Universal Quality Metrics for Graph Drawings:
Which Graphs Excite Us Most?

Gavin J. Mooney &4
Monash University, Melbourne, Australia

Tim Hegemann
Universitdt Wiirzburg, Germany

Alexander Wolff &

Universitdt Wiirzburg, Germany

Michael Wybrow

Monash University, Melbourne, Australia

Helen C. Purchase

Monash University, Melbourne, Australia

—— Abstract

Graphs are drawn for various purposes, and drawings are meant to display various features of a
graph (such as planarity, Hamiltonicity). Still, there is a long history in measuring the quality of a
graph drawing. Most of the metrics that have been implemented and used in large studies assume
that graphs are drawn straight-line. Most of the studies use randomly generated graphs or one of
very few existing benchmark sets that consist of graphs with a specific technical background (e.g.,
telecommunication networks).

In this paper, we extend ten commonly used metrics to node-link diagrams where edges can be
curves or polygonal chains. We implement these measures and use them to evaluate a new collection
of graph drawings that we have extracted from 27 proceedings of the Graph Drawing conference
using an automated pipeline. We compare the “metrics landscape” of our new benchmark set, the
GD-collection-v1, which seems to mostly contain manually drawn graphs, to the metric landscape of
a benchmark set with randomly generated graphs and computer-generated straight-line drawings
that has been used in a recent study [Mooney et al.; PacificVis 2024].

Comparing the GD-collection-vl with the Mooney at al. dataset reveals a distinct metrics
landscape: GD drawings come from much smaller graphs (median vertex number 11 vs. 48)
and therefore attain higher medians on most readability metrics. For example, Neighbourhood
Preservation (0.5 vs. 0.239) is markedly higher in the GD-collection-vl. We also find that a large
proportion of extracted drawings contain curved and/or polygonal edges (57%), motivating the
extended metric definitions.

2012 ACM Subject Classification Human-centered computing — Graph drawings

Keywords and phrases Graph drawing metrics, metric landscape, straight-line drawings, polyline
drawings, curved drawings, automated extraction of graph drawings

Digital Object Identifier 10.4230/LIPIcs.GD.2025.30

Supplementary Material Dataset: https://github.com/hegetim/gd-collection [16]
archived at swh:1:dir:478a27dd277dc5818bdf699d2a5bc222a010533b

Software (Source Code): https://github.com/gavjmooney/geg [17]
archived at swh:1:dir:91f45ae7976a74b00a0bf86145b52dd78838£b29

Funding Tim Hegemann: Supported by BMFTR grant 011S22012C.

Acknowledgements We thank Sebastian Kempf for his contributions to Graph Harvester.

© Gavin J. Mooney, Tim Hegemann, Alexander Wolff, Michael Wybrow, and Helen C. Purchase;
37 licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Graph Drawing and Network Visualization (GD 2025).

Editors: Vida Dujmovié¢ and Fabrizio Montecchiani; Article No. 30; pp. 30:1-30:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:gavin.mooney@monash.edu
http://www.gavjmooney.com
https://orcid.org/0009-0001-6208-4268
https://orcid.org/0009-0008-4770-3391
https://www.informatik.uni-wuerzburg.de/en/algo/team/wolff-alexander
https://orcid.org/0000-0001-5872-718X
https://orcid.org/0000-0001-5536-7780
https://orcid.org/0000-0001-6994-4446
https://doi.org/10.4230/LIPIcs.GD.2025.30
https://github.com/hegetim/gd-collection
https://archive.softwareheritage.org/swh:1:dir:478a27dd277dc5818bdf699d2a5bc222a010533b;origin=https://github.com/hegetim/gd-collection;visit=swh:1:snp:47572e3d1828ed35295469a20640d95523046494;anchor=swh:1:rev:d1135373ff9168ee932f61eee73dda6309e23c46
https://github.com/gavjmooney/geg
https://archive.softwareheritage.org/swh:1:dir:91f45ae7976a74b00a0bf86145b52dd78838fb29;origin=https://github.com/gavjmooney/geg;visit=swh:1:snp:466de3fc98d200d2aff60e99c9adaf669e207c17;anchor=swh:1:rev:2bb5506b887564f9e233ed6c60ad641ae740e5a8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

30:2

Universal Quality Metrics for Graph Drawings: Which Graphs Excite Us Most?

1 Introduction

Graph drawings are typically valued for the extent to which they conform to well-established
layout principles (sometimes called “aesthetics” in the literature), for example, minimising
the number of edge crossings, minimising the “stress” or maximising the angle between edges
incident to the same node. While many of these principles have been used over several years
of graph drawing research, they have not all (or always) been defined consistently; for example
stress [25]. Recently, Mooney et al. [18] defined ten common principles as “unambiguous
metrics” — some defined mathematically, some algorithmically, and all normalised to lie
between 0 and 1, where 1 describes the principle in the form that it is assumed best supports
human understanding. These metrics apply to connected, straight-line drawings of graphs.
The authors also defined a “metrics landscape” that shows the distribution of each of the
metric values over almost half a million graph drawings. These graph drawings were created
by applying six well-known layout methods (and a random layout) to almost 17,000 randomly
generated graphs, five times.

In this work, we generalise the above metrics so that they apply to graph drawings
that do not just comprise straight-line edges but also polygonal or curved edges. For two
drawings with different metric values showing the same (famous) graph, see Figure 1. This
generalisation allows us to explore a wider range of graph drawings, and, arguably, a more
representative set of graph drawings. The generalised metrics also allow us to investigate a
set of graph drawings that we know are of real interest to the graph drawing community:
the drawings in the proceedings of the Graph Drawing conference since 1998.

To this end, we used the Graph Drawing Harvester [5], which was originally designed to
extract abstract graphs from a single PDF file (and to check whether the extracted graphs
are already contained in the graph database House of Graphs [4]). We have extended the
Harvester in three directions. Firstly, it can now run in batch, processing many articles one
after the other, writing log files with the results. Second, it now checks more carefully for
(false) multi-edges and loops. Finally, it now extracts, for each edge, a geometric description;
that is, a polygonal line or a Bézier curve that connects its two endpoints. This allows us to
apply the (generalised) metrics to the extracted drawings.

(a) Drawing with unit-length straight-line edges (b) Drawing with only two crossings
(AR 0.24, CA 0.8, EC 0.93, ELD 1, NP 0.09). (AR 0.33, CA 0.9, EC 0.97, ELD 0.72, NP 0.4).

Figure 1 Two drawings of the Petersen graph and a selection of their metric values (for the
abbreviations and the definition of the metrics, see Section 3.2).

Our contribution. We first present a summary of the existing metrics, and explain how
we have extended them to cater for drawings with curves or bends. The Graph Drawing
Harvester pipeline and the challenges in its design and implementation are described next.
We then present the collection of 4,890 graph drawings that we have extracted from 27
editions of the proceedings of the Symposium of Graph Drawing (and Network Visualization)
1998-2024. To validate this collection, the GD-collection-v1, we take a random sample of

G. J. Mooney, T. Hegemann, A. Wolff, M. Wybrow, and H. C. Purchase

extracted drawings from about 10% of the articles and analyse the quality of our extraction,
in terms of true/false positives/negatives, and in terms of the number of missing or wrong
features of the true positives. We present the metric landscape of the GD-collection-vl and
compare it to the landscape of generated layouts defined by Mooney et al. [18].

