circle,
5. If none of the above condition holds, then ψ(v) and ψ(u) overlap.
Furthermore, for a pair (v, u) of distinct vertices from G, we say that v and u are disjoint
in G, v contains u in G, v is contained in u in G, v and u cover the circle in G, and v and u
overlap in G if the pair (v, u) satisfies the assumption of statement 1., 2., 3., 4., and 5.,
respectively.

Note that the relation between vertices u and v is symmetric, with one exception: u is
contained in v if and only if v contains u. It is known that if G has no universal vertices
and no twins, every circular-arc model of G can be transformed into a normalized model by
possibly extending some of its arcs [5].

3 Modular decomposition tree as a data structure representing
intersection models of some geometric intersection graphs

One of the most powerful tools for designing data structures that maintain intersection
models of geometric graph classes is the modular decomposition tree, introduced by Gallai [4]
to characterize the structure of all transitive orientations of a comparability graph G –
see Subsection 2.1 for details. In short, the structure of all transitive orientations of
a comparability graph G satisfies the following properties:
(G1) If U ⊆ V (G) is such that G[U ] is a prime subgraph of G, then G[U ] admits a unique

transitive orientation (up to reversal).
(G2) The structure of all transitive orientations of G can be described (and represented) by

means of the modular decomposition tree of G.
It turns out that the modular decomposition tree can be used to represent intersection models
for various classes of geometric intersection graphs, in particular, permutation graphs and
interval graphs.

Dushnik and Miller [2] proved that a graph G is a permutation graph if and only if
G and its complement G admit transitive orientations. Furthermore, they showed that, if
G is a permutation graph, then the intersection models of G correspond to the pairs of
transitive orientations of G and G. Formally, given an intersection model ϕ of G we can
derive transitive orientations ≺ of G and < of G, as follows (see Figure 2):

x ≺ y ⇐⇒ ϕ(x) and ϕ(y) intersect and ϕ(x) precedes ϕ(y) in the upper line.
x < y ⇐⇒ ϕ(x) is to the left of ϕ(y) in ϕ.

(1)

On the other hand, given transitive orientations ≺ and < of G and G, respectively, one can
construct a permutation model ϕ of G such that

ϕ(x) precedes ϕ(y) in the upper line ⇐⇒ x ≺ y or x < y,

ϕ(x) precedes ϕ(y) in the lower line ⇐⇒ y ≺ x or x < y.
(2)

As for interval graphs, a reader familiar with PQ-trees may observe that the PQ-tree
of an interval graph G can be easily derived from the modular decomposition tree of G.
In particular, Properties (G1) and (G2) have the following impact on the structure of the
intersection models of a permutation/interval graph G:
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a b c

ab c

Figure 2 Intersection model ϕ of the permutation graph G = ({a, b, c}, {ab, ac}) corresponding
to the transitive orientations {a ≺ b, a ≺ c} and {b < c} of G and G, respectively.

(M1) If U ⊆ V (G) is such that G[U ] is prime, then G[U ] admits a unique intersection model
(up to certain normalizations and reflections).

(M2) The structure of the intersection models of G is represented by the modular decom-
position tree of G.

Moreover, Theorem 2 asserts the following property of intersection models of permutation
graphs:
(M3) In any segment intersection model of a permutation graphG, for every strong moduleM

in G, the lower (respectively, upper) endpoints of the segments representing vertices in M
lie within a contiguous interval on the lower (respectively, upper) line, containing no
endpoints of segments corresponding to vertices outside M .

Regarding circular-arc graphs, Spinrad’s work [7] was the first to describe the structure
of normalized models for a specific subclass using the approach outlined above. Specifically,
Spinrad focused on co-bipartite graphs, that is, graphs whose vertex set can be partitioned
into two cliques.

