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Abstract
We address the problem of computing a dynamic visualization of a geometric graph G as a sequence
of frames. Each frame shows only a portion of the graph but their union covers G entirely. The
two main requirements of our dynamic visualization are: (i) guaranteeing drawing stability, so to
preserve the user’s mental map; (ii) keeping the visual complexity of each frame low. To satisfy the
first requirement, we never change the position of the vertices. Regarding the second requirement,
we avoid edge crossings in each frame. More precisely, in the first frame we visualize a suitable
subset of non-crossing edges; in each subsequent frame, exactly one new edge enters the visualization
and all the edges that cross with it are deleted. We call such a sequence of frames a planar story
of G. Our goal is to find a planar story whose minimum number of edges contemporarily displayed is
maximized (i.e., a planar story that maximizes the minimum frame size). Besides studying our model
from a theoretical point of view, we also design and experimentally compare different algorithms,
both exact techniques and heuristics. These algorithms provide an array of alternative trade-offs
between efficiency and effectiveness, also depending on the structure of the input graph.
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1 Introduction

Conveying the structure of a graph in a single visualization is the goal of many graph drawing
algorithms. Among these, force-directed algorithms are the most popular and widely used in
practice [28]. They produce layouts in which vertices are represented as points in the plane
and edges as straight-line segments. However, when a graph is complex or locally dense, the
layout may feature numerous edge crossings, which significantly reduce its readability, as
also witnessed by several human cognitive experiments in graph drawing [34, 35, 36, 37].
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This scenario naturally motivates strategies that either attempt to simplify the (single)
graph visualization, for instance through graph sampling [16, 24, 32, 38, 41, 42] or edge
bundling [2, 23, 31], or that attempt to “distribute” the nodes and edges of the graph across
multiple visualizations, i.e., a sequence of frames, each showing only a portion of the graph
(see, e.g., [7, 9, 13, 15]). While the first type of strategy focuses on a static visualization that
may cause ambiguity or loss of information, computing a sequence of visualization frames
allows for a dynamic exploration of the entire graph, without altering its structure. However,
it should guarantee drawing stability (i.e., the layout of the portion of the graph shared by
two consecutive frames should remain unchanged) and each frame should have low visual
complexity, for example by guaranteeing planarity or few edges crossings.

Contribution. In this paper we address the second type of strategy mentioned above. We
introduce a new model for the dynamic visualization of a static graph as a sequence of frames.
This model assumes that the input is a geometric graph G (i.e., a graph drawn in the plane
with straight-line edges, for example by some force-directed algorithm) and aims to generate
a sequence of visualization frames such that: (i) the vertices of G are all present in any
frame, always at their initial input coordinates; (ii) the initial frame contains a subset of
edges that yields a planar subgraph; (iii) in each subsequent frame, exactly one new edge e

enters the visualization and the minimum subset of edges of the current frame that together
with e violate planarity disappear; (iv) when an edge leaves the visualization, it no longer
appears in the future; (v) the union of all frames contains the whole edge set of G. We call
such a sequence of frames a planar story of G (see Section 3 for a formal definition).

A natural objective function when computing a planar story is that the amount of edges
in any frame is not too small. More precisely, we are interested in planar stories whose
minimum number of edges contemporarily displayed (across the entire sequence of frames) is
maximized. We call such a story min-frame optimal. Besides studying our model from a
theoretical point of view, we design and experimentally compare different algorithms (both
exact techniques and heuristics). Our main results are as follows:

We show in Section 5 that a min-frame optimal planar story of a geometric graph G

can be efficiently computed when G is 2-plane (i.e., each edge is crossed at most twice),
although the problem is NP-hard in the general case (Section 4).
We describe several heuristics based on a common greedy framework; all of them work
for general graphs (Section 5). They differ in the strategy for computing the initial and
the last frames, and in the criteria used to select the edge that enters the visualization in
each subsequent frame. We also describe an Integer Linear Program (ILP) that solves
the problem optimally (Section 6).
We discuss the results of an extensive experimental analysis that compares our heuristics
and the exact algorithm. The results highlight algorithmic trade-offs between efficiency
and effectiveness, and show how some of our heuristics are able to achieve the optimum
in many cases in a short runtime. See Section 7.

The paper concludes by discussing some future research directions (Section 8). Due to
space limitations some proofs and technical details can be found in [5].

2 Related Work

The research in this paper is inspired by a recent topic in graph drawing named graph stories.
A graph story corresponds to a temporal sequence of frames, each displaying only part of
the graph and whose union covers all nodes and edges of the graph. The term “graph story”
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was introduced by Borrazzo, Da Lozzo, Di Battista, Frati, and Patrignani [9]. Different from
our scenario, in their model no drawing of the graph is provided in advance. The vertices
enter the visualization one at a time and persist in the visualization for a fixed amount of
time (i.e., for a given subsequence of frames). When a vertex enters the visualization its
coordinates have to be computed. In any frame, the user sees only the graph induced by
the displayed vertices; the drawing in each frame must be straight-line and planar, and the
layout of the graph portion shared by two consecutive frames cannot change. The authors
in [9] provide bounds on the area requirement of graph stories for paths and trees, and
exhibit planar graphs that do not admit a graph story within their rules. The model in [9]
has been further studied in [13, 12], by allowing edges to be Jordan curves rather than
straight-line segments. Also, several authors proposed a different setting in which each vertex
persists in the visualization until all its neighbors have been displayed [6, 7, 17]. In all the
aforementioned papers, the main focus is on exploring the time complexity and theoretical
questions, often restricting to very specific graph families. Conversely, our model works for
general graphs and, besides providing a solid theoretical basis, our goal is to derive practical
implementations with different trade-offs between effectiveness and efficiency.

