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Abstract
A connected topological drawing of a graph divides the plane into a number of cells. The type of a
cell c is the cyclic sequence of crossings and vertices along the boundary walk of c. For example, all
triangular cells with three incident crossings and no incident vertex share the same cell type. When
a non-homotopic drawing of an n-vertex multigraph G does not contain any such cells, Ackerman
and Tardos [JCTA 2007] proved that G has at most 8n − 20 edges, while Kaufmann, Klemz, Knorr,
Reddy, Schröder, and Ueckerdt [GD 2024] showed that this bound is tight.

In this paper, we initiate the in-depth study of non-homotopic drawings that do not contain one
fixed cell type c, and investigate the edge density of the corresponding multigraphs, i.e., the maximum
possible number of edges. We consider non-homotopic as well as simple drawings, multigraphs as
well as simple graphs, and every possible type of cell. For every combination of drawing style, graph
type, and cell type, we give upper and lower bounds on the corresponding edge density. With the
exception of the cell type with four incident crossings and no incident vertex, we show for every cell
type c that the edge density of n-vertex (multi)graphs with c-free drawings is either quadratic in n

or linear in n. In most cases, our bounds are tight up to an additive constant.
Additionally, we improve the current lower bound on the edge density of simple graphs that

admit a non-homotopic quasiplanar drawing from 7n − 28 to 7.5n − 28.
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1 Introduction

Many fundamental classes of graphs are defined by admitting a drawing without a forbidden
configuration or pattern. This includes planar graphs (forbidding two crossing edges), as
well as many beyond-planar graph classes such as k-planar graphs (forbidding an edge with
k + 1 crossings), quasiplanar graphs (forbidding three pairwise crossing edges), fan planar
graphs (forbidding an edge crossed by two independent edges1) and many others. Planar and

1 The actual definition is more complex but irrelevant here.
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33:2 Edge Densities of Drawings of Graphs with One Forbidden Cell

beyond-planar graphs are of eminent importance, both from a practical and a theoretical
point of view. Nevertheless, many fundamental properties are still not sufficiently well
understood. One of the most fundamental questions in this area concerns the edge density
of a beyond-planar graph class G, that is, the maximum possible number of edges of any
n-vertex graph in G. There is a long history of edge density results ranging from k-planar
graphs [2, 20, 21], k-quasiplanar graphs [1, 3], k-bend RAC graphs [4, 8], (k, l)-grid free
graphs [19], and more to the recently introduced Density Formula [16].

We study the cells of a drawing, that is, the regions of R2 delimited by the vertices and
edges of the drawing. The type of a cell c is the cyclic order of edge segments, vertices,
and crossings along the boundary of c. For example, a 3 -cell is incident to three edge
segments, three crossings, and no vertex. Distinguishing cells by their type is often useful
when reasoning about drawings. The recently developed Density Formula [16], whose many
applications usually come down to counting and relating different cell types in drawings,
has further increased the need for a good grasp on the relation between types of cells in a
drawing and the structure of the underlying graph. Interestingly, Ackerman and Tardos [3]
proved already in 2007 that n-vertex drawings with no 3 -cell contain at most 8n − 20 edges.

Our contribution. In this paper, we consider for each cell type c the corresponding beyond-
planar graph class Gc consisting of all graphs that admit a drawing without c-cells. We
present upper and lower bounds on the edge densities of graphs in Gc. We determine the
asymptotic edge density in the setting of arbitrary, non-homotopic, and simple drawings,
except for one particular cell type. Depending on c, we obtain some linear and some quadratic
edge densities. In many cases, our bounds are tight up to an additive constant. All our
results and some previous related work are shown in Table 1. Our lower bounds entail various
novel constructions, while our upper bounds are mostly proved via discharging. Additionally,
we present a construction of simple graphs on 7.5n − 28 edges that admit a non-homotopic
quasiplanar drawing, beating a previous lower bound by n

2 in the highest-order term.