Let us briefly outline the ideas of Spinrad. Let G be a co-bipartite circular-arc graph
whose vertex set can be partitioned into two cliques, CA and CB . We assume that G has no
universal vertices and no twins. Let Gc denote the graph on the vertex set V (G) in which
two vertices are joined by an edge if and only if they overlap according to Definition 5. In
particular, in any normalized model of G, the arcs for u and v overlap exactly when uv is an
edge of Gc. Let Gc be the complement of Gc. First, Spinrad proves that each model of G can
be turned into a normalized model ψ such that all the arcs from {ψ(x) : x ∈ CA} contain the
leftmost point A of the circle, and all the arcs from {ψ(x) : x ∈ CB} contain the rightmost
point B of the circle. Let us call such models of G strongly normalized – see Figure 3 for an
illustration. Note that no arc from {ψ(v) : v ∈ V (G)} contains both the points A and B as
G has no universal vertices. Hence, each arc from {ψ(v) : v ∈ V (G)} has one endpoint in
the upper semicircle and one endpoint in the lower semicircle. Next, Spinrad introduces an
orientation < on the edges of Gc, as shown in Figure 3. Spinrad proves that < is a transitive
orientation of Gc and that < can be represented by segments spanned between the upper
and lower semicircle in such a way that the segment for u is to the left of the segment for v
if and only if u < v (note that that segments for u and v intersect if and only if vertices u
and v overlap in G).

The above observations were used by Spinrad to devise a polynomial-time recognition
algorithm for co-bipartite circular arc graphs [7]. Given a co-bipartite graph G as input, the
algorithm constructs the overlap graph Gc of G and the orientation < of the edges of Gc.
The graph G is accepted as a circular-arc graph if Gc is a permutation graph and < is a
transitive orientation of Gc. Note that this approach allows us to conclude that the strongly
normalized models of G correspond to the transitive orientations of the graph Gc. Indeed, Gc

is a permutation graph and hence its models correspond to the pairs of transitive orientations
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A B

u
v

A B

u
v

A B

u v

A B

u

v

Figure 3 Spinrad sets u < v if and only if either u, v ∈ CA and u is contained in v (left) or
u, v ∈ CB and u contains v (middle left) or u ∈ CA, v ∈ CB , and u, v are disjoint (middle right), or
u ∈ CB , v ∈ CA, and u, v cover the circle (right).

of Gc and Gc. However, to obtain a model consistent with the relations between the vertices
in G, non-intersecting segments need to be placed consistently with the < relation. Summing
up, Properties (M1)–(M3) assert that:
(S1) If U ⊆ V (G) is such that Gc[U ] is prime, then G[U ] admits a unique strongly normalized

model.
(S2) The set of all strongly normalized models of G is represented by the modular decom-

position tree of the overlap graph Gc of G.
(S3) For every strong module M of Gc and every strongly normalized model of G, the lower

(upper) endpoints of the arcs for the vertices in M lie within a contiguous arc on the
lower (upper, respectively) semicircle, containing no endpoints of the arcs for the vertices
from outside M .

4 Hsu’s approach to the problem of characterizing normalized models
of circular-arc graphs

To describe the structure of normalized models of circular-arc graphs, Hsu attempts to
generalize Spinrad’s ideas to the entire class of circular-arc graphs [5]. For this purpose, Hsu
introduces the overlap graph Gc of G:

Definition [page 420, lines 11 to 12]. Associate with each graph G the graph Gc that has
the same vertex set as G such that two vertices in Gc are adjacent iff they are strictly but
not strongly adjacent in G.

In [5], two vertices u and v are said to be strictly but not strongly adjacent in G if and
only if they overlap in G according to Definition 5. Then, Hsu transforms every normalized
model R of G to a chord model D by converting each arc R(v) into a chord D(v) with the
same endpoints as R(v), for every v ∈ V (G). Hsu observes that D is a chord model of the
graph Gc, regardless of the choice of a normalized model R of G. Next, Hsu lists some
properties of the chord models D of Gc derived from the normalized models R of G. To state
them, for every vertex v ∈ V (G) let Iv be the set of vertices not adjacent to v in Gc, and let

Lv = {u ∈ Iv : u is contained in v in G or v and u cover the circle in G},
Rv = {u ∈ Iv : u and v are not adjacent in G or u contains v in G}.

Hsu observes that for every v ∈ V (G) the chords representing the vertices from the set Lv

are on one side of D(v) and the chords representing the vertices from the set Rv are on the
other side of D(v). See Figure 4 for an illustration. Based on this observation, Hsu assumes
the following definition:

GD 2025
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v u vu v u vu v
u

Figure 4 Relations between the arcs R(v) and R(u) and the corresponding chords D(v) and D(u)
for the cases: v is disjoint with u, v contains u, v is contained in u, v and u cover the circle, and
v and u overlap, respectively.

Definition [page 424, lines 18 to 20]. A chord model D of Gc is conformal (to G) if for
every vertex v of G the chords associated with vertices in Lv are on one side of the chord of
D(v) and those associated with vertices in Rv are on the other side of the chord of D(v).