Another problem related to our research has been studied in [14, 15]. Similarly to our
setting, it assumes that the input is a straight-line drawing of a graph; the objective is
to partition the edge set into the minimum number of frames, such that the drawing in
each frame has some desired property (e.g., planarity). However, unlike our model, the
visualization frames do not form a temporal sequence and each edge appears in just one frame.

Finally, we remark that representing a graph across a sequence of frames (using small
multiples or animation approaches) is strongly related to the problem of visually conveying
dynamic graphs (see [4] for a survey on this topic). However, a dynamic graph evolves
over time, and the ordered sequence of elements that appear or disappear during the graph
evolution is part of the input for the drawing algorithm. In our setting, the graph is static
and the algorithm can decide the temporal sequence of edges for dynamically visualizing it.

3 Basic Definitions and Preliminary Considerations

Given a graph G, we denote by V (G) and E(G) the set of vertices and the set of edges of G,
respectively. For a set V ′ ⊆ V (G), let N(V ′) be the set of neighbors of vertices in V ′ and
let G − V ′ be the subgraph of G induced by V (G) \ V ′. Let G be a geometric graph, that is,
each vertex v ∈ V (G) is a point in the plane and each edge e = uv ∈ E(G) is the straight-line
segment connecting u and v. A planar frame F of G is any subgraph of G consisting of all
the vertices of G and a subset of edges of G that do not cross. A planar story of G is a
sequence σ = ⟨F1, F2, . . . , Fτ ⟩ such that:
1. Each Fi is a planar frame of G, with i ∈ {1, . . . , τ}.
2. Each edge e ∈ E(G) appears in a non-empty subsequence of consecutive planar frames.
3. For each i ∈ {2, . . . , τ}, Fi contains exactly one edge e of G that is not in the union of all

frames Fj , with j < i, and exactly those edges of Fi−1 that do not cross e.

Let Σ(G) be the set of all planar stories of G. For a planar story σ = ⟨F1, F2, . . . , Fτ ⟩ ∈
Σ(G), we call F1 and Fτ the initial frame and the last frame of σ, respectively, let mi be the size
of Fi, that is, the number of edges in Fi. Let µ(σ) = min{m1, . . . , mτ }, and let µ(G) be the
maximum µ(σ) over all planar stories σ of G, i.e., µ(G) = max{µ(σ) | σ ∈ Σ(G)}. If µ(σ) =
µ(G) then σ is said to be min-frame optimal. We call MaxMinFramePlanarStory(G)
the problem of computing a min-frame optimal planar story of G.

GD 2025
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G F1 F2 F3

F4 F5 F6

Figure 1 A planar story consisting of 6 frames. The top-leftmost figure shows the input geometric
graph G; red edges and blue edges are those in the first frame and in the last frame, respectively.
The black edges are the remaining edges.

▶ Remark 1. Since all the crossing-free edges of G appear in every frame of any planar story
of G, we can safely disregard them when solving MaxMinFramePlanarStory(G). Hence,
without loss of generality, we will assume that G does not contain crossing-free edges.

Fig. 1 shows a geometric graph G and a planar story σ of G, consisting of six frames and
where µ(σ) = 3. In the figure, the red edges are those of the initial frame, the blue edges are
those of the final frame, and the black edges are the remaining edges.

▶ Proposition 2. In any planar story σ = ⟨F1, . . . , Fτ ⟩, F1 and Fτ are edge disjoint.

Proof. Let e be an edge in F1. By Remark 1, e is crossed by some edge e′ of the graph. Let
Fi be the first frame of σ that contains e′, with i ≥ 2. By definition of planar story, e does
not occur in any frame Fj with j ≥ i. In particular, e is not contained in Fτ . ◀

Given a planar frame F of G, let µF (G) be the maximum µ(σ) over all planar stories σ

of G with initial frame F . Proposition 2 implies the following.

▶ Corollary 3. Let F be a planar frame of G, and let F ′ be a maximum planar subgraph of
G − E(F ). Then µF (G) ≤ min{|E(F )|, |E(F ′)|}. Therefore, µ(G) ≤ |E(G)|/2.

Planar Graph Stories and Crossing Graph. The crossing graph X of a geometric graph G is
defined as follows: (i) the vertex set V (X) corresponds to the edge set E(G); (ii) there is an
edge uv ∈ E(X) if and only if the edges corresponding to u and v in E(G) cross each other.
The crossing-free edges of G correspond to isolated vertices of X; by Remark 1, we assume
that X has no isolated vertices. Note that a graph is the crossing graph of a geometric graph
if and only if it is a segment intersection graph [29]. This includes cliques, but also planar
graphs [10, 19]. The crossing graph of a geometric graph with m edges and χ crossings can be
computed in O(m log m + χ) time with the algorithm of Balaban [3] for segment intersection.