Given the inevitable errors in the completely automated extraction, the GD-collection-v1
is clearly not a perfect representation of the graph drawings contained in the proceedings. In
spite of these errors, we think that this initial version is already a valuable benchmark set of
mostly hand-drawn graph drawings that complements the existing benchmark sets (Rome
graphs, AT&T graphs) that have been selected in a completely different way and that do not
come with an “original” drawing. We will make the extraction code, the GD-collection-v1,
and the metric code available to the community so that everybody can check the extracted
drawings and add missing or remove erroneous features.

2 Background

2.1 Graph Drawing Metrics

To evaluate the aesthetic quality of a graph drawing, researchers define metrics that quantify
the extent to which a graph drawing conforms to a particular layout principle. Typical layout
principles include minimising edge crossings [21, 23, 24] or maximising symmetry [29].

These metrics are also used in layout algorithms to produce graph drawings by optimising
different criteria. For example, Kamada and Kawai [12] explicitly optimise global distance
preservation, while Radermacher et al. [24] minimise edge crossings. Graph drawing metrics
are also used in human experiments to investigate the perception and task performance of
graph layouts [19, 21, 28].

Purchase [22] defines a set of seven metrics, such as Angular Resolution, which are

normalised to the range [0, 1] to facilitate comparison across drawings of different graphs.
Values of 1 represent the extreme that is intuitively assumed to be good, e.g., zero crossings.

Mooney et al. [18] extend this set by refining existing metrics and introducing new ones,
including the Gabriel Ratio. They present the distributions of metric values across different
layouts and examine pairwise correlations among metrics. In this paper, we build upon their
analysis by comparing these results to those from the GD-collection-v1.

The dataset of Mooney et al. [18] comprises 364,094 drawings generated by applying six
layout algorithms (each five times) to a set of 16,768 graphs sourced from the North [9]
and Rome [6] datasets, as well as from six random graph generators. The layout algorithms
include: Fruchterman-Reingold [8], Kamada—Kawai [12], DRGraph [30], Sugiyama et al. [26],
Human-like Orthogonal Network Layout (HOLA) [14], and a circular layout.

Due to some layout algorithms being deterministic and bugs in the HOLA implementation,
not all combinations yielded unique or valid drawings, hence the dataset size falls short of the
expected 503,040 (i.e., 16,768 x 6 x 5). To address this, we extend the dataset by reapplying
layout algorithms to node-reordered versions of the graphs, thereby generating additional
distinct drawings. Despite encountering some further HOLA-related failures, our extended
dataset includes 501,185 drawings. We call this the extended Mooney dataset.

2.2 Harvesting Graphs

While there are tools for recovering graph structures from either vector [5] or bitmap
drawings [2], to the best of our knowledge, there is no tool that allows recovering complex
edge geometries such as bends and Bézier curves. In the following, we focus on vector

graphics because they are common for manual drawings and easier to process automatically.

30:3

GD 2025

30:4

Universal Quality Metrics for Graph Drawings: Which Graphs Excite Us Most?

Our graph harvesting pipeline consists of three major steps: figure detection, recognising
vertex candidates, and edge path recovery. For figure detection, we rely on a modified version
of the KIETA pipeline [13] that was originally built to detect tables. It uses keywords to
recognise figure captions as well as clustering to find confined areas with many geometric
objects. We use the rule-based approach of Deynet et al. [5] to recognise vertex candidates,
but we slightly extended the ruleset. Finally, we implemented a greedy algorithm with
another set of rules to extract the edge paths. In the process, we need to split each line
segment or Bézier curve that contains a vertex in its relative interior.

3 Revised Graph Drawing Metrics

Existing metrics for evaluating graph drawings typically only apply to straight-line, connected,
simple graphs. In practice, graph drawings often contain edges with bends/curves, may
contain multiple edges between nodes, and comprise disconnected components. This section
motivates and describes a new method for representing more complex graph drawings and
discusses how the definitions and implementations of existing metrics must be altered to
support this representation.

3.1 GEG Encodes Graphs

Existing graph storage formats (such as GraphML [27]) allow edge geometries to be stored
as a collection of “bend” points, where these points describe a path of straight-line segments.
Extensions to GraphML! and other niche formats may allow for edges to be stored as
Bézier curves; however, these formats typically do not support (or are not widely used
for) more complex edge geometries, which may comprise multiple straight-line and Bézier
components. To extract drawings accurately, we must be able to faithfully represent complex
edge geometries. We propose a JSON-based format for storing graph drawings: GEG (GEG
Encodes Graphs).

GEG is essentially a list of nodes and edges, where each node has an “id” attribute, and
each edge has a “source” and “target” attribute, which correspond to node ids. These are
the minimum attributes required to describe a graph, but to store a graph drawing, node
positions must also be defined. This can be done in two ways: define a “pos” attribute, which
is a tuple representing the coordinates of the node, or define “x” and “y” attributes. While
node positions are sufficient to encode straight-line drawings, we can also encode complex
edge geometries in a “path” attribute, which is formatted as an SVG path command.?

This path format was chosen as SVG is a widely deployed format (i.e., with baseline
features supported by all major browsers) which is capable of encoding the complex geometries
we require. We expect each path to start with an “M” command, which “moves” to the
source node’s coordinates. This “M” command must be followed by one or more other SVG
path commands, such as “L” for a straight-line segment, or “C” for a cubic Bézier curve,
which eventually terminate at the coordinates of the target node. If no “path” attribute is
included, the edge is assumed to be a straight-line.

A JSON schema for the GEG format and the code to parse GEG files and convert from
other common graph formats is included with the metric implementations (see Section 6).

! https://www.yworks.com/xml/schema/graphml/1.0/doc/http___www.yworks.com_xml_graphml/

element/BezierEdge.html
2 Scalable Vector Graphics (SVG) 2 standard. https://www.w3.org/TR/SVG/paths.html

https://www.yworks.com/xml/schema/graphml/1.0/doc/http___www.yworks.com_xml_graphml/element/BezierEdge.html
https://www.yworks.com/xml/schema/graphml/1.0/doc/http___www.yworks.com_xml_graphml/element/BezierEdge.html
https://www.w3.org/TR/SVG/paths.html

G. J. Mooney, T. Hegemann, A. Wolff, M. Wybrow, and H. C. Purchase

3.2 Metric Definitions

The following definitions extend those described by Mooney et al. [18]. We exclude their
Gabriel Ratio metric, which is not applicable for drawings with curves, and we include a
normalised metric for stress, which is not sensitive to scale and/or rotation [19].

Given a drawing D, let G(D) be the graph that is represented by D, let V(D) be the set
of vertices of G(D) (at the positions in D), let E(D) be the set of edges of G(D) (as drawn
in D), let X(D) C R? be the set of edge intersection points, and let X'(D) be the set of pairs
(z,{e, f}) that consist of an intersection point z and a pair {e, f} of edges that cross at x.
For an intersection point z, let E(z) be the set of edges that cross at x.

Angular Resolution (AR) of a drawing D is the deviation of the smallest angle between
two edges incident to a vertex compared to the ideal such angle of the same vertex, averaged
over the vertices in V51 (D), the set of vertices of degree greater than 1:

9y — On

|, 1)

1
AR(D) =1— —— Y
|V>1(D)‘ veV>1(D)

where 9, = 360°/ deg(v) is the ideal angle at vertex v and Y™ is the actual minimum angle
between any pair of edges incident to v.

Mooney et al. [18] used the same definition, but our implementation extends theirs; we
account for self-loops and multi-edges, and we compute the angle between curved edges at a
vertex using the tangent vectors defined by the control points of the Bézier curves.

