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Abstract
We prove that if a graph can be drawn in the plane such that each edge crosses at most k other
edges, then it can be redrawn so that each edge participates in at most k3 + O(k2) crossings. This
improves the previous exponential bound that follows from a result of Schaefer and Štefankovič and
answers a question of Ackerman and Schaefer.
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1 Introduction

In much of the early literature about Turán’s brick factory problem and other questions
related to graph drawing, the precise problem setting was ambiguous. The basic notions were
thought to be so self-evident, that it was often felt that there was no need for definitions.
This anomaly was pointed out by Pach and G. Tóth [11, 12], who made a distinction between
several different crossing numbers. The two most important among them were the crossing
number, cr(G), and the pairwise crossing number, pair-cr(G), of a graph G. The first one is
the minimum possible number of crossing points between the edges of G, in a drawing of G,
where
1. two edges, including edges that have a common endpoint, are allowed to cross any finite

number of times,
2. no three edges meet at the same point,
3. the edges are drawn as simple non-self-intersecting Jordan curves.
On the other hand, pair-cr(G), is the minimum number of crossing pairs of edges, that is, if
a pair of edges cross multiple times, it still contributes only 1 to this quantity. Obviously,
we have pair-cr(G) ≤ cr(G) for every graph G. It was often assumed with no explanation
whatsoever that these two parameters coincide. It is one of the most annoying open problems
in the area to decide if this is indeed the case.

© Jacob Fox, János Pach, and Andrew Suk;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Graph Drawing and Network Visualization (GD 2025).
Editors: Vida Dujmović and Fabrizio Montecchiani; Article No. 31; pp. 31:1–31:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jacobfox@stanford.edu
https://orcid.org/0000-0002-0664-497X
mailto:pach@cims.nyu.edu
https://orcid.org/0000-0002-2389-2035
mailto:asuk@ucsd.edu
https://orcid.org/0000-0001-5059-9558
https://doi.org/10.4230/LIPIcs.GD.2025.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


31:2 From Local Pair-Crossing Number to Local Crossing Number

▶ Problem 1 ([11, 12]). Is it true that pair-cr(G) = cr(G) for every graph G?

It was proved in [12] that cr(G) ≤
(pair-cr(G)

2
)

holds for every graph G. This result was
subsequently improved several times [6, 7, 18, 20, 21, 22]. The best presently known bound,
cr(G) = O((pair-cr(G))3/2) is due to O. Solé Pi [13].

The separation of the corresponding two parameters can also be observed at a local level.
It was probably Ringel [14, 15], who first studied loc-cr(G), the local crossing number, of a
graph G. It is defined as the minimum number k such that G can be drawn in such a way
that the number of crossings along every edge is at most k. As above, we can also define
loc-pair-cr(G), the local pair-crossing number of G, by counting the maximum number of
different edges that cross a given edge, without multiplicities. In [2], Ackerman and Schaefer
showed that if loc-pair-cr(G) ≤ 2, then loc-pair-cr(G) = loc-cr(G). Slightly modifying the
example depicted on Figure 1 of [9] (see also Exercise (7.1) in [16]), we can construct a
graph G with 4 = loc-pair-cr(G) < loc-cr(G) = 5, showing that these two parameters are
not always equal.

Graphs with local crossing number at most k are often called k-planar. For getting
the best constant in the crossing lemma of Ajtai, Chvátal, Newborn, Szemerédi [3] and
Leighton [8], it was useful to estimate the maximum number of edges that a k-planar graph
with n vertices can have, for k ≤ 4; see [1, 10, 9]. The crossing lemma, in turn, has many
applications in discrete geometry, in additive combinatorics and elsewhere [19, 4].

A drawing of a graph is called simple (or a simple topological graph) if any two edges
cross at most once. Hoffmann, Liu, Reddy, and C. D. Tóth [5] proved that there exists a
function f(k) ≤ (3 + o(1))k such that, if loc-cr(G) ≤ k, then G also has a simple drawing in
which every edge has at most f(k) crossings.

In their seminal paper [17], Schaefer and Štefankovič proved the following (see also
Lemma 9.2 in [16]). Suppose that the local pair-crossing number of G satisfies loc-pair-cr(G) ≤
k. Then one can redraw G in such a way that the total number of crossings along any edge
is at most 2k. This implies that we have loc-cr(G) ≤ 2k; see Remark 1 in the last section. In
[2], Ackerman and Schaefer asked whether or not this bound can be improved. The aim of
this note is to replace this by a polynomial upper bound.

Let G = (V, E) be a graph drawn in the plane. For each vertex v ∈ V , consider the cyclic
order of the edges around v. The system of these cyclic permutations is called the rotation
system of the drawing.