If σ = ⟨F1, . . . , Fτ ⟩ is a planar story of G, each frame Fi (i ∈ {1, . . . , τ}) corresponds to
an independent set X[Fi] of X, i.e., no two vertices of X[Fi] are adjacent. We denote by
σX = ⟨X[F1], . . . , X[Fτ ]⟩ the sequence that describes the planar story σ from the point of
view of X. See Fig. 2 for an example. We will also refer to σX as a planar story and to the
independent sets X[Fi] as (planar) frames. If not stated otherwise, we use red for the initial
frame and blue for the final frame in our figures. A maximum pair of independent sets is a pair
(I1, I2) of two disjoint independent sets such that min{|I1|, |I2|} is maximum. A maximum
pair (I1, I2) of independent sets is Pareto optimal if also max{|I1|, |I2|} is maximum. As a
further corollary of Proposition 2, we obtain the following.
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X X[F1] X[F2] X[F3]

X[F4] X[F5] X[F6]

Figure 2 The crossing graph X of the graph G in Fig. 1 (top-left) and the planar story in Fig. 1
from the point of view of the crossing graph X of G.
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(c) µF (G) ≤ |I ′| = ℓ + 2
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(d) µF (G) ≤ |I| = ℓ + 2
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(e) µF (G) ≤ |I ′| = ℓ + 1
ℓ

ℓ

ℓ

(f) µF (G) ≤ |I ′| = 2

Figure 3 The crossing graph X of some graph G. The set I ⊆ V (X) of red vertices corresponds
to the initial frame F . Blue vertices are a maximum independent set I ′ within X − I. (c)-(f) If we
choose I as a maximal independent set, then there is a frame with at most min{|I|, |I ′|} ≤ ℓ + 2
edges. However, there is a planar story (b) with at least 3

2 ℓ + 1 edges in any frame. Numbers close
to the vertices indicate the order in which we add the respective edges into the planar story.

▶ Corollary 4. Let G be a geometric graph, X be the crossing graph of G, and (I1, I2) be a
maximum pair of independent sets of X. Then µ(G) ≤ min{|I1|, |I2|}.

We observe that, in order to get a min-frame optimal story of a geometric graph G,
it might be necessary to choose as the initial frame a planar subgraph of G that is not
a maximal planar subgraph. In terms of the crossing graph, this means that it might be
necessary to start with an independent set that is not maximal. See Fig. 3 for an example
where the crossing graph is a caterpillar.

4 Problem Complexity

In Section 5 we show how to solve MaxMinFramePlanarStory(G) optimally in linear
time when G is a 2-plane graph and in cubic time if G is a 3-plane graph whose crossing
graph has no cycles. We recall that a geometric graph is k-plane if each edge is crossed at
most k times. However, MaxMinFramePlanarStory(G) is NP-hard in general. To this
end, consider its decision version MaxMinFramePlanarStoryD(G,m): Given a graph G

and a target value m, does G admit a planar story σ = {F1, F2, . . . , Fτ } such that µ(σ) ≥ m?

GD 2025
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H : S :

Figure 4 If the size of a maximum independent set of H is k then the size of the maximum frame
containing the center of S – indicated by red vertices – is at most k + 1.

▶ Theorem 5. Problem MaxMinFramePlanarStoryD(G, m) is NP-complete.

Proof. It is easy to see that MaxMinFramePlanarStoryD(G,m) is in NP. To prove the
hardness, we apply a reduction from PlanarMaximumIndependentSetD(H,k), i.e., the
problem of deciding whether a planar graph H admits an independent set of size at least k;
this problem is known to be NP-hard [30, Theorem 4.1]. To this end, let X be the disjoint
union of H and a star S with k + 1 leaves (see Fig. 4). Since X is planar, it is a segment
intersection graph [10], i.e., a crossing graph of some geometric graph G. We show that
µ(G) ≥ k + 1 =: m if and only if H contains an independent set of size at least k.

Assume first that H contains an independent set I of size at least k. Consider the
following planar story. The initial frame contains the edges corresponding to I and the center
of the star S. The size of the initial frame is k + 1. For the subsequent frames, we add the
edges corresponding to the leaves of S, in any arbitrary order. This increases the size of the
frame up to 2k + 1. Finally, we add in arbitrary order all edges corresponding to vertices of
H that were not in I. During this process, the edges corresponding to the leaves of S will
never be removed. Thus, the size of each frame is at least k + 1.

Assume now that there is a planar story σ of G with µ(σ) ≥ k + 1. We show that H

contains an independent set of size at least k. Let F be the frame of σ that contains the edge
corresponding to the center of S. In this frame, there is no edge corresponding to a leaf of S.
This implies that frame F must contain at least k non-intersecting edges that correspond to
at least k independent vertices of H. ◀

5 A Greedy Heuristic

We devise variants of a greedy heuristic for the problem MaxMinFramePlanarStory(G).
The heuristic computes the frames one by one. Throughout the algorithm, we call the edges
of the current frame current edges, the edges that were already removed past edges, and
those that still have to be inserted future edges. The current/future degree of an edge e is the
number of current/future edges that cross e. A simple greedy strategy may work as follows.

Simple Greedy

Phase 1. Start with some initial planar frame F1, and let τ = |E(G)| − |E(F1)| + 1 be
the total number of frames in the story.
Phase 2. For each step i = 1, . . . , τ − 1, let Fi be the current planar frame. Pick a future
edge e with the minimum current degree and let Fi+1 be the frame obtained from Fi by
adding e and by removing the edges that are crossed by e.