Related work. Apart from the above-mentioned work of Ackerman and Tardos [3] and
Kaufmann, Klemz, Knorr, Reddy, Schröder, and Ueckerdt [16] on 3 -free drawings, we are
(as far as we know) the first to consider graph drawings with a forbidden type of cell. However,
some beyond-planar drawing styles are characterized by forbidding a configuration that is
somewhat similar to a particular cell type. For example, in a fan-crossing-free drawing [7]
there is no edge crossed by two adjacent edges, which resembles the 4 -cell. Secondly, in a
quasiplanar drawing, there are no three pairwise crossing edges, which resembles the 3 -cell.
And in a (2, 2)-grid-free drawing, there are no two pairs e1, e2, f1, f2 of edges such that every
ei crosses every fj , which resembles the 4 -cell. For a collection of edge density results on
these and other beyond-planar graph classes, we refer to [9, Chapter 4]. Let us remark that
in the three cases above, every fan-crossing-free (quasiplanar, (2, 2)-grid-free) drawing is in
particular a 4 -free ( 3 -free, 4 -free) drawing. Hence, lower bound constructions carry over
to our setting, while in general, c-free drawings might allow for a much higher edge density.

Let us also mention that cell types have been investigated in the context of arrangements
of pseudolines. For simple arrangements of pseudolines, it is known that only 3 -cells are
forced to appear in every sufficiently large arrangement. In fact, any simple arrangement
of n pseudolines in the Euclidean plane or in the projective plane contains at least n − 2
or n, respectively, 3 -cells [11, 18]. On the other hand, there are various constructions
without 4 -cells [13,14], and arbitrarily large simple arrangements consisting only of 3 -cells
and 4 -cells [17]. Further results on the number of cells of different types in pseudoline
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Table 1 Results on edge densities of graphs admitting a drawing without one fixed type of cell.
Upper bounds hold for all n ≥ 3, while lower bounds are proven for infinitely many values of n.

Forbidden cell Graph type Drawing type Lower Bound Upper Bound

Any Simple No restriction Construction 3

(
n
2

) (
n
2

)

3 -cell

Multi Non-homotopic [16]
8n − 20

[3]
8n − 20

Simple Non-homotopic Construction 8
8n − 28

[3]
8n − 20

- Simple Construction 6
7n − 30

Theorem 5
7n − 20

4 -cell

Multi Non-homotopic Construction 5
9n − 18 -

Simple Non-homotopic Construction 4
6n − 12 (

n
2

)
- Simple Construction 4

6n − 12 (
n
2

)
4 -cell - Simple Construction 9

Ω(n2) (
n
2

)

5 -cell
Multi Non-homotopic Construction 4

6n − 12
Theorem 4

6n − 12

- Simple Construction 4
6n − 12

Theorem 4
6n − 12

Others - Simple Construction 1

(
n
2

) (
n
2

)

arrangements can be found in the textbook chapter [10], including upper bounds on the
number of 3 -cells and 4 -cells in simple pseudoline arrangements from [6,12], and a lower
bound on the number of 4 -cells and 5 -cells from [22].

Outline. We start in Section 2 with relevant definitions and some statements that we will
use throughout the paper. Then, in Section 3 we show that most cell types can be avoided
in simple drawings of Kn and that all cell types can be avoided in arbitrary drawings of Kn.
Constituting the main body of this work, we address the remaining cell types in Sections 4–7
with quasiplanarity discussed jointly with 3 -cells in Section 6.

2 Preliminaries: Drawings, cells, and cell types

Throughout this paper, we consider finite graphs with no loops but possibly parallel edges.
To make the (potential) presence of multiedges more explicit, we sometimes use the term
multigraph. Similarly, when a graph has no parallel edges, it is called a simple graph. A
drawing Γ of a multigraph G = (V, E) maps vertices to pairwise distinct points and edges to
curves connecting the corresponding vertices. For convenience, we consider drawings on the
sphere S2 to avoid a special treatment of the unbounded cell. As customary, we require that
no edge passes through a vertex, any two edges have only finitely many points in common,
each being a common endpoint or a proper crossing, and that no three edges cross in the
same point. A drawing Γ is connected if the image of the map Γ is connected in S2.

GD 2025
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A drawing is simple if any two edges have at most one point in common, which is either
a common endpoint or a crossing. As this rules out parallel edges, only simple graphs admit
simple drawings. A lens is a region of S2 bounded by exactly two parts of edges. This
could be two parallel edges, two edges crossing twice, or two crossing adjacent edges. We
call a lens empty if its interior contains neither a crossing nor a vertex. Then a drawing is
non-homotopic if it does not contain any empty lens.