Aspect Ratio (Asp) of a drawing D is the ratio between the height and width of the
axis-aligned bounding box that encloses all vertices and edges. Formally, let h(D) be the
height and let w(D) be the width of the bounding box of D. Then

1 if h(D) =0 or w(D) =0,
Asp(D) = { h(D)/w(D) if k(D) < w(D),
w(D)/h(D) otherwise.

Compared to Mooney et al. [18], our definitions of h(D) and w(D) now take the geometry
of the edges into account.

Crossing Angle (CA) of a drawing D is the deviation of the crossing angles from 90°,
averaged over every combination of crossing point x and pair of crossing edges crossing at x.
¢a:,e,f - giier:f

d)z,e,f ’ (2)

1
CA(D):l—W >

(z{e,fHeXx (D)

min

Te.f is the smallest

where ¢, . f = 90° is the ideal crossing angle of edges e and f at x and ¢
angle between edges e and f at z.

To calculate crossings, our implementation splits curved edges into straight-line segments,
and checks for crossings between segment pairs. A parameter controls how many segments
are used to estimate the curves, which we set to 100. We also include an angular tolerance
parameter that specifies the minimum angle where a crossing should be counted (to prevent
long overlapping edges being counted as many crossings). We set this to 2.5°. This approach
also applies to Fdge Crossings.

30:5

GD 2025

30:6

Universal Quality Metrics for Graph Drawings: Which Graphs Excite Us Most?

Edge Crossings (EC) of a drawing D counts the number of edge crossings in D, scaled
against the total number of potential crossings (in a straight-line drawing of G(D)) [22]:

¢/Cmax i Cmax > 0,

EC(D)=1-11 if ¢ > Cmax, (3)
0 otherwise,
where ¢ = ZzeX(D) |E(x)|? is the number of crossings in D, cpax = (‘E(f)l) — Cdeg 18

an upper bound on the number of possible crossings (in a straight-line drawing), and
Cdeg = ZUEV(D) (deg;”)) is the number of crossings that are impossible due to the fact that
adjacent edges cannot cross. A drawing that admits polygonal or curved edges can have
more than cyax crossings (as, for example, the assumption that neighbouring edges cannot

cross no longer holds). For such a drawing D, we set EC(D) = 0.

Edge Length Deviation (ELD) of a drawing D is the average relative deviation of edge
lengths from an ideal value [1]:

L(B) - Lideal (D)
Lideal(D) ’

1
ELD(D)—l/ Ol > (4)

e€E(D)

where L(e) is the geometric length of edge e, either as the arc length of a curved path or the
Euclidean length of a straight-line segment, and Liqeal(D) = (X_ccp(p) L(€))/|E(D)] is the
average edge length of D. ELD(D) =1 if and only if all edges of D have the same length.

We refine the metric by explicitly specifying the reciprocal normalisation, thereby im-
proving clarity and interpretability of this metric.

Edge Orthogonality (EO) of a drawing D measures how closely the direction of each edge
aligns with the horizontal or vertical axes. For each edge, we compute the angular deviation
of its segments from the nearest orthogonal direction (0°, 90°, or 180°), scaled so that 0
indicates perfect alignment and 1 indicates a 45° diagonal. This definition extends that of
Mooney et al. [18] to support the inclusion of curved edges.

1
EO(D)=1- 0e, where 5)
) =1 Ty 2o (
k
< min(f, ;,[90° — 0, ;|,180° — 0,.;) Lo
56 — 5] J 1 I/ —) 6
j; 45° L(e) ©

is the length-weighted orthogonality deviation of edge e, each edge e is approximated by a
polygonal line P(e) with ke straight-line segments, 6. ; is the absolute angle between segment
j of P(e) and the horizontal axis, £, ; is the length of segment j of P(e), and L(e) = Z?;l L ;
is the total length of P(e).

Kruskal Stress Metric (KSM) is a quality metric adapted from classical multidimensional
scaling, originally proposed by Kruskal [15]. It quantifies how well the relative ordering
of graph-theoretic distances is preserved in the layout, rather than requiring exact spatial
accuracy. A more detailed description is given in [25].

G. J. Mooney, T. Hegemann, A. Wolff, M. Wybrow, and H. C. Purchase

To compute the metric, a Shepard diagram is constructed by plotting each pairwise
Euclidean distance in the layout against the corresponding graph-theoretic (shortest-path)
distance. An isotonic regression is then fitted to these points to model the ideal monotonic
relationship. The Kruskal Stress Metric of a drawing D is defined as:

Zu,veV(D),u?ﬁv (”u - UH - dAu,'U)2

Zu,vEV(D),u;év Hu - UHQ

KSM(D) =1 — (7)
where ciu,v is the fitted distance from an isotonic regression applied to the Shepard diagram.
To maintain consistency with other metrics, we subtract the stress value from 1 (which makes
a lower stress correspond to a higher score).

Neighbourhood Preservation (NP) of a drawing D measures how well graph distances
(in G(D)) between vertices are reflected by their Euclidean distances in D. This is ex-
pressed by the Jaccard similarity between the adjacency matrix of G(D) and a geometric
k-neighbourhood matrix [1]. Formally,

AN M ®)
AV MF)?

where A is the adjacency matrix of G(D) (i.e., Ay, = 1 if vertices u and v are adjacent)
and M* is a binary matrix such that M¥ =1 if and only if vertex v is one of the k nearest

Euclidean neighbours of vertex u in D. We set k = |2|E(D)|/ |V (D)|] to the floor of the
average degree.

NP(D)

Node Resolution (NR) of a drawing D is the ratio of the minimum to the maximum
Euclidean distances over all pairs of vertices in D. Formally,

min w U —v
NR(D) = Diluwev(D).utv I |

9)

maXy, yeV (D), utv |[u — | '

Node Uniformity (NU) of a drawing D measures how evenly vertices are spatially distrib-
uted across D. To this end, the bounding box of D is divided into a uniform grid with T (to
be determined) rectangular cells, and the deviation between the actual and the ideal number
of vertices per cell is used to compute the score. Let n; denote the number of vertices in
cell 4, and let u = |V(D)|/T be the ideal number of nodes per cell. Then:

T

1
NU(D) =1 5= lei — pl, (10)
max i=1

where Doy = 2|V(D)|(T —1)/T is the worst-case deviation when all nodes are concentrated
in a single cell. We set T' to match |V (D)| while maintaining roughly square proportions.
Specifically, we set the grid dimensions to

#rows = {\/\V(DHJ , #cols = PV(D)F‘ , and, hence, T = #rows - #cols.

#rows

If the bounding box of D has height (or width) 0, then #rows =1 (or #cols = 1).

This definition refines the metric proposed by Mooney et al. [18] by improving the handling
of cases where the number of vertices is not a square number. Our approach determines the
grid dimensions to maintain near-square proportions, while matching the vertex number as
closely as possible. Additionally, the normalisation is now based on a well-defined worst-case
scenario (all vertices contained in a single cell) rather than relying on an ad-hoc damping
mechanism that adjusts scores outside the range [0, 1].

30:7

GD 2025

30:8

Universal Quality Metrics for Graph Drawings: Which Graphs Excite Us Most?

3.3 Directed and Disconnected Graphs

One limitation of these metrics is that they do not consider directed graphs. While they
can be applied by converting to undirected graphs (with multi-edges if needed), some layout
principles may not translate directly — for example, smaller angles between edges (angular
resolution) may be preferable to emphasise directionality.