Since Simple Greedy always first increases an initial frame to a maximal planar subgraph,
the example in Fig. 3 implies that this strategy is not optimum in general. Moreover, Simple
Greedy does not yield a constant-factor approximation even if the crossing graph is a tree; see
the example in Fig. 5. The alternative order in Fig. 5d is better than the solution of Simple
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ℓ ℓ

(a) Crossing graph with 4ℓ + 5 vertices

1

2

ℓ+3

2ℓ+2

3 ℓ+2

2ℓ+3

(b) µ(G) = ⌊|E(G)|/2⌋ = 2ℓ + 2

1
ℓ

ℓ+1 2ℓ

2ℓ+1 2ℓ+2

(c) Simple Greedy yields minimum frame size 2

1

3
ℓ+2

2

ℓ+3 2ℓ+2

(d) µF (G) = 2ℓ

Figure 5 The crossing graph X of some graph G. The vertex labels indicate the order in which
we add the respective edges of G to the initial frame (red vertices). The two cases (c) and (d) in the
bottom row start with the same initial frame F .

Greedy, as it ensures that the last frame remains sufficiently large. Hence, we introduce a
refined version of the simple greedy strategy, described hereunder. We first describe the
general strategy of the two phases of the Advanced Greedy algorithm. In the following we
provide details about alternative variants for executing both of them.

Advanced Greedy

Phase 1. Compute two edge-disjoint planar frames, the initial frame F1 and the final
frame Fτ , where τ = |E(G)| − |E(F1)| + 1.
Phase 2. For each step i = 1, . . . , τ − 1, let Fi be the current planar frame. To make sure
that all edges of Fτ are indeed in the final frame, we say that a future edge is admissible
if it is (i) not in Fτ or (ii) not crossed by any other future edge. We pick an admissible
edge e with the minimum current degree. Let Fi+1 be the frame obtained from Fi by
adding e and by removing the edges that are crossed by e.

Note that Phase 2 of Advanced Greedy is related to the reconfiguration problem [25] that
asks for a transformation between two feasible solutions of a problem such that all intermediate
results are also feasible. In particular, [26] considered the problem of traversing between two
given independent sets of the same size. However, in [26] at each step exactly one vertex is
removed and one vertex is added, and vertices may disappear and reappear several times.

Alternative variants for Phase 1. We propose three alternative strategies for computing
the initial frame F1 and the last frame Fτ , or in other words two possibly large disjoint
independent sets I1 (initial frame) and Iτ (final frame) of the crossing graph X of G.

1a. (I1, Iτ ) is a Pareto optimal maximum pair of independent sets such that |I1| ≤ |Iτ |. See
Thm. 6 for the computation.

1b. I1 is a large independent set of X of size at most |E(G)|/2 and Iτ is a maximal
independent set of X − I1. More precisely, we use the following approach: While
|I1| ≤ |E(G)|/2 − 1 and X − I1 − N(I1) is not empty, iteratively add a vertex of minimum
degree in X − I1 − N(I1) to I1. Then, iteratively add a vertex of minimum degree in
X − I1 − Iτ − N(Iτ ) to Iτ .

1c. Alternating between i = 1 and i = τ , iteratively add a vertex of minimum degree in
X − I1 − Iτ − N(Ii) (if there exists one) to Ii. If |I1| > |Iτ |, exchange I1 and Iτ .

GD 2025
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(b) optimal: 10,10,11,11,12,12,13,13,10,10,11,10

Figure 6 A Pareto-optimal maximum pair of independent sets in the crossing graph as initial
and last frame with a non-optimal greedy story and a min-frame optimal story. The edges are added
according to the numbers of the vertices in the crossing graph to the initial frame (red vertices).
The subcaptions show the sequences of the frame sizes.

Variants 1b and 1c can be implemented in linear time in the size of X by sorting the
vertices in buckets according to their degrees. Regarding Variant 1a, while it is NP-hard
to find a maximum pair of independent sets in a graph [5], there exists a fixed-parameter
tractable (FPT) algorithm parameterized by the treewidth of the graph (Thm. 6). Therefore,
Variant 1a can be much slower than Variants 1b and 1c, although it may lead to better
solutions. We also remark that Thm. 6 establishes a result of independent interest, which
goes beyond the purposes of our specific problem.

A tree decomposition [39] of a graph X is a tree T such that each vertex ν ∈ V (T ) is
associated with a set V (ν) ⊆ V (X), called the bag of ν, such that
(a)

⋃
ν∈V (T ) V (ν) = V (X),

(b) for each edge uv ∈ E(X), there is a vertex ν ∈ V (T ) such that u, v ∈ V (ν), and,
(c) for each v ∈ V (X), the subgraph of T induced by the vertices {ν ∈ V (T ) | v ∈ V (ν)} is

connected.
The width of a tree decomposition is maxν∈V (T ) |V (ν)|−1. The treewidth tw(X) of a graph X

is the minimum among the widths of any of its tree decompositions.

▶ Theorem 6. A Pareto optimal maximum pair of independent sets can be computed in
O(3ωω2n3) time for a graph X with n vertices and a tree decomposition T of width ω.