Consider any fixed connected drawing Γ of some multigraph G. The crossings split each
edge into a number of edge segments. An outer edge segment is incident to a vertex, while
an inner edge segment starts and ends with a crossing. The cells of Γ are the connected
components of S2 after the removal of all vertices and edges. For a cell c, we denote by v(c)
the number of vertices, by e(c) the number of edge segments, and by ein(c) the number
of inner edge segments on its boundary, counted with multiplicity. The size of c is the
sum of the former two: ∥c∥ := e(c) + v(c). We denote by C the set of all cells, and set
Ck = {c ∈ C : ∥c∥ = k} and C≥k = {c ∈ C : ∥c∥ ≥ k}.

Since Γ is assumed to be a connected drawing of G, the boundary of every cell is connected.
The type of a cell c is the cyclic sequence of incidences with edge segments, crossings, and
vertices along the boundary of c. We emphasize that a cell type c only determines the form
of incidence (edge segment, vertex, or crossing) and not the participating edge, vertex, or
crossing of G. In particular, different incidences might be with the same edge segment,
crossing, or vertex. We use pictograms with the size of the cell inscribed (such as 3 or 5 )
to concisely denote cell types of small size. For convenience, let a cell type c also denote the
number of all c-cells in a given drawing. If no cell in Γ has type c, then Γ is called c-free.

Let us conclude the preliminaries with an observation from [16] and two lemmas, which
we will need in the course of this paper.

▶ Observation 1 (Kaufmann, Klemz, Knorr, Reddy, Schröder, and Ueckerdt [16]). Let Γ be any
non-homotopic connected drawing of some multigraph G with at least three vertices. Then,

C1 = C2 = ∅,
C3 is the set of all 3 -cells,
C4 is the set of all 4 -cells and all 4 -cells, and
C5 is the set of all 5 -cells, 5 -cells, and 5 -cells.

The next two lemmata will help prove upper bounds for 5 -free drawings in Section 4
and 3 -free drawings in Section 6. Lemma 2 below relates the number of vertices in a graph
to the sizes of cells in a drawing of the graph. The statement already appears implicitly in
various edge density proofs via discharging (e.g., [1,2,5]) and as a key ingredient in the proof
for the Density Formula [16, Lemma 3.6]. We thus state it without proof2.

▶ Lemma 2. For any connected drawing Γ of a multigraph G with at least one edge,

|V (G)| − 2 =
∑
c∈C

(
1
4 ∥c∥ − 1

)
.

The next lemma gives a bound on the number of cells of certain types in terms of the
number of inner edge segments in large cells of non-homotopic drawings. Similar statements
have been implicitly used in prior work such as [2, 3, 16].

2 As one of many ways to prove it, for example, subtracting the Density Formula with t = 0 from the
Density Formula with t = 1 gives the result.
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▶ Lemma 3. In any connected non-homotopic drawing of a multigraph with at least three
vertices, it holds that

3 · 3 + 4 ≤
∑

c∈C≥5

ein(c).

Proof. Fix any non-homotopic drawing of a multigraph. Let C∆ be the set of 3 -cells
and 4 -cells, and Sin

∆ the set of inner edge segments incident to cells in C∆. Note that
3 · 3 + 4 = |Sin

∆ | because two cells in C∆ that share an inner edge segment would form an
empty lens, contradicting non-homotopicity. We define an injective function g : Sin

∆ → Sin
≥5,

where Sin
≥5 is the set of inner edge segments incident to a cell in C≥5. Let s ∈ Sin

∆ be an
arbitrary inner edge segment at c ∈ C∆, and let e, f ∈ E be the two edges that cross s on
the boundary of c. Imagine a curve γ that starts in c and leaves c by crossing s. Then γ

follows the paths of e, closely to e, between e and f , until it crosses an inner edge segment s′

and reaches a cell c′ that is not a 4 -cell. Note that s = s′ is possible, namely, if none of the
cells incident to s is a 4 -cell.