▶ Theorem 2. Let G be a graph that can be drawn in the plane such that every edge crosses
at most k other edges, that is, loc-pair-cr(G) ≤ k. Then we have

loc-cr(G) ≤ k(k + 1)(k + 2).

That is, G can be redrawn in such a way that along every edge, the number of crossings is at
most k(k + 1)(k + 2). We can also ensure that the rotation systems of the initial and final
drawings are the same.

Combining this result with the theorem of Hoffmann et al. [5] mentioned above, we obtain
the following.

▶ Corollary 3. Suppose that the local pair-crossing number of a graph G is at most k. Then
G has a simple drawing such that along every edge there are at most 3k3+O(k2) crossings.
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2 Proof of Theorem 2

We use standard terminology; see, e.g., [16]. Let G = (V, E) be a graph, which may have
loops and multiple edges. A drawing of G, denoted by D(G), is a representation of G in
which the vertices are distinct points in the plane, and the edges are Jordan arcs connecting
the corresponding pairs of points. Whenever there is no danger of confusion, in notation
and terminology, we make no distinction between the vertices and the points representing
them, and the edges and the corresponding Jordan arcs. No edge is allowed to pass through
a vertex, no three edges pass through the same point, and any two edges have only finitely
many points in common. We may assume that no two edges “touch,” that is, if they have an
interior point in common, then they must properly cross at this point. Otherwise we can
locally pull apart the two edges near their touching point to get rid of the touching. We may
also assume that there is no edge that crosses itself, otherwise we can shorten it by deleting
the resulting loops.

Proof of Theorem 2. Let G be a graph on n vertices and m edges, e1, . . . , em ∈ E(G), and
let D(G) be a drawing of G in the plane such that each edge in G crosses at most k other
edges. Let R be the rotation system of the drawing D(G). If G is not connected, we can
pull apart the drawing D(G) so that the connected components do not interact with one
another. So, we may assume without loss of generality that G is a connected graph, and
let T be a spanning tree of G. Furthermore, let us assume that T = {e1, . . . , en−1}, and for
each i ∈ [n − 1], the edges e1, . . . , ei form an edge-induced connected subgraph of G. We will
need the following lemma.

▶ Lemma 4. Let T ⊂ G and D(G) be as described above. Then for each ei ∈ T , there is a
subcurve αi ⊂ ei in the plane such that
1. no two subcurves αi, αj cross each other properly (but one may have an endpoint on the

other),
2. every vertex in G is an endpoint of some curve αi, and
3. the union T =

⋃n−1
i=1 αi is a simply connected set in the plane.

Proof. For each i ∈ [n − 1], we will greedily construct the subcurves α1, . . . , αi with the
properties described above, such that for Ti =

⋃i
j=1 αj , Ti is simply connected and contains

all of the endpoints of the edges e1, . . . , ei.
We start with α1 = e1. Having defined α1, . . . , αi−1 with the desired properties, we

obtain αi as follows. Consider edge ei ∈ T . Since the edges e1, . . . , ei−1 form an edge-
induced connected subgraph of G, and the drawing Ti−1 =

⋃i−1
j=1 αj contains the endpoints of

e1, . . . , ei−1, exactly one of the endpoints of ei lies in Ti−1. Let u be the endpoint of ei that
does lie in Ti−1 and v be the other endpoint that does not lie in Ti−1. Then we define αi by
starting at vertex v and tracing along the curve ei until we reach a point on Ti−1, which is
either a crossing point or a vertex. Clearly, Ti = Ti−1 ∪ αi is simply connected and contains
the endpoints of the edges e1, . . . , ei. ◀

Let αi ⊂ ei, 1 ≤ i ≤ n − 1, be the subcurves from Lemma 4, and let T =
⋃n−1

i=1 αi. We
then define γ to be a simple closed curve drawn very close to T , such that T lies inside of γ,
that is, T lies in the closed connected component of R2 \ γ. Moreover, γ will not contain
any crossing points in our drawing D(G), and apart from the crossing points on T , all other
crossing points will lie outside of γ. For each subcurve αi ∈ T , let βi be a simple closed
curve drawn very close to αi, such that βi lies inside of γ, the endpoints of αi lie on βi, and
all crossing points along αi lie inside of βi. Moreover, for j ̸= i, the crossing points along the
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Figure 1 For edge ei = uv, αi drawn in red, and βi drawn dashed, we redraw edges ej1 and ej2

inside of βi.

curve αj lie outside of βi. Hence, either βi and βj are disjoint, or they are tangent if αi and
αj have a common endpoint, or βi and βj have two points in common if an endpoint of αi

lies in the interior of αj (or vice versa).
By construction, for each subcurve αi, there are t ≤ k edges ej1 , . . . , ejt