Proof Sketch: The proof follows the ideas of the FPT approach for constructing a minimum
vertex cover as proposed by Niedermeier [33], enhancing it with the concept of Pareto optimal
pairs. Root T at an arbitrary vertex. We use dynamic programming. For a vertex ν of T let
X(ν) be the subgraph of X induced by the vertices in the bags of the subtree of T rooted at ν.
For each map c : V (ν) → {red, blue, white}, we compute the list L(ν, c) of Pareto-optimal
pairs (α, β) for which X(ν) contains two disjoint independent sets I1 and I2 of size α and β,
respectively, such that the red vertices of V (ν) are contained in I1, the blue vertices of V (ν)
in I2, and the white vertices of V (ν) are neither in I1 nor I2. ◀

Given a Pareto-optimal maximum pair (I1, Iτ ) of independent sets, Advanced Greedy 1a
does not necessarily result in a planar story with minimum frame size among all planar
stories with initial frame I1 and final frame Iτ . An example is given in Fig. 6: here, there is
a vertex that is neither in the initial nor in the final frame whose degree is greater than 3.

▶ Lemma 7. Starting from a Pareto-optimal maximum pair (I1, Iτ ) of independent sets,
Advanced Greedy yields a min-frame optimal planar story for a geometric graph G if the
crossing graph X contains no cycles and the vertices not in I1 ∪ Iτ have degree at most three.

Proof Sketch. The frame sizes are first monotonically increasing and then monotonically
decreasing and, thus, at least min{|I1|, |Iτ |}, which, by Corollary 4, is optimum. ◀
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(a) even cycles (b) odd cycles (c) even paths (d) half of odd paths (e) other odd paths

Figure 7 The connected components of the crossing graph for a 2-plane graph.

▶ Theorem 8. Advanced Greedy 1a solves MaxMinFramePlanarStory(G) optimally
(a) in linear time for 2-plane geometric graphs, and
(b) in cubic time for those 3-plane geometric graphs for which the crossing graph contains

no cycles.

Proof Sketch. The statement for 3-plane graphs is a corollary of Lemma 7. For 2-plane
graphs, the crossing graph has maximum degree two and, thus, its connected components are
paths and cycles, and a maximum pair (I1, Iτ ) of independent sets can be computed in linear
time. See Fig. 7. Moreover, if we apply Advanced Greedy 1a then the minimum frame size
is min{|I1|, |Iτ |}, unless there is an even cycle but no odd path. In this case, the minimum
frame size is min{|I1|, |Iτ |} − 1. ◀

Alternative variants for Phase 2. In each step of Phase 2, the set E′ of admissible future
edges with minimum current degree might contain multiple edges. For an edge e ∈ E′, denote
by C(e) the set of current edges that cross e. Also, let E′′ ⊆ E′ be the subset of edges in E′

such that, for any e ∈ E′′, the number of future edges crossing some edges in C(e) is the
maximum over all other edges in E′. We consider two alternative strategies for selecting the
next future edge e that enters the drawing: 2a. e is chosen uniformly at random in E′; or 2b.
e is chosen uniformly at random in E′′.

Variant 2b applies a tie-breaking rule to further restrict the set of admissible edges that
can be selected. The rationale is to maximize the amount of future edges that will benefit
from the removal of the current neighbors of the edge that will enter the drawing.

6 An ILP Exact Approach

We present an exact integer linear program (ILP) for MaxMinFramePlanarStory(G).
Let τ be the number of frames necessary, i.e., τ ≤ |E(G)|. For each edge e ∈ E(G) and each
t ∈ {1, . . . , τ} we use a binary variable xt

e to represent that edge e of G is present in frame t.
Additionally, we use lifting variables zt

e ∈ {0, 1}, where zt
e = 1 indicates that an edge e of G

appears in frame t. Finally, we use a variable ymin that corresponds to the minimum number
of edges present over all frames.

maximize ymin (1)
subject to xt

e + xt
f ≤ 1 ∀t ∈ {1, . . . , τ} ∀{e, f} ∈ E(X) (2)

τ∑
t=1

xt
e ≥ 1 ∀e ∈ E(G) (3)∑

e∈E(G)

xt
e ≥ ymin ∀t ∈ {1, . . . , τ} (4)

τ∑
t=1

zt
e = 1 ∀e ∈ E(G) (5)

zt
e + xt−1

e ≥ xt
e ∀e ∈ E(G) ∀t ∈ {2, . . . , τ} (6)
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z1
e ≥ x1

e ∀e ∈ E(G) (7)∑
e∈E(G)

zt
e ≤ 1 ∀t ∈ {2, . . . , τ} (8)

xt
e, zt

e ∈ {0, 1} (9)
ymin ≥ 0 (10)

Constraints 2 and 3 ensure that no two edges cross in the same frame and that each edge ap-
pears in some frames, respectively. Constraints 4 are a linearization of the objective function.

Additionally, we need to model the following property. If an edge e is present in frame Fi

and present in frame Fj with i < j, then e also needs to be present in all intermediate frames.
This can be directly translated, but requires a cubic number of constraints for each edge.
Hence, we introduce Constraints 5–7 that model the same property. Consider an edge e that
appears at frame t for the first time. Due to Constraints 6 the lifting variable zt

e must be
set to 1 if the edge e appears in frame t, as xt−1

e = 0 or since t = 1 (Constraints 7). The
consecutive frame t + 1 can now include this edge, as xt

e = 1 and the variable zt+1
e is no

longer required. However, once e disappears in a frame j > t, i.e., xj
e = 0, this is no longer

possible, as the lifting variables cannot be used anymore due to Constraints 5.
Finally, we include Constraints 8 to enforce that at most one edge appears in each frame,

except for the initial frame in which multiple edges may appear.