In any case, c′ /∈ C∆ as otherwise c, c′, and the 4 -cells traversed by γ form an empty
lens. So, by Observation 1, we have c′ ∈ C≥5, and we set g(s) = s′. Since the 4 -cells
traversed by γ can be uniquely traced back from s′ to s, g is injective and therefore
3 · 3 + 4 ≤

∑
c∈C≥5

ein(c), as desired. ◀

3 Drawings of complete graphs

First, we show that for most cell types c, complete graphs admit simple c-free drawings.

▶ Construction 1. For every n ≥ 4, the complete graph Kn admits a simple 5 -free drawing
in which each cell c fulfills ∥c∥ ≤ 5 or ∥c∥ = 2n.

Proof. Consider the simple drawing of Kn depicted in Figure 1, in which the vertices lie
evenly spaced on a horizontal line and each edge follows the shape of a ∧ with a right-angled
peak. For n ≥ 4, all cells in this drawing except the outer cell are 3 -, 4 -, 4 -, 5 -, or

5 -cells. Clearly, the outer cell c has size ∥c∥ = 2n. ◀

3

5

4
4

4
4

4
4

3

5

4

4 4
4
4

4 5

2n

Figure 1 A simple drawing of Kn (here n = 8) containing only cells of size at most 5, and one
cell of size 2n.
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Construction 1 shows that for any cell type c /∈ { 3 , 4 , 4 , 5 }, every large enough
complete graph admits a simple c-free drawing. In particular, the edge density of simple
c-free drawings is

(
n
2
)

whenever c has size at least 6, or c = 5 .
Next, we show that 5 -cells can also be avoided in simple drawings of Kn. Note that

any drawing without uncrossed edges will do, see for example [15]. For completeness, we
present our own construction.

▶ Construction 2. For every n ≥ 8, the complete graph Kn has a simple 5 -free drawing.

Proof. Let n ≥ 8 be even and start with a straight-line drawing of Kn with vertices in
convex position. Then redraw the edges of length 3 as depicted in Figure 2, so as to cross
the edges of length 1 (on the convex hull). Further redraw every other edge of length 2 to be
uncrossed in the outer cell. Finally, redraw all edges of length n/2 to be pairwise crossing in
the outer cell. For n odd, take the construction for n − 1 even, add the last vertex in the
central cell, and connect it to all other vertices with straight-line segments. ◀

Figure 2 A simple 5 -free drawing of K12. (A small perturbation eliminates the multi-crossings.)
Edges of length three are drawn in blue and those of length two in red. Edges of length n/2 are
depicted with green edges.

With Constructions 1 and 2 at hand, only the cell types 3 , 4 , 4 , and 5 remain, if
we restrict to simple drawings of complete graphs. Before turning to these types, let us close
the section by dropping the requirement that the drawing is simple. In fact, without any
restriction, every cell type can be avoided in drawings of complete graphs.

▶ Construction 3. For any cell type c and infinitely many values of n, the complete graph
Kn admits a c-free drawing.

Proof. For c /∈ { 3 , 4 , 4 , 5 }, the claim follows from Constructions 1 and 2. Every
remaining cell type c has size 3, 4, or 5 and at least one crossing on its boundary. For every
n ∈ N, we now construct a drawing of Kn in which every cell with an incident crossing has
size 2 or at least 6, which completes the proof. To do so, start with any drawing of Kn.
Locally replace each crossing with the pattern in Figure 3. In the resulting drawing, each
cell incident to a crossing is part of such a pattern and therefore of size 2 or at least 6. ◀
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6

6

≥ 8 ≥ 6

≥ 8≥ 6

Figure 3 A crossing can be redrawn to bound only cells of size 2 (shaded gray) or at least 6.

4 Non-homotopic drawings without 5 -cells

In this section, we consider the 5 -cell. In particular, we show that non-homotopic 5 -free
drawings have only linear edge density. Note that by Construction 3, the restriction to
non-homotopic drawings is essential.

▶ Theorem 4. For n ≥ 3, any connected n-vertex multigraph that admits a non-homotopic
5 -free drawing has at most 6n − 12 edges.