These metrics can generally be applied to disconnected graphs. For the two that defin-
itionally require connectedness (Kruskal Stress Metric, Neighbourhood Preservation), we
apply them to each connected component and return a weighted sum, where weights are
based on each component’s convex hull area relative to the total.

While the weighted sum approach could be applied to all metrics, it is not always
necessary or appropriate. For example, Angular Resolution is locally defined at each node
and unaffected by disconnected components. In contrast, using a weighted sum for Edge
Crossings would be misleading, as it would ignore crossings between components — an issue
if disconnected parts overlap in the drawing. Although such overlap should be avoided to
prevent misinterpreting the graph as connected, it may still occur in practice.

4 Extended Graph Harvester

We use and extend Graph Harvester [5], an automated pipeline for extracting vector graph
drawings from PDFs. We applied it to the Graph Drawing conference proceedings from
1998-2024. Proceedings from 1997 and earlier are only available as scanned documents and
therefore inaccessible to our pipeline that can only handle vector graphics.

4.1 Extraction Logic

The process of harvesting graph drawings can be described by three major phases, namely
figure detection, recognising vertex candidates, and edge path recovery. Graph Harvester
focuses on the most prevalent type of graph drawings, node-link-diagrams. Here, vertices are
represented as individual geometric objects (e.g., small disks) and edges are represented by
connecting nodes by straight-lines or curves. We use the term node to refer to the geometric
representation of a vertex.

PDFs usually lack semantic information about document structure, so figures must
be detected by identifying distinctive patterns (e.g., “Figure” followed by a number and
some delimiter) and by analysing areas with many geometric objects and irregular text
arrangements. A single figure can contain multiple graph drawings, which can be distinguished
by partitioning the figure into non-overlapping clusters of elements.

Naturally, the second step is finding vertex candidates. Usually, all vertices are represented
by objects of the same shape and size, but some vertices may use different or larger shapes
in order to highlight the vertex or label certain features. Figures also often contain other
geometry for annotations that can be mistaken for vertices.

In a third step, we handle edge paths. Ideally, nodes are connected by a distinct sequence
of stroked shapes (line segment or Bézier curves) that each start or end at either a node
or endpoint of the previous stroked shape in the sequence. This assumption falls short of
several patterns used by authors of graph drawings. When drawing self loops, the start
and end vertex are identical. Multiedges connect the same pair of nodes via different paths.
One entity of geometry may be used to draw multiple edges (e.g., a rectangle that connects
four nodes on its corners and therefore represents four edges or a long line segment that

G. J. Mooney, T. Hegemann, A. Wolff, M. Wybrow, and H. C. Purchase

1 g S

This is fine!

NP

Figure 2 A “test chart” for what the enhanced Graph Harvester can extract. It recognizes all
nodes and edge paths; the text labels are filtered out automatically.

connects multiple collinear nodes). Common annotations on edges include arrow heads for
expressing edge direction and multi patterning where a thicker shape is placed under the
edge for highlighting purposes.

For the Graph Harvester we rely on the following assumptions. Nodes are either squares
or circles, they are either stroked (i.e., only the outline is drawn) or filled using a dark colour,
and they are clearly separated from each other. Fill may be implemented as multiple stacked
shapes of different size (see for example the centre node of Figure 2).

Edges are non-empty sequences of line segments or Bézier curves without jumps (i.e.,
every segment connects to the next at their respective end/start point), they have a dark
stroke, and they connect exactly two nodes (that may be the same node). We recognise edge
paths by first splitting any geometry that intersects a vertex candidate, then, matching every
endpoint to any overlapping vertex candidate and finally, greedily extending unmatched
endpoints with other unmatched pieces of geometry. When extending edge paths, we forbid
very acute angles (smaller than 60°) as edges tend to extend towards their destination.

Any remaining geometry (i.e., any path that has an unmatched endpoint) is discarded as
annotation as well as all sort of text. Short self loops are also discarded as they usually result
from arrow heads or node decorations. We ignore some properties of the geometry such as
colour and dash patterns as they are used in many different ways and often highlight vital
parts of the drawing. However, we remove very lightly coloured geometry (Rec. 709 luma
> 0.75) as these are mainly used for annotation or are not visible at all. After reviewing first
results (see Section 4.2), we decided to exclude all drawings where self-loops were detected
because true self-loops are very rare in the dataset and the majority of detections stemmed
from completely unusable extractions. We also excluded some very large graph drawings for
performance reasons.

We composed a graph drawing using a diverse set of styles that match our assumptions,
similar to a test chart for imaging systems (see Figure 2). Our extended version of Graph
Harvester handles this correctly.

4.2 Evaluation

In order to asses the quality of our graph extraction pipeline, we manually examined 101
papers (about 10%) that we picked at random from our dataset. In these we found 1,358
figures, 1,016 of which were graph drawings (i.e., node-link-diagrams). Note that we counted
clearly separated drawings individually even when they were composed into a single figure
(e.g., using subfigures). See Figure 3 for an overview.

30:9

GD 2025

30:10

Universal Quality Metrics for Graph Drawings: Which Graphs Excite Us Most?

[101 Articles “‘.~--->(426 Extracted Graphs)

1,358 Figures =

(222 Bitmap [1,136 Vector n)

(Quality: 292 @ | ©134)

438 Straight-line X

845 Graphs] 117 Polygonal I&)
— 290 Curves]

(171 Graphs|51 other 291

Figure 3 We analysed a sample of 101 articles manually in order to validate our large corpus.

So far, Graph Harvester cannot detect if an edge is directed or not. In our sample, 12%
of the graphs were directed (which Graph Harvester can’t detect), 11% were multi-graphs
(i.e., had multiple edges connecting the same pair of nodes), and 1% had self loops. When
looking at the actual drawings, 54% used only straight-line edges, 12% contained at least
some polygonal edges, and 34% made use of curved edges. Because our pipeline can only
handle vector graphics, we loose all bitmap images in the extraction process. Fortunately,
only 17% of the graph drawings were bitmaps.

From the sample, Graph Harvester managed to extract 426 graphs. In 26 cases multiple
proximal drawings were detected as one disconnected graph. So the extracted graphs actually
stem from 487 individual drawings. For numerous reasons (see Section 4.3 for some examples),
365 graphs could not be extracted. Only seven other figures were incorrectly detected as
graphs. For the extracted graphs, we checked how accurate they reproduce the adjacencies
and edge paths depicted. An extraction “passes” our assessment if all vertices are recognised
and only an insignificant number of edges is missing or misrepresented. In our sample, 69%
of the extracted graphs passed resulting in an overall somewhat low rate of 40% high-quality
extractions from the vector graph drawings.

Given the very diverse landscape of drawing styles and our generous interpretation of
what to count as a graph drawing (see Section 4.3), we still consider these numbers a success.
We argue that the quality of our extraction procedure is sufficient to make further assessments
based on this dataset.

4.3 Limitations

To explore limitations of our approach, we focus on those graph drawings that caused
problems in the extraction process. We compiled the following list of common patterns. Each
item refers to the corresponding tile in Figure 4 (a) to (o).

(a) Not a Node-Link-Diagram (but a graph drawing). The figure shows a so-called contact
representation. We consider graph drawings that are not node-link-diagrams out of scope
(i.e., we did not count them in Section 4.2 and do not expect any extracted graphs).

(b) Not a Graph Drawing (but a node-link-diagram). Some figures that are not intended to
show graphs contain geometry that can be mistaken for nodes and edges. We use a set
of filter rules in order to prevent such extractions. Few false positives were reported in
the evaluation.