7 Experimental Analysis

We present the results of an extensive experimental analysis, whose goal is to compare the
effectiveness and the efficiency of our heuristics and of the exact algorithm. For the heuristics,
we denote by AG-1x2y the variant of algorithm Advanced Greedy that uses Variant 1x for
Phase 1 and Variant 2y for Phase 2, where x can be a, b, or c, while y can be a or b. In
total we have 6 possible variants of our heuristic. In the following we describe the graph
benchmark used for the experiments, the experimental setting, and the obtained results.

Graph Benchmark. To evaluate the performance of our algorithms on different types of
graphs, we used several test suites, totaling 637 instances1. We considered two main types of
instances: Geometric Graphs and Crossing Graphs.

Geometric Graphs. A collection of both random and real graphs drawn with a force-directed
algorithm. The different graph classes are as follows

random graphs: 200 geometric graphs: For each n ∈ {10, 20, . . . , 100} and for each
density2 d ∈ {1.2, 1.6, 2.0, 2.4}, we randomly generated 5 distinct graphs with n vertices
and m = d · n edges, with Erdős–Rényi’s model, which guarantees uniform probability
distribution. For each generated graph we computed a straight-line drawing through the
popular Fruchterman–Reingold force-directed algorithm [18]. We exploited the NetworkX
Python library [22] both for generating the graphs and for computing their drawings.
The resulting sizes of the crossing graphs is shown in Fig. 8.

1 To allow replicability, we made the whole graph benchmark publicly available at https://github.com/
ekatsanou/edge-based-graph-stories.

2 The density of a graph is the number of its edges divided by the number of its vertices.

https://github.com/ekatsanou/edge-based-graph-stories
https://github.com/ekatsanou/edge-based-graph-stories
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Figure 8 The sizes of the crossing graphs for the random graphs. The x-axis is the number of
vertices of the crossing graph (i.e., the number of crossing edges of the instance); the y-axis is the
number of edges of the crossing graph (i.e., the number of crossings in the instance).

real graphs: 12 graphs with 30 to 379 vertices representing data from various real-
world domains (see Table 1).They usually have higher density than the random graphs
and, consequently, more edge crossings. All these graphs have been taken from the well-
known Network Repository [40] (https://networkrepository.com). For each graph, we
removed self-loops (if any) and computed a straight-line drawing with the implementation
of Fruchterman–Reingold’s force-directed algorithm in NetworkX.

Table 1 Real graphs with n vertices, m edges, and χ edge-crossings.

Graph name Category n m χ

insecta-beetle-group-c1-period-1 animal social science network 30 185 1, 737
road-chesapeake road network 39 170 1, 049
eco-stmarks eco network 54 353 6, 320
lesmis miscellaneous network 77 254 838
ca-sandi_auths collaboration network 86 124 8
gd06-theory miscellaneous network 101 190 1, 015
polbooks miscellaneous network 105 441 2, 465
adjnoun miscellaneous network 112 425 6, 868
rajat11 miscellaneous network 135 680 290
email-enron-only email network 143 623 5, 230
bwm200 miscellaneous 200 596 7
ca-netscience collaboration network 379 914 901

Crossing Graphs. We generate different types of crossing graphs that are planar. Recall
that planar graphs are segment intersection graphs [10, 19]. Therefore, they always reflect
the structure of some geometric graphs in terms of edge crossings.

caterpillars: 60 n-vertex caterpillar trees, 10 instances chosen uniformly at random
for each value of n ∈ {10, 20, . . . , 60}. First, we selected the diameter δ based on the
probability of an n-vertex caterpillar to have such diameter; then we chose how to
randomly attach the n − δ − 1 leaves to the δ − 1 internal vertices of the caterpillar [27].

GD 2025
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We rejected with probability 0.5 non-symmetric caterpillars, as they would have been
generated twice. Due to the large integers involved in the computation, this method
allowed us to generate caterpillars with up to 60 vertices.
trees: 80 general trees, with n ∈ {10, 20, . . . , 80} vertices; for each fixed n we collected
10 distinct instances, generated uniformly at random with the algorithm in [1]
series-parallel graphs: 105 series-parallel graphs, with n ∈ {10, 20, . . . , 70} vertices
and density d ∈ {1.2, 1.4, 1.6}. For each pair (n, d) we collected 5 instances, by repeatedly
generating biconnected planar graphs using the OGDF library [11] (https://ogdf.uos.
de/), and discarding those graphs that were not series-parallel.
planar graphs: 180 general connected planar graphs, with n ∈ {10, 20, . . . , 90} and
density d ∈ {1.2, 1.6, 2.0, 2.4}. Precisely, we generated 5 instances for each pair (n, d),
still using the random generator available in the OGDF library [11].

Since trees and caterpillars have treewidth 1 and the treewidth of series-parallel
graphs is 2, these instances are of particular interest for evaluating the performances of the
heuristics AG-1a2y, which works in polynomial-time for crossing graphs of bounded treewidth.

Experimental setting. We performed the experiments on a Windows 11 Pro machine with
an Intel Core i5-12500 CPU and 16 GB RAM. We used Gurobi [21] version 12.0.1 as ILP
solver that used all available cores of the CPU. We implemented the heuristics in Python,
using the NetworkX library [22].