Proof. Fix a 5 -free drawing of an n-vertex multigraph with n ≥ 3. First, let us compute for
each cell c ∈ C the quantity 3e(c) + 2v(c) − 12, and in case c ∈ C≥5 compare it with ein(c).

c is a 3 -cell : 3e(c) + 2v(c) − 12 = −3
c is a 4 -cell : 3e(c) + 2v(c) − 12 = −1
c is a 4 -cell : 3e(c) + 2v(c) − 12 = 0
c is a 5 -cell : 3e(c) + 2v(c) − 12 = 2 = ein(c)
c is a 5 -cell : 3e(c) + 2v(c) − 12 = 1 ≥ 0 = ein(c)
∥c∥ ≥ 6 : 3e(c) + 2v(c) − 12 = e(c) + 2 ∥c∥ − 12 ≥ e(c) ≥ ein(c)

Note that the above case distinction is complete as c is not a 5 -cell.
Summing over all cells, this gives∑
c∈C

(3e(c) + 2v(c) − 12) ≥ −3 · 3 − 4 +
∑

c∈C≥5

ein(c) ≥ 0, (1)

where the last inequality is an application of Lemma 3.
Finally, we obtain the desired result by double-counting all vertex-cell incidences as

2|E| =
∑
c∈C

v(c)
(1)
≤

∑
c∈C

(3e(c) + 3v(c) − 12) = 3
∑
c∈C

(∥c∥ − 4) = 12(n − 2),

where the last equality is an application of Lemma 2. ◀

Theorem 4 gives an upper bound of 6n − 12 on the edge density of 5 -free non-homotopic
multigraphs. As the next construction shows, this bound is tight, even for simple drawings.

▶ Construction 4. For infinitely many values of n, there is a simple n-vertex graph with
6n − 12 edges that admits a simple 4 -free and 5 -free drawing.

Proof. Start with a plane drawing Γ0 of a 5-connected triangulation G0 on n vertices. For
an edge e = uv in G0, consider the two triangular faces f, f ′ in Γ0 incident to e, and let
w, w′ be the third vertex (different from u, v) in f, f ′, respectively. We insert a new edge
between w and w′ in the drawing by only traversing the two incident faces f, f ′ of e. As G0

GD 2025
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is 5-connected, ww′ is not already an edge in G0, as otherwise there is a separating triangle
in G0 with w, w′ and one of u, v. Now, we do the same for all edges in G0. Again, as G0 is
5-connected, for every edge ẽ ̸= e in G0 we obtain a pair different from w, w′, as otherwise
there is a separating 4-cycle in G0 with w, w′ and one endpoint of each of e, ẽ.

Figure 4 Left: A simple 4 -free and 5 -free drawing with 6n−12 edges. Right: A non-homotopic
4 -free drawing of a multigraph with 9n − 18 edges.

Call the resulting graph G and the resulting drawing Γ. By the above reasoning, the
graph G is simple (has no parallel edges). Moreover, observe that the drawing Γ is simple
(any two edges have at most one point in common). See Figure 4 (Left) for an illustration.

The only cells in Γ that are not incident to any vertex are 3 -cells. Hence, Γ is 4 -free
and 5 -free. Finally, since G0 is a plane triangulation, we have |E(G0)| = 3n − 6 and thus
|E(G)| = 2|E(G0)| = 6n − 12. ◀

5 Non-homotopic drawings without 4 -cells

In this section, we briefly discuss the 4 -cell. From Construction 4, we immediately obtain a
6n − 12 lower bound for the edge density of simple graphs that admit a 4 -free drawing. A
slight variation of this construction yields a better bound for non-homotopic drawings.

▶ Construction 5. For infinitely many values of n, there is an n-vertex multigraph with
9n − 18 edges that admits a non-homotopic 4 -free drawing.

Proof. As in Construction 4, we start with any 5-connected triangulation G0 on n vertices.
For each edge e = uv in G0, we again consider the unique pair w, w′ of common neighbors of
u and v. But this time, we add two parallel edges between w and w′, again drawing these
new edges so that they only cross the edge e of G0. For each triangle uvw of G0, this yields
two edges per vertex that emanate from the vertices into the triangle.

