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—— Abstract

We prove that if a graph can be drawn in the plane such that each edge crosses at most k other
edges, then it can be redrawn so that each edge participates in at most k* + O(k?) crossings. This
improves the previous exponential bound that follows from a result of Schaefer and Stefankovié¢ and
answers a question of Ackerman and Schaefer.

2012 ACM Subject Classification Mathematics of computing — Combinatorics
Keywords and phrases Crossing numbers, pair crossing numbers
Digital Object Identifier 10.4230/LIPIcs.GD.2025.31

Funding This manuscript was completed while the authors were in residence at SLMath Berkeley,
during the Spring semester of 2025, supported by NSF Grant DMS-1928930.

Jacob Fox: supported by NSF awards DMS-2452737 and DMS-2154129.

Janos Pach: Rényi Institute, Budapest. Supported by NKFIH grant K-176529, Austrian Science
Fund Z 342-N31 and ERC Advanced Grant “GeoScape.”

Andrew Suk: Supported by NSF grants DMS-1952786 and DMS-2246847.

Acknowledgements The authors want to express their gratitude to Géza To6th for directing their

attention to the problem discussed in this note, and for his many valuable remarks and suggestions.

1 Introduction

In much of the early literature about Turan’s brick factory problem and other questions
related to graph drawing, the precise problem setting was ambiguous. The basic notions were
thought to be so self-evident, that it was often felt that there was no need for definitions.
This anomaly was pointed out by Pach and G. Téth [11, 12], who made a distinction between
several different crossing numbers. The two most important among them were the crossing
number, cr(G), and the pairwise crossing number, pair-cr(G), of a graph G. The first one is
the minimum possible number of crossing points between the edges of G, in a drawing of G,
where
1. two edges, including edges that have a common endpoint, are allowed to cross any finite

number of times,
2. no three edges meet at the same point,
3. the edges are drawn as simple non-self-intersecting Jordan curves.
On the other hand, pair-cr(G), is the minimum number of crossing pairs of edges, that is, if
a pair of edges cross multiple times, it still contributes only 1 to this quantity. Obviously,
we have pair-cr(G) < cr(G) for every graph G. It was often assumed with no explanation
whatsoever that these two parameters coincide. It is one of the most annoying open problems
in the area to decide if this is indeed the case.
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» Problem 1 ([11, 12]). Is it true that pair-cr(G) = cr(G) for every graph G?

It was proved in [12] that cr(G) < (pair—ch(G)) holds for every graph G. This result was
subsequently improved several times [6, 7, 18, 20, 21, 22]. The best presently known bound,
cr(G) = O((pair-cr(G))3/?) is due to O. Solé Pi [13].

The separation of the corresponding two parameters can also be observed at a local level.
It was probably Ringel [14, 15], who first studied loc-cr(G), the local crossing number, of a
graph G. It is defined as the minimum number k such that G can be drawn in such a way
that the number of crossings along every edge is at most k. As above, we can also define
loc-pair-cr(G), the local pair-crossing number of G, by counting the maximum number of
different edges that cross a given edge, without multiplicities. In [2], Ackerman and Schaefer
showed that if loc-pair-cr(G) < 2, then loc-pair-cr(G) = loc-cr(G). Slightly modifying the
example depicted on Figure 1 of [9] (see also Exercise (7.1) in [16]), we can construct a
graph G with 4 = loc-pair-cr(G) < loc-cr(G) = 5, showing that these two parameters are
not always equal.

Graphs with local crossing number at most k are often called k-planar. For getting
the best constant in the crossing lemma of Ajtai, Chvatal, Newborn, Szemerédi [3] and
Leighton [8], it was useful to estimate the maximum number of edges that a k-planar graph
with n vertices can have, for k < 4; see [1, 10, 9]. The crossing lemma, in turn, has many
applications in discrete geometry, in additive combinatorics and elsewhere [19, 4].

A drawing of a graph is called simple (or a simple topological graph) if any two edges
cross at most once. Hoffmann, Liu, Reddy, and C. D. Téth [5] proved that there exists a
function f(k) < (3 + o(1))* such that, if loc-cr(G) < k, then G also has a simple drawing in
which every edge has at most f(k) crossings.

In their seminal paper [17], Schaefer and Stefankovi¢ proved the following (see also
Lemma 9.2 in [16]). Suppose that the local pair-crossing number of G satisfies loc-pair-cr(G) <
k. Then one can redraw G in such a way that the total number of crossings along any edge
is at most 2*. This implies that we have loc-cr(G) < 2¥; see Remark 1 in the last section. In
[2], Ackerman and Schaefer asked whether or not this bound can be improved. The aim of
this note is to replace this by a polynomial upper bound.