(c) Incomplete Drawing. The complete parts are extracted; incomplete edges are discarded.

(d) Disconnected Components and Isolated Vertices. If the drawing is detected as one
figure, a disconnected graph is extracted. All isolated vertices are discarded.

(e) Huge and/or Heavily Annotated Nodes. These node types are usually not identified as
vertex candidates, so false detections often occurred with such drawings.

(f) Text-only Nodes. No graph is extracted.

G. J. Mooney, T. Hegemann, A. Wolff, M. Wybrow, and H. C. Purchase

(a))7 (d) % O,
SN
(i))]
(n) R (o) -
5/7/—>2{’§\3 7
< N S/
. L

(e)
(h)

(i)

1)
(k)

(1)
(m)
(n)

(o)

5

Figure 4 Things we actually found in graph drawings.

No Vertex Markers. No graph is extracted.

Ports or Compose Nodes and Intentionally Obstructed Elements. Nodes of this style
are usually not identified as vertex candidates. If geometry is present in the vector data,
it is extracted regardless of any patch occluding it.

Partially Overlapping and/or Ambiguously Placed Nodes Partially overlapping nodes
are filtered and only one of them is extracted. If a node overlaps an edge, that edge is
split into two edges adjacent to that node.

Unusual Node Shapes (i.e., not a square or a circle). No graph is extracted.
Confluent Edges and Hyper Edges (i.e., edges that connect more than two nodes). If
each confluent edge consists of an individual geometry object, the extraction succeeds.
Otherwise, at most one edge per hyper edge is extracted.

Acute Edge Bends and Filled Edges.
considered for edge continuations. Filled geometry is considered as edge paths.
Two-in-one Drawing. A blend of both graphs is extracted. Multiply exposed edges are
filtered and only one copy is extracted.

Lightly Coloured Elements and Edges not Reaching Their Target. Very lightly coloured
elements are discarded. Incomplete edge paths are stretched only to a certain degree to

Segments resulting in acute angles are not

prevent false extractions.
Grid or Level Lines. Unfortunately, these are extracted as edge paths.

Graph Drawings in the GD Proceedings

5.1 General Analysis

From the 27 proceedings (1998-2024) we extracted 1,037 articles. Of these articles, only 740
(71.4%) contain graph drawings (that we were able to extract). In total we extracted 4,890
graph drawings — 3,769 (77.1%) were connected, 858 (17.6%) were multi-graphs, and 4,211
(86.1%) were planar (though only 2,807 (57.4%) were actually drawn without crossings).

30:11

GD 2025

30:12

Universal Quality Metrics for Graph Drawings: Which Graphs Excite Us Most?

Yearly Mean Drawings per Article (Grouped by Drawing Type) Subm

100
All Drawings
12 -| ™ Straight 1258

B Straight with Bends
/._v/‘ F 80

m Curved
I 60

-8 Articles Containing Drawings (%)

40

3.85 389
330 315 L
|I| ||| II ||| | ||| |I| | III Ll III || Ill I I |I| III | | | I II | | I | |8} I i,

'98 '99 '00 '01 '02 '03 '04 '05 '06 '07 08 '09 10 11 12 "3 "4 15 16 17 18 19 '20 21 22 '23 ‘24
Year

Mean Drawings per Article
Articles Containing Drawings (%)

N

0

o

Figure 5 The stacked bar chart shows, for each year, the mean number of drawings per article
(grouped by edge style). The line chart shows, for each year, the proportion of articles that contain
drawings. In 2020, the submission format for GD was updated to support the inclusion of figures.

We categorise the 4,890 drawings into three sets (“styles”) based on edge geometry:
= Straight: Those which consist of only straight-line edges: 2,102 (43.0%)
= Polygonal: Those which contain polygonal edges (i.e., bends): 998 (20.4%)
= Curved: Those which contain curved edges: 1,790 (36.6%)

The significant proportion of drawings which contain curves highlight the importance of
defining metrics that can evaluate such drawings.

Figure 5 shows the mean number of drawings per article per year, grouped by drawing
type. We fitted linear regressions to examine trends in the number of drawings per article
over time. The mean number of drawings per article has increased significantly (slope =
0.22, R? = 0.59, p < .001), as has the proportion of articles that contain drawings (slope =
0.0088, R? = 0.46, p < .001). While these regressions confirm a clear upward trend over the
past 27 years, this trend is not expected to continue indefinitely, as there are practical limits
to how many drawings can be included in an article. The 2020 change from page limits to
line limits — intended to allow more figures — may also have contributed to the observed
trend, although our dataset only includes extracted graph drawings (not all figures, or even
all drawings). Year-to-year differences also remain substantial, likely due to variations in
conference themes, paper content, and editorial guidelines.

Figure 6 shows the distribution of drawings per article, excluding articles with no
(extractable) drawings. The median article contains 5 drawings (mean = 6.61). The article
with the most drawings (namely 67) was a 2009 paper by J. Joseph Fowler 7] — it contained
many small planar trees.

Distribution of Drawings per Article (excluding Articles Without Drawings)

00 0000000 O o O [e] [e] [e] [e]

T T v T T T T T
0 10 20 30 40 50 60 70
Number of Drawings per Article

Figure 6 Boxplot of the number of drawings per article, excluding articles with no (extractable)
drawings. The median article contains 5 drawings.

G. J. Mooney, T. Hegemann, A. Wolff, M. Wybrow, and H. C. Purchase

of Nodes # of Edges Density Diameter
100

081 12,54

o
o

801
10.04
0.6 1
60 1

IS
o

7.5
0.4 1

401 5.0

Property Value

N
o

0.24
201 254

ol 0.0

04 0.0

Avg. Shortest Path Length Avg. Node Degree Avg. Node Connectivity Avg. Clustering Coefficient

54 0.8

IS

0.6 4

0.4 1

0.2 4

Property Value
Now

o = N W & w

0.0 1

-

Figure 7 Violin plots showing the distribution of values for 8 common graph properties on the
GD-collection-v1. Values above the 95th percentile have been excluded to allow for easier inspection
of long tail-distributions (such as the number of nodes or edges).

Figure 7 shows the distribution of values for eight common graph properties on our
dataset, excluding those above the 95th percentile to allow for easier comparison of long-tail
distributions. The complete distributions are shown in Appendix A. All properties were
calculated using implementations from the Python library NetworkX [10]. The average node
connectivity, defined by Beineke et al. [3], measures the mean number of node-independent
paths between all node pairs, reflecting overall network cohesion. The average clustering
coefficient, defined by Kaiser [11], captures the tendency of nodes to form local clusters by
averaging the proportion of links between each node’s neighbours. The density of a graph G
is calculated using the standard definition: d(G) = |E(G)|/ (lV(QG)‘). For graphs, density is in
[0, 1], but the density of multigraphs may exceed 1.

The majority of extracted graphs have very few nodes (median = 11), and are generally
sparse (median density = 0.27). These factors contribute to low diameters (median = 4),
average shortest path lengths (median = 2), and average node degrees (median = 2.67). The
graphs also tend to have low average node connectivity (median = 1.98), reflecting limited
redundancy in paths between node pairs. Average clustering coefficients are similarly low
(median = 0.06), suggesting limited local grouping or community structure.

5.2 Metric Analysis of Drawings

In this section we analyse our dataset using the ten readability metrics defined in Section 3.2.