Additionally, we draw the new edges in a way that in every triangular face uvw of G0,
the two parallel edges from each vertex enclose exactly two crossings of the four other edges
that emanate into that face. This way, uvw is split into one cell of size 6 with no incident
vertex and six 3 -cells in the interior of uvw, as well as one 5 -cell at each edge of uvw and
three cells at each vertex of uvw (one 5 -cell and two 4 -cells); see Figure 4 (right).
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Thus, the obtained drawing is 4 -free. Non-homotopicity is apparent since only the pairs
of parallel edges form lenses, which are non-empty. Finally, the drawing contains 9n − 12
edges, since for each of the 3n − 6 edges of G0, two edges are added. ◀

By Construction 5, the edge density of 4 -free non-homotopic multigraphs is at least
9n − 18. For simple 4 -free graphs, it is at least 6n − 12 by Construction 4. However, we
have no non-trivial upper bound; see also Problem 1 in Section 8.

6 Non-homotopic 3 -free and non-homotopic quasiplanar drawings

As mentioned already, 3 -free drawings are closely related to quasiplanar drawings, that is,
drawings in which no three edges cross pairwise. As self-intersection of edges is forbidden,
any quasiplanar drawing is 3 -free but there exist 3 -free drawings that are not quasiplanar.

Several results from the existing literature contain upper and lower bounds on the edge
density of 3 -free and quasiplanar drawings. See Table 2 for an overview. In fact, the edge
density for both drawing styles is known to be 8n − 20 in the case of non-homotopic drawings
of multigraphs. However, there are still some gaps in the case of non-homotopic drawings
of simple graphs, and the case of simple drawings of (simple) graphs. In this section, we
provide several improvements.

For quasiplanar drawings, we improve the lower bound for non-homotopic drawings of
simple graphs from 7n − 28 [16] to 7.5n − 28 (Construction 7). We remark that there still
remains a gap to the upper bound of 8n − 20 [3].

For 3 -free drawings, we improve the lower bound for non-homotopic drawings of simple
graphs from 7.5n − O(1) [3] to 8n − 28 (Construction 8), almost matching the upper bound
of 8n − 20 [3]. For 3 -free simple drawings of graphs, we give a lower bound of 7n − 30
(Construction 6) and prove a nearly tight upper bound of 7n − 20 (Theorem 5). The previous
upper bound was 8n − 20 [3] in this case, too. See again Table 2.

Table 2 Previous and new upper and lower bounds on the number of edges in n-vertex quasiplanar
drawings and n-vertex 3 -free drawings. Upper bounds hold for all n ≥ 3, while lower bounds are
proven for infinitely many values of n.

Drawing Type Lower Bounds Upper Bounds

qu
as

ip
la

na
r multigraph

Non-homotopic
[16]

8n − 20
[3]

8n − 20

simple graph
Non-homotopic

implicitly in [16]
7n − 28

Construction 7
7.5n − 28

[3]
8n − 20

Simple drawing [16]
6.5n − 20

[3]
6.5n − 20

3
-fr

ee

multigraph
Non-homotopic

[16]
8n − 20

[3]
8n − 20

simple graph
Non-homotopic

implicitly in [3]
7.5n − O(1)

Construction 8
8n − 28

[3]
8n − 20

Simple drawing Construction 6 based on [3]
7n − 30

Theorem 5
7n − 20

[3]
8n − 20

GD 2025
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6.1 Upper bound for 3 -free drawings of simple graphs
Ackerman and Tardos proved in [3] that any n-vertex quasiplanar drawing (n ≥ 3) contains at
most 8n − 20 edges, but explicitly mention that they only use 3 -freeness. For arbitrary (not
necessarily non-homotopic) drawings, this would contradict Construction 3. However, their
proof relies on the additional assumption that the drawing is crossing-minimal quasiplanar,
which they use to rule out cells c with ∥c∥ ≤ 2. In arbitrary crossing-minimal 3 -free drawings,
this cannot be concluded. But recall from Observation 1 that in any non-homotopic drawing
every cell has size at least 3. Therefore, the proof of the 8n − 20 upper bound in [3] applies
to non-homotopic 3 -free drawings, even of multigraphs.