Then, Hsu proves the correspondence between normalized models of G and the conformal
models of Gc:

Theorem 5.6 [page 424, lines -18 to -17]. Let G be a circular-arc graph [...]. Then a model
for Gc is conformal if and only if it is a chord model corresponding to some normalized model
for G.

Eventually, Hsu tries to describe the structure of the chord models of Gc that are conformal
to G. To this end, Hsu attempts to prove the properties similar to (S1) and (S2):
(H1) If U ⊆ V (G) is such that Gc[U ] is prime, then Gc has a unique conformal model (up

to reflection).
(H2) The structure of the conformal models of Gc can be described by the modular decom-

position tree of Gc.
To accomplish Property (H2), Hsu introduces so-called consistent modules in the graph Gc

(see Subsection 4.1.1 for more details) that were intended to satisfy the following properties:
(H3) For every conformal model D and every consistent module M of Gc there are two

disjoint arcs AM and BM of the circle such that each arc AM and BM contains one
endpoint of every chord for the vertices of M and no endpoint of any chord for the
vertices from outside M (in particular, it means that Gc[M ] is a permutation graph).
Furthermore, the maximal consistent modules in Gc form a partition of the set V (Gc),
and a possible placement of the arcs AM and BM for the maximal consistent modules M
in the conformal models of Gc can be represented by the modular decomposition tree
of Gc.

Note that when G is co-bipartite, Property (S3) asserts that every strong module of Gc is
a consistent module of Gc. Moreover, the relative ordering of the endpoints of the maximal
non-trivial consistent modules in the conformal models of Gc is represented by the modular
decomposition tree of Gc.

First, we emphasize that Property (H1) is fundamental to the method, since the structure
of conformal models is built upon the unique conformal models of the prime induced subgraphs
of Gc. In this context, Property (H1) plays a role analogous to the uniqueness of transitive
orientations of prime subgraphs in the characterization of all transitive orientations of
a comparability graph. In Subsection 4.1 we show that Hsu’s attempted proof of Property (H1)
(Theorem 5.7 in [5]) is not correct – it relies on two claims, both of which are disproved in
Section 4.1. However, the statement of Property (H1) holds true, which follows from the
proof of an analogous property shown in [6] (proved for the oriented conformal models – see
Section 5 for more details).
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To establish Property (H2), Hsu divides the description of the structure of the conformal
models of Gc into three cases depending on whether V (Gc) is serial/prime/parallel in the
modular decomposition tree of Gc. Hsu’s work [5] correctly deals with the serial case (then,
each component of Gc induces a co-bipartite circular-arc graph and we can use the results of
Spinrad [7] to describe the normalized models of G), but is incorrect in the prime case, and
is incomplete (and also incorrect) in the parallel case.

For the prime case, Hsu first attempts to prove Property (H1). Next, Hsu tries to
partition the set V (Gc) into “maximal consistent modules” and tries to prove that there is a
unique circular order (up to reflection) in which the arcs AM and BM for maximal consistent
modules M occur around the circle in the conformal models of Gc. In Subsection 4.1.1 we
show that the “maximal consistent modules” determined by Hsu do not satisfy Property (H3).
This enables us, in particular, to construct a circular-arc graph claimed by Counterexample 1.
Hence, the theorems from [5] that establish Property (H3) for the “maximal consistent
modules” determined by Hsu are also not correct – see Subsection 4.1.1 for more details.

Finally, the description of Hsu is also not correct in the parallel case. First, the errors
mentioned in the prime case (partition into consistent modules) are transferred to the
description of the conformal models of prime components of Gc (partition of the prime
children of V (Gc) into maximal consistent modules is not correct). Moreover, this part of
Hsu’s work seems to miss some important elements. For example, nowhere in his work we
could find the description of maximal consistent modules for serial children of V (Gc) – we
refer to Section 4.2 for more details.

4.1 Prime graphs
When V (Gc) forms a prime module in Gc, Hsu first considers the case where Gc is
s-inseparable, which is equivalent to Gc being prime (see p. 416, lines 24–30). For this
case, Hsu first attempts to prove the following:

Theorem 5.7 [page 425, lines 16 to 17]. Let G be a circular-arc graph. If Gc is
s-inseparable, then G has a unique normalized model.