Figure 8 shows the value distributions of the ten metrics across our 4,890 extracted drawings
(separated by edge type) and the extended Mooney dataset (see Section 2.1). Table 1 shows
the medians for each metric and dataset (other statistics available in Appendix C).

First, we compare all drawings in the GD-collection-v1 to the extended Mooney dataset.

Overall the medians for all metrics are lower in the extended Mooney dataset than the
GD-collection-vl. We attribute this to the greater concentration of larger graphs — the
median number of nodes in the GD-collection-v1 is 11, compared to 48 in the extended

Mooney dataset. Larger graphs are expected to have poorer performance on most metrics.

Full distributions of graph properties for both datasets are provided in Appendix A.
Comparing the three edge geometry types in the GD-collection-vi we can also see that

distributions are largely similar, though differences highlight some interesting properties.

The Crossing Angle metric shows a larger distribution of values around 0.7 for the curved
drawings when compared to the straight/polygonal drawings. We suggest this stems from
arc diagrams and other similar drawings where crossing angle is not optimised.

30:13

GD 2025

30:14 Universal Quality Metrics for Graph Drawings: Which Graphs Excite Us Most?

GD (Straight) GD (Stralght W|th Bends) GD (Curved) GD (All Drawings) Mooney et al. Dataset
(n=2,102) (n =1,790) (n = 4,890) (n =501,185)

(XXX ¥S

Angular
Resolution

Aspect
Ratio

Crossing
Angle

Edge
Crossings

[P P>P

PSP+
Sh+d 4

(TX X P
(XXX

"' Figure 8 Violin plots showing the distribution of values for 10 metrics on the GD-collection-v1
(separated by edge type) and the extended Mooney dataset.

Edge Length
Deviation

Edge
rthogonal

Kruskal Stress
Metric

Neighbourhood
Preservation

Node
Resolution

Node
Uniformity

I
o

=4
o

G. J. Mooney, T. Hegemann, A. Wolff, M. Wybrow, and H. C. Purchase

Table 1 Median for each metric and dataset (see Table 2 in the Appendix for quartiles).

Metric Straight Polygonal Curved GD Collection vl Mooney
Angular Resolution 0.478 0.516 0.484 0.488 0.482
Aspect Ratio 0.74 0.733 0.766 0.75 0.834
Crossing Angle 1.0 1.0 0.995 1.0 0.673
Edge Crossings 1.0 1.0 0.998 1.0 0.983
Edge Length Deviation 0.774 0.676 0.685 0.719 0.705
Edge Orthogonality 0.55 0.592 0.56 0.559 0.517
Kruskal Stress Metric 0.71 0.675 0.669 0.686 0.669
Neighbourhood Preservation 0.484 0.5 0.5 0.5 0.239
Node Resolution 0.136 0.101 0.131 0.127 0.036
Node Uniformity 0.633 0.586 0.6 0.6 0.551

Overall, the drawings have very few crossings, but curved drawings tend to admit more
crossings than the other two sets (median = 0.999 vs. 1.0). Straight-line drawings clearly
perform better on the Fdge Length Deviation metric, reflecting more consistent edge lengths
compared to the variability introduced by curves or bends (median = 0.772 vs. polygonal:
0.677; curved: 0.685). Polygonal-edge drawings perform better for the Edge Orthogonality
metric (median = 0.589 vs. straight: 0.552; curved: 0.56). We suggest this may be caused
by orthogonal layouts which typically contain straight edges with bend points at 90°.

Straight-line drawings perform better on the Kruskal Stress Metric (median = 0.709 vs.

polygonal: 0.676; curved: 0.669), likely because many stress-minimising layout algorithms are
tailored to straight-line representations, even though the metric itself depends only on node
positions. Straight-line drawings also perform better on the Node Uniformity metric (median
= 0.625 vs. polygonal: 0.586; curved: 0.6). Straight-line layouts typically position nodes to

reflect structural relationships in the graph, resulting in more uniform spatial distributions.

In contrast, bent or curved edge layouts often prioritise edge clarity or visual grouping, which
can lead to clustered or uneven node placements and consequently lower node uniformity.

We also examined the pairwise correlations between metrics across both datasets. Overall,
the two datasets exhibit generally consistent correlation directions between metric pairs;
however, correlation strengths vary. A few discrepancies exist, which we attribute to
differences in the types and structures of graphs and layouts included in each dataset. The
correlation heatmaps are provided in Appendix B.

6 Conclusion

In this paper, we revised a set of ten quality metrics for evaluating graph drawings, generalising
them beyond the traditional constraint of straight-line edges to include drawings with bends
3 We extended the Graph Harvester [5] to obtain an automated pipeline for
extracting node-link diagrams — including edge geometries — from vector-based figures in
PDFs. Using this tool, we created the GD-collection-v1, a dataset of 4,890 graph drawings
extracted from 27 years of Graph Drawing conference proceedings.* Finally, we analysed
this collection and compared its metric landscape to that of an extended benchmark set of
over half a million drawings described by Mooney et al. [18].

and curves.

3 The implementation of the ten metrics and GEG format is available at https://github.com/
gavjmooney/geg
4 The full dataset is available at https://github.com/hegetim/gd-collection

30:15

GD 2025

https://github.com/gavjmooney/geg
https://github.com/gavjmooney/geg
https://github.com/hegetim/gd-collection

30:16

Universal Quality Metrics for Graph Drawings: Which Graphs Excite Us Most?

Our analysis suggests that while existing readability metrics are broadly applicable,
applying them to real-world graph drawings, such as those in the GD-collection-v1, reveals
subtle differences not evident in datasets comprised solely of synthetically generated layouts.
Differences in metric distributions across straight-line, polygonal, and curved drawings
indicate that certain drawing styles tend to score better on different graph drawing metrics.
The high proportion of curves (37%) and bends (20%) in the GD-collection-v1 highlights the
importance of metric definitions that are applicable to such drawings.

We plan to further grow the GD collection in the future. The community can support this
by adhering to some basic guidelines when it comes to graph drawings: Do use vertex markers,
use a single shape per edge, and avoid annotations that can be mistaken for edges. In future,
more of the existing metrics defined only on straight-line drawings could be extended to work
on curved drawings (e.g. those implemented in [20]).

—— References

1 Reyan Ahmed, Felice De Luca, Sabin Devkota, Stephen G Kobourov, and Mingwei Li.
Multicriteria scalable graph drawing via stochastic gradient descent, (SGD)2. IEEFE Trans.
Vis. Comput. Graphics, 28(6):2388-2399, 2022. doi:10.1109/TVCG.2022.3155564.

2 Christopher Auer, Christian Bachmaier, Franz J. Brandenburg, Andreas Gleifiner, and Josef
Reislhuber. Optical graph recognition. J. Graph Algorithms Appl., 17(4):541-565, 2013.
doi:10.7155/JGAA.00303.

3 Lowell W. Beineke, Ortrud R. Oellermann, and Raymond E. Pippert. The average connectivity
of a graph. Discrete Math., 252(1):31-45, 2002. doi:10.1016/S0012-365X(01)00180-7.

4 Kris Coolsaet, Sven D’hondt, and Jan Goedgebeur. House of Graphs 2.0: A database of
interesting graphs and more. Discret. Appl. Math., 325:97-107, 2023. doi:10.1016/J.DAM.
2022.10.013.

5 Julius Deynet, Tim Hegemann, Sebastian Kempf, and Alexander Wolff. Graph Harvester. In
Stefan Felsner and Karsten Klein, editors, Graph Drawing and Network Visualization (GD),
volume 320 of LIPIcs, pages 58:1-58:3. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2024. Poster with software presentation. doi:10.4230/LIPIcs.GD.2024.58.