Let G = (V, E) be a graph drawn in the plane. For each vertex v € V, consider the cyclic
order of the edges around v. The system of these cyclic permutations is called the rotation
system of the drawing.

» Theorem 2. Let G be a graph that can be drawn in the plane such that every edge crosses
at most k other edges, that is, loc-pair-cr(G) < k. Then we have

loc-cr(G) < k(k+1)(k + 2).

That is, G can be redrawn in such a way that along every edge, the number of crossings is at
most k(k + 1)(k + 2). We can also ensure that the rotation systems of the initial and final
drawings are the same.

Combining this result with the theorem of Hoffmann et al. [5] mentioned above, we obtain
the following.

» Corollary 3. Suppose that the local pair-crossing number of a graph G is at most k. Then
G has a simple drawing such that along every edge there are at most 3E°+O(k?) CTOSSINGS.
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2 Proof of Theorem 2

We use standard terminology; see, e.g., [16]. Let G = (V, E) be a graph, which may have
loops and multiple edges. A drawing of G, denoted by D(G), is a representation of G in
which the vertices are distinct points in the plane, and the edges are Jordan arcs connecting
the corresponding pairs of points. Whenever there is no danger of confusion, in notation
and terminology, we make no distinction between the vertices and the points representing
them, and the edges and the corresponding Jordan arcs. No edge is allowed to pass through
a vertex, no three edges pass through the same point, and any two edges have only finitely
many points in common. We may assume that no two edges “touch,” that is, if they have an
interior point in common, then they must properly cross at this point. Otherwise we can
locally pull apart the two edges near their touching point to get rid of the touching. We may
also assume that there is no edge that crosses itself, otherwise we can shorten it by deleting
the resulting loops.

Proof of Theorem 2. Let G be a graph on n vertices and m edges, ey, ..., e, € E(G), and
let D(G) be a drawing of G in the plane such that each edge in G crosses at most k other
edges. Let R be the rotation system of the drawing D(G). If G is not connected, we can
pull apart the drawing D(G) so that the connected components do not interact with one
another. So, we may assume without loss of generality that G is a connected graph, and
let T be a spanning tree of G. Furthermore, let us assume that 7' = {ey,...,e,—1}, and for
each i € [n — 1], the edges ey, ..., e; form an edge-induced connected subgraph of G. We will
need the following lemma.

» Lemma 4. Let T C G and D(G) be as described above. Then for each e; € T, there is a

subcurve a; C e; in the plane such that

1. no two subcurves a;, a; cross each other properly (but one may have an endpoint on the
other),

2. every vertex in G is an endpoint of some curve a;, and

3. the union T = U?;ll «; is a simply connected set in the plane.

Proof. For each i € [n — 1], we will greedily construct the subcurves a;,...,a; with the
properties described above, such that for 7; = U§:1 o, T; is simply connected and contains
all of the endpoints of the edges eq,...,e¢;.

We start with a; = e;. Having defined aq,...,a;—1 with the desired properties, we
obtain «; as follows. Consider edge e; € T. Since the edges eq,...,e;_1 form an edge-
induced connected subgraph of G, and the drawing 7;_1 = U;;ll a;j contains the endpoints of
e1,...,e;_1, exactly one of the endpoints of e; lies in 7;_1. Let u be the endpoint of e; that
does lie in 7;_1 and v be the other endpoint that does not lie in 7;_1. Then we define a; by
starting at vertex v and tracing along the curve e; until we reach a point on 7;_1, which is
either a crossing point or a vertex. Clearly, 7; = T;_1 U «; is simply connected and contains
the endpoints of the edges eq,...,e;. |

Let a; C e;, 1 <1 <n—1, be the subcurves from Lemma 4, and let T = U?:_ll a;. We
then define v to be a simple closed curve drawn very close to T, such that 7 lies inside of ~,
that is, 7 lies in the closed connected component of R? \ . Moreover, v will not contain
any crossing points in our drawing D(G), and apart from the crossing points on T, all other
crossing points will lie outside of v. For each subcurve a; € T, let 5; be a simple closed
curve drawn very close to «;, such that 3; lies inside of v, the endpoints of a; lie on 3;, and
all crossing points along «; lie inside of ;. Moreover, for j # ¢, the crossing points along the
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€j,

(a) Before redrawing. (b) After redrawing.

Figure 1 For edge e; = uv, a; drawn in red, and 3; drawn dashed, we redraw edges e;; and e;j,
inside of ;.

curve oy lie outside of 3;. Hence, either 3; and j; are disjoint, or they are tangent if a; and
o have a common endpoint, or 3; and 8; have two points in common if an endpoint of o;
lies in the interior of a; (or vice versa).