The Hsu’s proof of Theorem 5.7 is split into two cases depending on whether Gc is
j-inseparable (see Subsection 2.2). If Gc is j-inseparable, then Gc has a unique chord model,
as proved by Gabor, Supowit, and Hsu [3], and hence G has a unique normalized model.

So, the interesting case is when Gc is not j-inseparable, that is, when Gc has a join
(V0, V1, V2, V3). First, Hsu observes that Vi ̸= ∅ for all i = 0, . . . , 3 as Gc is s-inseparable.
The remainder of the proof relies on two key claims, both of which we show to be false.

First, the proof of Theorem 5.7 tries to show the following property of the graph Gc and
the join (V0, V1, V2, V3) of Gc:

Claim A [page 425, line -23 to -18]. If |V1| > 0 and there exists a vertex s in V1 that is
adjacent to all other vertices in V1 ∪V2, then it is easy to verify that Gc ∖{s} is s-inseparable.
We can proceed with the construction below to show that Gc ∖ {s} has a unique conformal
model, and, furthermore, there is a unique way to insert the chord of s into this model. The
argument is symmetric if such a vertex s belongs to V2.

We show that Claim A is false. To show a counterexample, we first define an auxiliary
circular-arc graph Gs: the vertex set of Gs is {s, s1, . . . , s6}, the edges of Gs can be read
from the intersection model Rs of Gs shown in Figure 5(a). We leave the reader to verify
that the model Rs is normalized (the vertices s1, . . . , s6 induce a cycle in Gs and hence every
two consecutive vertices on this cycle overlap in Gs). The associated circle graph Gs

c and the
schematic view of the model Rs are illustrated in Figures 5(b)-(c).
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(a) Normalized model Rs of Gs.
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(d) Schematic view of the model R of G.
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(e) Graph Gc and its join decomposition.

Figure 5 Counterexample to Claim A.

Next, we define a circular-arc graph G by taking Gs and two isomorphic copies of Gs,
say Gv and Gu, over the vertex sets {v, v1, . . . , v6} and {u, u1, . . . , u6}, respectively. Again,
we define the edges of G by providing an intersection model R of G. Given the schematic
view of the model R, as shown in Figure 5(d), we construct the intersection model R for G
as follows. We begin with the circular-arc model Rs of Gs and embed its arcs into the circle
so that:

The arc Rs(s) shares its endpoints with the oriented chord s0s1 and lies to the left of
this chord when traversed from s0 to s1.
The endpoints of the remaining arcs in Rs are compressed so that they all fit within
the colored arc adjacent to the head of the chord s0s1 (that is, the arc endpoints for
s1, . . . , s6, as well as the upper endpoint of s, are placed on the colored (blue–red–green)
upper arc in the order shown in Figures 5(a) and 5(b)).

We paste in the same way the models Rv and Ru, which represent Gv and Gu, along the
chords v0v1 and u0u1, respectively.

Once again, we leave it to the reader to verify that R is a normalized model of G. The
associated circle graph Gc, along with its join decomposition (V0, V1, V2, V3), is shown in
Figure 5(e). Note that:

Gc is prime as Gc has no non-trivial modules,
vertex s in V1 is adjacent to all other vertices in V1 ∪ V2.

That is, Gc, (V0, V1, V2, V3), and s satisfy the assumptions of Claim A. The graph Gc ∖ {s},
however, is not prime as Gc ∖ {s} is disconnected. So, Claim A is false.

Then, the proof assumes that Gc has a join (V0, V1, V2, V3) such that no vertex from
V1 ∪V2 is adjacent to all other vertices in V1 ∪V2. Let H1 and H2 be the decomposition of Gc

induced by (V0, V1, V2, V3). In this setting, the following property of H1 and H2 is claimed.
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Claim B [page 425, line -19 to -16]. Therefore, assume no such vertex s exists. Then
it is easy to verify that the corresponding two component graphs, H1 and H2 of Gc (the
existence of the substitution in either H1 or H2 would imply the existence of one in Gc), are
s-inseparable.

u0
1u1

1

u0
2 u1

2

u0
3

u1
3

u0
4

u1
4

u0
5

u1
5

v0
1

v1
1 v0

2

v1
2

v0
3 v1

3

v0
4

v1
4v0

5
v1

5

(a) Normalized circular-arc model R of G.
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(b) Associated chord model D of Gc.