6 Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Roberto Tamassia, Emanuele Tassinari,
and Francesco Vargiu. An experimental comparison of four graph drawing algorithms. Comput.
Geom., 7(5):303-325, 1997. doi:10.1016/S0925-7721(96)00005-3.

7 J. Joseph Fowler. Characterization of unlabeled radial level planar graphs. In David Eppstein
and Emden R. Gansner, editors, Graph Drawing (GD), volume 5849 of LNCS, pages 81-93.
Springer, 2010. doi:10.1007/978-3-642-11805-0_10.

8 Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed
placement. Softw. Pract. Exper., 21(11):1129-1164, 1991. doi:10.1002/spe.4380211102.

9 Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing graphs with dot.
Technical report, AT&T Research, 2006. URL: https://archive.org/details/dotguide.

10 Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using NetworkX. In Gaél Varoquaux, Travis Vaught, and Jarrod Millman, editors,
Python in Science Conference (SciPy), pages 11-15, 2008.

11 Marcus Kaiser. Mean clustering coefficients: The role of isolated nodes and leafs on
clustering measures for small-world networks. New J. Phys., 10(8):083042, 2008. doi:
10.1088/1367-2630/10/8/083042.

12 Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undirected graphs.
Inf. Process. Lett., 31(1):7-15, 1989. doi:10.1016/0020-0190(89)90102-6.

13 Sebastian Kempf, Markus Krug, and Frank Puppe. KIETA: key-insight extraction from
scientific tables. Appl. Intell., 53(8):9513-9530, 2023. doi:10.1007/510489-022-03957-8.

https://doi.org/10.1109/TVCG.2022.3155564
https://doi.org/10.7155/JGAA.00303
https://doi.org/10.1016/S0012-365X(01)00180-7
https://doi.org/10.1016/J.DAM.2022.10.013
https://doi.org/10.1016/J.DAM.2022.10.013
https://doi.org/10.4230/LIPIcs.GD.2024.58
https://doi.org/10.1016/S0925-7721(96)00005-3
https://doi.org/10.1007/978-3-642-11805-0_10
https://doi.org/10.1002/spe.4380211102
https://archive.org/details/dotguide
https://doi.org/10.1088/1367-2630/10/8/083042
https://doi.org/10.1088/1367-2630/10/8/083042
https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1007/S10489-022-03957-8

G. J. Mooney, T. Hegemann, A. Wolff, M. Wybrow, and H. C. Purchase

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael Wybrow. HOLA: Human-like Orthogonal
Network Layout. IEEE Trans Vis. Comput. Graphics, 22(1):349-358, 2016. doi:10.1109/
TVCG.2015.2467451.

Joseph B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29:1-27, 1964. doi:10.1007/BF02289565.

Gavin J. Mooney, Tim Hegemann, Alexander Wolff, Michael Wybrow, and Helen C. Purchase.
GD-collection-v1. Dataset, swhld: swh:1:dir:478a27dd277dc5818bdf699d2a5bc222a010533b
(visited on 2025-11-10). URL: https://github.com/hegetim/gd-collection, doi:10.4230/
artifacts.250665.

Gavin J. Mooney, Tim Hegemann, Alexander Wolff, Michael Wybrow, and Helen C.
Purchase. GEG Encodes Graphs. Software, swhld: swh:1:dir:91f45ae7976a74b00a0bf
86145b52dd78838fb29 (visited on 2025-11-10). URL: https://github.com/gavjmooney/geg,
doi:10.4230/artifacts.25066.

Gavin J. Mooney, Helen C. Purchase, Michael Wybrow, and Stephen G. Kobourov. The
multi-dimensional landscape of graph drawing metrics. In IEEE Pacific Vis. Conf. (PacificVis),
pages 122-131, 2024. doi:10.1109/PACIFICVIS60374.2024.00022.

Gavin J. Mooney, Helen C. Purchase, Michael Wybrow, Stephen G. Kobourov, and Jacob
Miller. The perception of stress in graph drawings. In Stefan Felsner and Karsten Klein, editors,
Graph Drawing and Network Visualization (GD), volume 320 of LIPIcs, pages 21:1-21:17.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPIcs.GD.2024.21.
Martin Nollenburg, Sebastian Roder, and Markus Wallinger. GdMetriX — A NetworkX
extension for graph drawing metrics. In Stefan Felsner and Karsten Klein, editors, Graph
Drawing & Network Vis. (GD), volume 320 of LIPIcs, pages 45:1-45:3. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPIcs.GD.2024.45.

Helen C. Purchase. Which aesthetic has the greatest effect on human understanding? In
Giuseppe Di Battista, editor, Graph Drawing, volume 1353 of LNCS, pages 248-261. Springer,
1997. doi:10.1007/3-540-63938-1_67.

Helen C. Purchase. Metrics for graph drawing aesthetics. J. Vis. Lang. Comput., 13(5):501-516,
2002. doi:10.1006/jv1lc.2002.0232.

Helen C. Purchase, Robert F. Cohen, and Murray James. Validating graph drawing aesthetics.
In G. Goos, J. Hartmanis, J. van Leeuwen, and Franz J. Brandenburg, editors, Graph Drawing,
volume 1027 of LNCS, pages 435-446. Springer, 1996. doi:10.1007/BFb0021827.

Marcel Radermacher, Klara Reichard, Ignaz Rutter, and Dorothea Wagner. A geometric
heuristic for rectilinear crossing minimization. In Workshop Algorithm Engin. € Ezxper.
(ALENEX), pages 129-138. STAM, 2018. doi:10.1145/3325861.

Kiran Smelser, Jacob Miller, and Stephen Kobourov. “Normalized stress” is not normalized:
How to interpret stress correctly. ArXiv preprint, 2024. doi:10.48550/arXiv.2408.07724.
Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11:109-125, 1981. doi:
10.1109/TSMC. 1981.4308636.

GraphML Team. The graphml file format, 2002. URL: http://graphml.graphdrawing.org/.
Colin Ware, Helen Purchase, Linda Colpoys, and Matthew McGill. Cognitive Measurements
of Graph Aesthetics. Inform. Vis., 1(2):103-110, 2002. doi:10.1057/palgrave.ivs.9500013.
Erik Welch and Stephen Kobourov. Measuring symmetry in drawings of graphs. Comput.
Graph. Forum, 36(3):341-351, 2017. doi:10.1111/cgf.13192.

Minfeng Zhu, Wei Chen, Yuanzhe Hu, Yuxuan Hou, Liangjun Liu, and Kaiyuan Zhang.
DRGraph: An efficient graph layout algorithm for large-scale graphs by dimensionality
reduction. IEEE Trans. Vis. Comput. Graphics, 27(2):1666-1676, 2021. doi:10.1109/TVCG.
2020.3030447.