On those instances for which the exact algorithm was able to finish the computation
within the given time (see below), we compared the optimum with the value computed by
the various heuristics. Precisely, we measured the ratio between the minimum frame size of
the story computed by each heuristic and the minimum frame size of the story computed by
the exact algorithm. With a slight abuse of terminology, we call this value the approximation
ratio. For the random graphs and real graphs, the computation of the approximation ratio
is restricted to the subset of crossing edges, because crossing-free edges persist in all frames
of a planar graph story, regardless of the algorithm used to compute it.

For each instance, we also measured the runtime of each algorithm. We fixed an upper
bound of T = 15 minutes for the runtime allowed for the exact algorithm, and we recorded
the value of the best solution achieved within T (i.e., the incumbent solution). For those
instances for which the runtime of the exact algorithm exceeded T , we also measured the
optimality gap, that is, the gap between the incumbent solution (IS) and the upper bound
(UB) estimated by the ILP solver at time T . In formula: gap = UB−IS

UB .
Furthermore, after verifying that, for all instances optimally solved by the exact algorithm,

the heuristics were also able to produce a solution in less time, we set a maximum time
limit of T ′ = 10 minutes for the heuristics based on Variant 1a, whose runtime may grow
exponentially in the treewidth of the crossing graph. This was done to allow for faster
experimentation, given the large number of instances. The instances for which Variant 1a
could not finish within T ′ were considered unfeasible for AG-1a2a and AG-1a2b.

Performance of the exact algorithm. Fig. 9 shows the percentage of instances per graph
class that the ILP was able to solve within the given time limit of T = 15 minutes (900
seconds). In each chart, the x-axis is the time in seconds and the y-axis (blue line) reports
the number of instances solved optimally within the time at the corresponding x coordinate.
Fig. 10 shows the optimality gap across the instances for each graph class (a point for each
instance), where the instances were sorted by the number of crossings; points of instances
with the same gap coincide in the chart.

https://ogdf.uos.de/
https://ogdf.uos.de/
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Figure 9 Percentage of instances solved (optimally) by the exact algorithm within time T .

Regarding the Geometric Graphs benchmark, more than half (55%) of the random
graphs were solved optimally. In particular, all instances with 90 or less crossing edges
were solved optimally in the given time, and 90% of the instances with 150 or less crossing
edges were solved optimally. Conversely, only the two real graphs with small number
of crossings (namely, the graphs bmw200 and ca-sandi_auths) could be solved optimally
within T . However, for the graph rajat11 (which contains 290 crossings), the optimality gap
is close to 0 (namely, 0.08). Overall, for most of the instances in the random graphs and
real graphs, the optimality gap tends to increase with the number of edge crossings.

Regarding the Crossing Graphs benchmark, most of the series-parallel graphs
(81.74%) and a high percentage of the trees (67.5%) and planar graphs (62.78%) could be
solved optimally. Interestingly, more randomly sampled trees were solved than caterpillars
(55.00%) in the given time. However, it is worth noting that the regular pattern observed in
the optimality gaps for the caterpillars and trees is due to the fact that, for instances not
solved to optimality within the time limit, the absolute difference between the best bound
and the incumbent solution was exactly 1.

Performance of the heuristics. Full details on the runtime of all the heuristics can be found
in the long version of the paper [5]. Heuristics AG-1b2a, AG-1b2b, AG-1c2a, and AG-1c2b
computed all the instances of our graph benchmark very efficiently. On average they took
less than 0.1 seconds on the random graphs and about 0.34 seconds on real graphs (the
most expensive required about 1.6 seconds). Also, they took less than 10 milliseconds for the
instances in the Crossing Graphs datasets. Runtime differences among these heuristics
are negligible across Variants 2a and 2b for Phase 2, although 2a is slightly faster than 2b.
The runtime is mostly affected by the variant chosen for Phase 1, where Variant 1b is a bit
faster than Variant 1c, as expected.

Conversely, Variant 1a is significantly more expensive. We implemented it, using the
Minimum Fill-in heuristic [8] to compute tree decompositions. For the analysis of the
heuristics based on this variant, we took into account only those instances where a Pareto-
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Table 2 Runtime in seconds for the different heuristics on the real graphs. The empty cells
refer to the instances that could not be solved by Variant 1a with the given time limit.

graph name AG-1a2a AG-1a2b AG-1b2a AG-1b2b AG-1c2a AG-1c2b

bwm200 0.00 0.00 0.00 0.00 0.00 0.00
ca-sandi_auths 0.00 0.00 0.00 0.00 0.00 0.00
rajat11 0.09 0.13 0.06 0.08 0.10 0.13
lesmis 0.05 0.05 0.08 0.08
ca-netscience 0.61 1.00 1.00 1.00
gd06_theory 0.07 0.07 0.07 0.07
road-chesapeake 0.04 0.04 0.05 0.05
insecta-beetle-group-
c1-period-1

0.04 0.04 0.06 0.06

polbooks 0.32 0.32 0.53 0.53
email-enron-only 1.05 1.05 1.64 1.64
eco-stmarks 0.32 0.32 0.40 0.40
adjnoun 0.53 0.53 0.70 0.70

Table 3 The performance of our heuristics in comparison to the exact algorithm.