V0 V1 V2 V3

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(c) Graph Gc and its join decomposition.
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(d) Decomposition of Gc into H1 and H2.

Figure 6 Counterexample to Claim B.

Consider a circular-arc graph G whose normalized model R is shown in Figure 6(a). The
associated circle graph Gc and its join (V0, V1, V2, V3) are shown in Figure 6(c), the chord
model D associated with R is shown in Figure 6(b), and the decomposition H1 and H2 of Gc

induced by the join (V0, V1, V2, V3) is shown in Figure 6(d). Note the following properties
of Gc, H1, and H2:

Gc is prime as Gc has no non-trivial modules and there is no vertex s in V1 ∪ V2 adjacent
to all other vertices in V1 ∪ V2,
H1 contains a non-trivial module {u3, v} and H2 contains a non-trivial module {u, v3}.

In particular, Claim B is also false.
The proof of Theorem 5.4 by Hsu is concluded as follows. Since H1 and H2 are

s-inseparable, they have unique chord models by induction. Eventually, there is a unique
way to compose these models to get a conformal model of Gc.

4.1.1 Consistent modules
The precise definition of the consistent modules (they are also called as T-submodules of Gc

is given in Section 6.1 of the Hsu’s work [5]). Since it is very technical, we list only their
properties as proven by Hsu.

Lemma 6.5 [page 428, -2 – page 429, line 2]. Let M be a T-submodule that gives rise to
a permutation graph. Let D be any conformal model for Gc. Then the endpoints of chords
of M can be partitioned into two sets A1, A2 such that each chord of M has one endpoint in
A1 and the other in A2 and those endpoints in A1 (resp., A2) are consecutive in D.
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Theorem 6.6 [page 429, lines -15 to -11]. Consider a neighborhood (that is, prime,
according to our terminology) module V (Gc). Let V ′ = {v1, . . . , vr} be a set of representatives
from the maximal consistent submodules M1, . . . ,Mr in the consistent partition of V (Gc).
Then there is a unique conformal model for V ′. Furthermore, this model is independent of
the vi selected (we shall refer to the subgraph induced on V ′ as the representative graph for
V (G)).

In fact, the two lemmas above establish Property (H3) for the consistent modules of Gc in
the prime case. Notably, when G is co-bipartite, Gc is a permutation graph, and we can take
the children of V (Gc) in the modular decomposition tree of Gc as maximal consistent modules
of Gc (recall that strong modules in the modular decomposition tree of a permutation graph
are consistent in all its segment models). Hence, to determine the consistent modules of Gc

Hsu focuses his attention on the children of V (Gc) in the modular decomposition tree of Gc.
Hsu rightly observes that they might be no longer consistent when Gc is not a permutation
graph. In fact, assuming that M1, . . . ,Mk are the children of prime V (Gc) in the modular
decomposition tree of Gc, Hsu attempts to prove the following lemma:

Lemma 6.3 [Page 428, lines 11–12]. If a maximal submodule Mi of V (Gc) is not consistent,
then it is a serial module.

However, the above lemma is also false, as parallel children of V (G) might also be
non-consistent. This enables us to construct the graph claimed by Counterexample 1.
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(a) A circular-arc graph G.
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(b) Normalized model R of G.
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(c) Associated chord model D of Gc.
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v3v4

(d) Graph Gc and its maximal non-trivial mod-
ules M1,M2,M3,M4.

Figure 7 Counterexample 1: V (Gc) is a neighbourhood module, M1,M2,M3,M4 are all parallel
children of V (Gc) in the modular decomposition tree of Gc, and M1 and M4 are not consistent.

Counterexample 1. Consider a circular-arc graph G shown in Figure 7(a). Its normalized
model R is shown in Figure 7(b), an associated chord model D in Figure 7(c), and the circle
graph Gc associated to G and its partition into maximal non-trivial modules M1, . . . ,M4 in
Figure 7(d). Note that V (Gc) is a prime module in the modular decomposition tree of Gc,
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and each Mi is a parallel child of V (G). Note that the modules M1 and M4 are not consistent
in D. One can also check that the model R and its reflection are the only two normalized
models of G. Since both these models do not obey the description given by Hsu (it is claimed
in [5] that only series children of V (G) might be not consistent), the graph G proves the
statement of Counterexample 1.

The graph G also shows that, assuming Hsu’s partition into “consistent modules”,
Lemma 6.5 and Theorem 6.6 from [5] are also false.