By construction, for each subcurve «;, there are t < k edges e;,,...,e;, € E(G) that
cross ;. Inside of 3;, we can redraw each edge e;,,...,e;, so that it intersects the curve oy
at most once as follows. By starting at one of the endpoints of e;, , we trace along e;_ until
it intersects f; for the first time, which is right before it would intersect «;. We denote this
subcurve as f;, (the first part of e;.). Likewise, by starting at the other endpoint of e;,, we
again trace along e;, until it intersects 5; for the first time, and denote this subcurve as ¢;,
(the last part of e;.). We then delete the part of e;, between f; and ¢;, (the middle part of
ej.), and then connect f; and ¢; by drawing a curve inside of §; from the endpoint of f;,
on f; to the endpoint of ¢; on f;. Clearly, this can be done so that this new drawing of e;,
crosses «; at most once. We can perform this redrawing procedure to each e;,, ..., ej,
that afterwards, each pair of edges e;,, e;, € {ej,,...,ej,} will have at most one crossing
point between them inside of §8;, and each such edge e;, crosses o; at most once. See Figure 1.
After applying this redrawing procedure for each «;, let D'(G) denote the new drawing of
G in the plane. Hence, no additional crossings were created outside of v in D'(G), and the
rotation system R in the new drawing has not changed.

Given D'(G), we now redraw the edges of G outside of 7 as follows. First notice that for
each edge e; € E(G), e; will cross v at most 2k + 2 times in D’(G). Indeed, starting at one
of the endpoints of e;, we move along e; and first cross v without crossing 7. Continuing
along e;, since e; will cross at most k subcurves «;, we have another possible 2k crossing
points on ~. Finally, as we approach the other endpoint of e;, we cross v one last time for a
total of at most 2k + 2 crossing points along . Hence, outside of v, each edge e; will give
rise to at most k 4 1 pairwise disjoint outer arcs, with end points on ~y. See Figure 2. Hence,
all of the edges in G will give rise to at most (k + 1)|E(G)| outer arcs outside of v. Given
the circular structure of the endpoints of these outer arcs by -y, we can redraw all of the
outer arcs outside of v such that any two outer arcs cross at most once, and the endpoints of
each outer arc remain the same. Moreover, if edges e; and e; did not cross outside of vy, then
they still do not cross outside of v in the new drawing. After we redraw the outer arcs as
described above, let D”(G) be the new and final drawing of G in the plane, and notice that
the rotation system of D”(G) is the same as the rotation system of D(G). Also notice that

such

since each edge consists of at most k + 1 outer arcs, two edges e; and e; will create at most
(k + 1)? crossing points outside of v in D”(G).

Finally, we show that each edge e; in the final drawing D”(G) has at most k(k+ 1)(k + 2)
crossing points. By the above, the number of crossing points on e; outside of v is at most
k(k + 1)2, since e; crosses at most k other edges, and any two will create at most (k + 1)
crossing points outside of . In order to bound the number of crossing points on e; inside of
v, let us consider the following two cases.
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Figure 2 Example of an edge e with endpoints u and v, consisting of 5 outer arcs in bold.

Case 1. Suppose that e; ¢ T'. Recall that there are at most k subcurves «; that cross e;,
and for each subcurve o, there are at most k — 1 other edges that cross «;. Hence, e; will
have at most k crossing points inside of §;, giving us a total of at most k2 crossing points on
e; inside of ~.

Case 2. Suppose ¢; € T. Again, there are at most k subcurves o that cross e;, and for
each subcurve o with j # ¢, there are at most £ — 1 other edges that cross a;. Moreover, e;
could have an additional k crossing points along «; inside of ;. Hence, e; will have at most
k2 + k crossing points inside of ~.

Putting everything together, each edge in D”(G) has at most k(k + 1)? + k? + k =
k(k +1)(k 4+ 2) crossings. <

3 Concluding remarks

1. Suppose G has local pair-crossing number at most k. If there is an edge with more than
2F crossings on it, then by applying Lemma 9.2 in [17], we can simplify the drawing without
creating any new pair of crossing edges (that is, the local pair-crossing number remains at
most k), and without increasing the number of crossings along any edge. Repeating this step
for each edge of G, we end up with a drawing of G having local crossing number at most 2*.

2. In the forthcoming journal version of this note, we show that it is possible to improve
the bound in Theorem 2 to loc-cr(G) < loc-pair-cr(G)?5+t°(M) by a more involved argument.

3. Using the redrawing technique used in the proof of Theorem 2, one can show that for
any multigraph G, cr(G) = O(pair-cr(G)*/3). Although this is weaker than the result stated
in the introduction due to Solé Pi, we plan to include the proof in the forthcoming journal
version for the interested reader.
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