All Graphs Combined
% Opt Avg approx. ratio Min–Max approx. ratio SD approx. ratio

AG-1a2a 59.9% (243/406) 94.14% 50.00% – 100.00% 9.87%
AG-1a2b 63.1% (256/406) 94.72% 50.00% – 100.00% 9.37%
AG-1b2a 5.7% (23/406) 67.91% 33.33% – 100.00% 13.44%
AG-1b2b 5.4% (22/406) 68.21% 42.86% – 100.00% 13.07%
AG-1c2a 14.3% (58/406) 82.76% 44.44% – 100.00% 10.36%
AG-1c2b 15.3% (62/406) 83.45% 50.00% – 100.00% 10.35%

optimal maximum pair of independent sets was found within the given time T ′ = 10 minutes.
Variant 1a was able to find a solution for all the instances in the Crossing Graphs
benchmark, as the Minimum Fill-in heuristic produced tree decompositions of width at most
six for planar graphs and at most two for series-parallel graphs. For the random graphs,
Variant 1a solved 137 (of the 200) instances within time T ′; the fraction of instances solved
for each combination of the two parameters “number of nodes” and “width of the tree
decomposition” is illustrated in the heatmap of Fig. 11. For the real graphs, Variant 1a
solved only 3/12 instances within T ′ (see Table 2).

Regarding the effectiveness of our heuristics, Table 3 summarizes the comparison over all
instances that the exact algorithm managed within the given time T = 15 minutes. Detailed
results for the different types of graphs are reported in [5].

The results show that AG-1a2a and AG-1a2b achieve a ∼ 60% optimality rate and
an average approximation ratio of ∼ 95%, significantly outperforming the alternatives
AG-1b2a/AG-1b2b and AG-1c2a/AG-1c2b in both metrics. The standard deviation of the
approximation ratio for AG-1a2a and AG-1a2b remains below 10%, indicating consistent
performance. Notably, for the trees and the caterpillars, AG-1a2a and AG-1a2b achieve
near-perfect optimality rates (97.0% and 100.0%, respectively) with approximation ratios
close to 100%. In contrast, the heuristics based on Variant 1b achieve fewer than 6% optimal
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solutions on average, with lower approximation ratios around 68%. The heuristics using
Variant 1c, while also exhibiting low optimality rates (∼ 15%), maintain a stronger average
approximation ratio of ∼ 83% and a good standard deviation (∼ 10.4%).

We remark that, for the real graphs the exact algorithm managed only 2 instances
within the given time T , and AG-1a2a and AG-1a2b managed only 1 additional instance
within the given time T ′. This data is not enough to get a clear picture of how the other
heuristics compare on this dataset. However, by examining the data for all the instances in
the real graphs dataset, we confirm that also in this case the heuristics based on Variant 1c
outperformed those based on Variant 1b, with an improvement of about 29% on average.

Main findings. The exact algorithm typically handles geometric graphs with up to 90 − 100
crossing edges in few minutes. However, it becomes generally impractical for real-world
graphs that are locally dense and inevitably contain many more crossing edges. Regarding
the heuristics, the difference between Variants 2a and 2b, in terms of both efficiency and
effectiveness, is often negligible. A more detailed analysis of this phenomenon is given in [5].
Conversely, the choice of the variant for Phase 1 makes a big difference, namely:

The heuristics based on Variant 1a yield solutions close to the optimum in many cases.
However, they become computationally unfeasible for graphs with high number of nodes
or with crossing graphs of high treewidth; in particular, they exhibit more or less the
same limits as the exact algorithm on the real graphs, although they make it possible to
manage all instances in the Crossing Graphs benchmark.
The heuristics based on Variant 1c offer the best trade-off between efficiency and effect-
iveness. They perform fast on all instances and maintain high average approximation
ratios (approximately 80% − 88%, depending on the graph class).

8 Final Remarks and Future Work

We have proposed the MaxMinFramePlanarStory model, where we visualize a graph in
a sequence of planar frames such that only one edge at the time enters the story and the
minimum frame size is maximized. We suggest the following research directions.

RD1. In addition to ensuring drawing stability and low visual complexity, our model
promotes smooth transitions between consecutive frames (i.e., minimal local changes from
one frame to the next), as only the current edges that intersect the upcoming edge are
removed. However, this approach may result in long stories. To balance these aspects, we
can compress a planar story by allowing multiple edges to be inserted simultaneously: for
each subsequence of consecutive, pairwise non-crossing edges, all of them can be added at
once. In this way, the resulting compressed story remains planar, and its smallest frame is
at least as large as that of the original story. Nonetheless, enabling multiple edges to enter
simultaneously in the visualization motivates the design of dedicated algorithms aimed at
producing short stories while still maximizing the minimum frame size.

RD2. We focused on constructing a planar story of geometric graphs, i.e., of graphs with
a given drawing. It would be interesting to investigate how different drawings of the same
graph affect the quality of the story. Furthermore, what kind of crossing graphs would allow
us to construct good edge stories?
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RD3. Our heuristics based on Variants 1b and 1c are fast enough to solve also more complex
instances than those in our benchmark. It would be interesting to investigate whether the
quality of these variants could be improved by using different heuristics for choosing the
independent sets for the initial and final frames than just adding vertices of minimum degree.
See, e.g., [20] for a list of heuristics for computing large independent sets.

RD4. Regarding the problem complexity: Is MaxMinFramePlanarStoryD(G,m) NP-
complete for 3-plane graphs? Is the problem in FPT parameterized by the treewidth of the
crossing graph of G? Is Advanced Greedy 1a a constant-factor approximation algorithm?
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