4.2 Parallel case
In the case where V (Gc) is a parallel module, the description given by Hsu is incomplete
(and also not correct). In particular, Hsu constructs so-called “consistent module tree” for
each component C of Gc basing on the consistent modules of the component C. As is written
in [5] (see page 435, lines 27 to 29): We shall first construct a consistent decomposition tree T
for the subgraph Gc[C] and then insert the vertices of K into conformal models of appropriate
T-submodules. For any T-submodule M in C, let ..... and then a description of the tree T
for the component C follows. Each component C of Gc is either a prime or a serial module
in Gc. In the case when C is a prime component in Gc, the maximal consistent modules
of C, as we have seen in the previous section, are not determined correctly by Hsu. Nowhere
in [5] we found a description of the maximal consistent modules for serial components of Gc.

5 Oriented conformal models

The main difference between the approach used in [6] and Hsu’s approach lies in the definition
of the conformal models. In [6], a normalized circular-arc model ψ of G is transformed into
an oriented chord model ϕ by converting every arc ψ(v) for v ∈ V (G) into an oriented
chord ϕ(v) such that the chord ϕ(v) has the same endpoints as ψ(v) and ϕ(v) is oriented so
that it has the arc ψ(v) on its left side – see Figure 8 for an illustration. Then, the following
definition of conformal models is used.

ϕ(v)
ψ(v)

Figure 8 The transformation of the arc ψ(v) into the oriented chord ϕ(v).

▶ Definition 6. An oriented chord model ϕ of Gov is conformal to G (shortly, conformal) if
for every v, u ∈ V :

u ∈ Lv if and only if ϕ(u) lies on the left side of ϕ(v),
u ∈ Rv if and only if ϕ(u) lies on the right side of ϕ(v).

See Figure 9 for an illustration. Clearly, there is an obvious correspondence between the
normalized models of G and the oriented conformal models of Gc.

The lack of orientation in the chords of conformal models poses notable challenges in
Hsu’s work.

Firstly, Hsu divides all the triples (u, v, w) consisting of pairwise non-adjacent vertices
in Gc into two categories:
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v u vu v u vu v

u

Figure 9 Relations between the arcs ψ(v) and ψ(u) and the corresponding oriented chords ϕ(v)
and ϕ(u) for the cases: v is disjoint with u, v contains u, v is contained in u, v and u cover the
circle, and v and u overlap, respectively.

(u, v, w) is in parallel, written u|v|w, if the vertex v has the vertices u and w on its
different sides (that is, either u ∈ Lv and w ∈ Rv or w ∈ Lv and u ∈ Rv),
(u, v, w) is in series, written u− v − w, if any vertex from {u, v, w} has the remaining
two vertices on the same side,

(see Section 5.1 of [5]). Then, Hsu is searching for chord models ϕ of Gc that satisfy the
conditions:

if u|v|w then the chord ϕ(v) has ϕ(u) and ϕ(w) on its different sides,
if u− v − w then every chord from {ϕ(u), ϕ(v), ϕ(w)} has the remaining two chords on
the same side.

Hsu showed that such chord models correspond to conformal models (see Section 5.2 in [5]).
Consequently, Hsu aims to describe the set of transformations between the chord models of
Gc that preserve the relationships between the triples of non-intersecting chords. By orienting
the chords in the conformal models, we can concentrate on pairs of non-intersecting chords.
Specifically, we seek transformations that maintain the relative (left/right) relationships
between every pair of non-intersecting oriented chords. While this difference may seem minor,
it significantly simplifies the task of identifying the set of operations that can transform one
conformal model into another.

Secondly, reflecting two intersecting non-oriented chords a and b yields a pair of chords
that intersect in exactly the same way. That is, reflection has no observable effect on two
intersecting non-oriented chords; to detect a difference, additional chords must be involved. In
contrast, when a and b are oriented chords corresponding to two overlapping arcs, reflection
produces a different outcome. Indeed, if the head of b lies to the right of a before reflection,
then after reflection, it lies to the left of a. See Figure 10 for an illustration. Understanding
the role of reflection – specifically, which components of the conformal models can be reflected
independently of others – is crucial for identifying all conformal models of Gc. In the case of
oriented chords, the effects of the reflection can be at least easily described.

a0

a1

b0 b1

L
a1

a0

b1b0

Figure 10 The result of the reflection of the arcs a = a0a1 and b = b0b1.
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