∈ E(G) that
cross αi. Inside of βi, we can redraw each edge ej1 , . . . , ejt

so that it intersects the curve αi

at most once as follows. By starting at one of the endpoints of ejr
, we trace along ejr

until
it intersects βi for the first time, which is right before it would intersect αi. We denote this
subcurve as fjr

(the first part of ejr
). Likewise, by starting at the other endpoint of ejr

, we
again trace along ejr until it intersects βi for the first time, and denote this subcurve as ℓjr

(the last part of ejr
). We then delete the part of ejr

between fjr
and ℓjr

(the middle part of
ejr

), and then connect fjr
and ℓjr

by drawing a curve inside of βi from the endpoint of fjr

on βi to the endpoint of ℓjr
on βi. Clearly, this can be done so that this new drawing of ejr

crosses αi at most once. We can perform this redrawing procedure to each ej1 , . . . , ejt
such

that afterwards, each pair of edges ejr , ejw ∈ {ej1 , . . . , ejt} will have at most one crossing
point between them inside of βi, and each such edge ejr

crosses αi at most once. See Figure 1.
After applying this redrawing procedure for each αi, let D′(G) denote the new drawing of
G in the plane. Hence, no additional crossings were created outside of γ in D′(G), and the
rotation system R in the new drawing has not changed.

Given D′(G), we now redraw the edges of G outside of γ as follows. First notice that for
each edge ei ∈ E(G), ei will cross γ at most 2k + 2 times in D′(G). Indeed, starting at one
of the endpoints of ei, we move along ei and first cross γ without crossing T . Continuing
along ei, since ei will cross at most k subcurves αi, we have another possible 2k crossing
points on γ. Finally, as we approach the other endpoint of ei, we cross γ one last time for a
total of at most 2k + 2 crossing points along γ. Hence, outside of γ, each edge ei will give
rise to at most k + 1 pairwise disjoint outer arcs, with end points on γ. See Figure 2. Hence,
all of the edges in G will give rise to at most (k + 1)|E(G)| outer arcs outside of γ. Given
the circular structure of the endpoints of these outer arcs by γ, we can redraw all of the
outer arcs outside of γ such that any two outer arcs cross at most once, and the endpoints of
each outer arc remain the same. Moreover, if edges ei and ej did not cross outside of γ, then
they still do not cross outside of γ in the new drawing. After we redraw the outer arcs as
described above, let D′′(G) be the new and final drawing of G in the plane, and notice that
the rotation system of D′′(G) is the same as the rotation system of D(G). Also notice that
since each edge consists of at most k + 1 outer arcs, two edges ei and ej will create at most
(k + 1)2 crossing points outside of γ in D′′(G).

Finally, we show that each edge ei in the final drawing D′′(G) has at most k(k + 1)(k + 2)
crossing points. By the above, the number of crossing points on ei outside of γ is at most
k(k + 1)2, since ei crosses at most k other edges, and any two will create at most (k + 1)2

crossing points outside of γ. In order to bound the number of crossing points on ei inside of
γ, let us consider the following two cases.



J. Fox, J. Pach, and A. Suk 31:5

u

v

Figure 2 Example of an edge e with endpoints u and v, consisting of 5 outer arcs in bold.

Case 1. Suppose that ei ̸∈ T . Recall that there are at most k subcurves αj that cross ei,
and for each subcurve αj , there are at most k − 1 other edges that cross αj . Hence, ei will
have at most k crossing points inside of βj , giving us a total of at most k2 crossing points on
ei inside of γ.

Case 2. Suppose ei ∈ T . Again, there are at most k subcurves αj that cross ei, and for
each subcurve αj with j ̸= i, there are at most k − 1 other edges that cross αj . Moreover, ei

could have an additional k crossing points along αi inside of βi. Hence, ei will have at most
k2 + k crossing points inside of γ.

Putting everything together, each edge in D′′(G) has at most k(k + 1)2 + k2 + k =
k(k + 1)(k + 2) crossings. ◀

3 Concluding remarks

1. Suppose G has local pair-crossing number at most k. If there is an edge with more than
2k crossings on it, then by applying Lemma 9.2 in [17], we can simplify the drawing without
creating any new pair of crossing edges (that is, the local pair-crossing number remains at
most k), and without increasing the number of crossings along any edge. Repeating this step
for each edge of G, we end up with a drawing of G having local crossing number at most 2k.

2. In the forthcoming journal version of this note, we show that it is possible to improve
the bound in Theorem 2 to loc-cr(G) ≤ loc-pair-cr(G)2.5+o(1) by a more involved argument.

3. Using the redrawing technique used in the proof of Theorem 2, one can show that for
any multigraph G, cr(G) = O(pair-cr(G)5/3). Although this is weaker than the result stated
in the introduction due to Solé Pi, we plan to include the proof in the forthcoming journal
version for the interested reader.
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