30:17

GD 2025

https://doi.org/10.1109/TVCG.2015.2467451
https://doi.org/10.1109/TVCG.2015.2467451
https://doi.org/10.1007/BF02289565
https://archive.softwareheritage.org/swh:1:dir:478a27dd277dc5818bdf699d2a5bc222a010533b;origin=https://github.com/hegetim/gd-collection;visit=swh:1:snp:47572e3d1828ed35295469a20640d95523046494;anchor=swh:1:rev:d1135373ff9168ee932f61eee73dda6309e23c46
https://github.com/hegetim/gd-collection
https://doi.org/10.4230/artifacts.25065
https://doi.org/10.4230/artifacts.25065
https://archive.softwareheritage.org/swh:1:dir:91f45ae7976a74b00a0bf86145b52dd78838fb29;origin=https://github.com/gavjmooney/geg;visit=swh:1:snp:466de3fc98d200d2aff60e99c9adaf669e207c17;anchor=swh:1:rev:2bb5506b887564f9e233ed6c60ad641ae740e5a8
https://archive.softwareheritage.org/swh:1:dir:91f45ae7976a74b00a0bf86145b52dd78838fb29;origin=https://github.com/gavjmooney/geg;visit=swh:1:snp:466de3fc98d200d2aff60e99c9adaf669e207c17;anchor=swh:1:rev:2bb5506b887564f9e233ed6c60ad641ae740e5a8
https://github.com/gavjmooney/geg
https://doi.org/10.4230/artifacts.25066
https://doi.org/10.1109/PACIFICVIS60374.2024.00022
https://doi.org/10.4230/LIPIcs.GD.2024.21
https://doi.org/10.4230/LIPIcs.GD.2024.45
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1006/jvlc.2002.0232
https://doi.org/10.1007/BFb0021827
https://doi.org/10.1145/3325861
https://doi.org/10.48550/arXiv.2408.07724
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636
http://graphml.graphdrawing.org/
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1111/cgf.13192
https://doi.org/10.1109/TVCG.2020.3030447
https://doi.org/10.1109/TVCG.2020.3030447

30:18

Universal Quality Metrics for Graph Drawings: Which Graphs Excite Us Most?

A Complete Graph Property Distributions

of Nodes

of Edges

Density

Diameter

J 120
1250 A 20
800 100 A
] 1000 - 1.5
T 600 - 80 1
Z 750
2 1.0 A 60
@ 400 -
g 500 - os 40 1
2 | 54
200 250 1 201
01 01 0.01 01
Avg. Shortest Path Length Avg. Node Degree Avg. Node Connectivity Avg. Clustering Coefficient
204 25 25
1.0
20 20
$ 304 0.8
>: 15 4 15 A 0.6-
20
§ 10 4 10 A 0.4 1
<
a 10 54 54 0.2
0.0
0 0 A

0

Figure 9 Violin plots showing the distribution of values for 8 common

GD-collection-vl1.

graph properties on the

of Nodes # of Edges Density Diameter
120 1
0.8
100 - 300+ 60 -
[
% 807 0.6
> 200 401
g 601 0.4
5 .
o 401 100 -]
& 021 20
20
0+ 01 0.0 0+
Avg. Shortest Path Length Avg. Node Degree Avg. Node Connectivity Avg. Clustering Coefficient
25 1 15.0 1 12 A 1.0
20 12.5 4 10 0.8
g
S 154 10.0 4 81 0.6
2 61
2 104 7.5 0.4
o 4
a 5.0 1 4 0.2 1
5 B
2.5 27 0.0
0 : : T :

Figure 10 Violin plots showing the distribution of values for 8 common graph properties on the

extended Mooney dataset.

G. J. Mooney, T. Hegemann, A. Wolff, M. Wybrow, and H. C. Purchase 30:19

B Pairwise Metric Correlations

Pearson Correlation Heatmap of Metrics (GD Dataset (n=4,890)) Pearson Correlation Heatmap of Metrics (Mooney et al. Dataset (n=501,185))

-0.01 0.42 026 022 044 008 015

031 024 001 016 034 025 -013 -0.05 Angular Resolution

Angular Resolution

Aspect Ratio - -0.29 Aspect Ratio - 0.01 030 034 -007 040 -007 0.6 -0.00

019 050 051 043 031 030 08

022 042 ﬂ 032 024 06
-0.33 H 005 027 027 | o4

08 Crossing Angle - 042 0.33.

Edge Length Deviation - 026 034 019 0.04

Crossing Angle - 0.31

Edge Crossings - 024

Edge Length Deviation - 0.01

Edge Orthogonality - 0.22 -0.07 | 0.50 022

Edge Orthogonality - 0.16

-02
Kruskal Stress Metric - 0.34 Kruskal Stress Metric - 040 051 042
-00
Neighbourhood Preservation - 0.25 Neighbourhood Preservation - 0.44 -0.07 ~ 043
--02

Node Resolution - -0.08 016 031 -0.32

Node Resolution -

13

Node Uniformity - 015 -0.00 030 024

Node Uniformity - -0.05

Figure 11 Heatmaps showing the Pearson correlation between pairs of 10 metrics on the GD-
collection-vl and the extended dataset of 501,185 drawings described by Mooney et al. [18].

GD 2025

30:20

Universal Quality Metrics for Graph Drawings: Which Graphs Excite Us Most?

C Table of Metric Quartiles

Table 2 Median (M), 1st, and 3rd quartiles for each metric and dataset.

Metric Stat ‘ Straight Polygonal Curved GD Coll. v Mooney
Q1 0.348 0.364 0.345 0.352 0.264
Angular Resolution M 0.478 0.516 0.484 0.488 0.482
Q3 0.639 0.69 0.651 0.657 0.614
Q1 0.474 0.5 0.5 0.499 0.632
Aspect Ratio M 0.74 0.733 0.766 0.75 0.834
Q3 0.889 0.915 0.944 0.92 0.958
Q1 0.862 0.773 0.687 0.762 0.631
Crossing Angle M 1.0 1.0 0.995 1.0 0.673
Q3 1.0 1.0 1.0 1.0 0.807
Q1 0.983 0.975 0.937 0.966 0.937
Edge Crossings M 1.0 1.0 0.998 1.0 0.983
Q3 1.0 1.0 1.0 1.0 0.992
Q1 0.702 0.611 0.625 0.647 0.637
Edge Length Deviation M 0.774 0.676 0.685 0.719 0.705
Q3 0.853 0.749 0.751 0.802 0.812
Q1 0.48 0.496 0.486 0.486 0.487
Edge Orthogonality M 0.55 0.592 0.56 0.559 0.517
Q3 0.68 0.756 0.713 0.708 0.581
Q1 0.636 0.607 0.609 0.618 0.589
Kruskal Stress Metric M 0.71 0.675 0.669 0.686 0.669
Q3 0.798 0.743 0.736 0.766 0.74
Q1 0.3 0.379 0.372 0.341 0.115
Neighbourhood Preservation M 0.484 0.5 0.5 0.5 0.239
Q3 0.643 0.652 0.655 0.65 0.387
Q1 0.077 0.051 0.067 0.067 0.019
Node Resolution M 0.136 0.101 0.131 0.127 0.036
Q3 0.222 0.183 0.209 0.207 0.065
Q1 0.545 0.455 0.455 0.5 0.468
Node Uniformity M 0.633 0.586 0.6 0.6 0.551
Q3 0.727 0.714 0.714 0.714 0.622

	1 Introduction
	2 Background
	2.1 Graph Drawing Metrics
	2.2 Harvesting Graphs

	3 Revised Graph Drawing Metrics
	3.1 GEG Encodes Graphs
	3.2 Metric Definitions
	3.3 Directed and Disconnected Graphs

	4 Extended Graph Harvester
	4.1 Extraction Logic
	4.2 Evaluation
	4.3 Limitations

	5 Graph Drawings in the GD Proceedings
	5.1 General Analysis
	5.2 Metric Analysis of Drawings

	6 Conclusion
	A Complete Graph Property Distributions
	B Pairwise Metric Correlations
	C Table of Metric Quartiles