Ackerman and Tardos also considered the case of simple quasiplanar drawings, for which
they obtained an upper bound of 6.5n − 20 edges via a similar proof idea. The final case
distinction in this proof however, works only for quasiplanar drawings and not for 3 -free
drawings. Here, we extend their proof to simple 3 -free drawings by adding one further case.
This yields the slightly higher upper bound of 7n − 20. In fact, our bound is best possible
(up to an additive constant), as we shall later construct simple n-vertex graphs with 3 -free
drawings and 7n − 30 edges (Construction 6). In particular, the edge densities of simple
quasiplanar drawings and simple 3 -free drawings are indeed different.

As mentioned above, we modify the proof of Ackerman and Tardos. Hence, we only
sketch this proof and refer to [3] for more details.

▶ Theorem 5. Let Γ be a 3 -free drawings of an n-vertex multigraph G with n ≥ 3. If Γ
is non-homotopic, then G has at most 8n − 20 edges. If Γ is simple, then G has at most
7n − 20 edges.

Proof sketch. Consider any 3 -free drawing Γ of an n-vertex multigraph. We later distin-
guish whether Γ is non-homotopic or simple.

Initially, give each cell charge ch(c) := ∥c∥ − 4. By Lemma 2, the total charge is therefore
4n − 8. We will redistribute the charges in two steps and, via double counting, obtain an
upper bound on the number of edges. In the first discharging step, we obtain new charges ch′

by setting ch′(c) := ch(c) + 1
5 for each 4 -cell c and ch′(c) := ch(c) − ein(c)

5 for each c ∈ C≥5.
By Lemma 3, the total charge does not increase in this step. Using 3 -freeness, it can be
checked via a case distinction that for every cell c, we have ch′(c) ≥ v(c)

5 .
The final charge distribution ch′′ is obtained by moving charge from cells to vertices.

Namely, we distribute the excess charge ch′(c)− v(c)
5 of each cell fairly among its v(c) incident

vertices. We lower bound the charge ch′′(v) of an arbitrary vertex v by a case distinction on
the type of the cell cv that is obtained when removing v and its incident edge segments (see
Figure 5, left).

v

cv
+ 10

5 11
5

+ 2
5

7
5

3
5

+ 6
5

1
5

+ 2
5 3

5

3
5

+ 2
5

+ 2
5

3
5

Figure 5 Left: Removing a vertex v and its incident edge segments, a new cell cv (shaded gray)
is formed. Others: Case distinction in Theorem 5 where cv is a 3 -cell.

In the non-homotopic setting, Ackerman and Tardos prove ch′′(v) ≥ 4
5 . The minimum is

obtained if cv is a 2 -cell. When Γ is simple quasiplanar, they show ch′′(v) ≥ 7
5 and equality

can be obtained when cv is a 4 -cell. To complete the case distinction in our setting of
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simple 3 -free Γ, it suffices to consider the additional case that cv is a 3 -cell: Note that
ch′′(v) is unchanged, whether an edge segment of cv is crossed once or more than once, since
additional crossings only increase the number of 4 -cells incident to v, which cannot send
any charge to v. Thus, we only have to compute ch′′(v) if s = 1, 2, 3 edge segments of cv are
crossed (for s = 0, Γ is disconnected), see Figure 5, second-to-left to right. If s = 1, v has final
charge 10

5 , sent from a cell of size 7 with one incident vertex. If s = 2, ch′′(v) = 6
5 + 2

5 given
by a cell of size 6 with one incident vertex and a 5 -cell. Finally, if s = 3, ch′′(v) = 3 · 2

5
from the three incident 5 -cells. Thus in total, ch′′(v) ≥ 6

5 for every vertex v. Finally, by
rearranging

4n − 8 =
∑
c∈C

ch(c) ≥
∑
c∈C

v(c)
5 +

∑
v∈V

ch′′(v) ≥ 2
5 |E| + |V | · min

v
ch′′(v),

we obtain |E| ≤ 8n−20 for non-homotopic and |E| ≤ 7n−20 for simple 3 -free drawings. ◀

6.2 Lower bounds for 3 -free and quasiplanar drawings of simple graphs
Let us start with simple 3 -free drawings. We give a lower bound construction that is tight
up to an additive constant. In fact, in this case, it is enough to take a subdrawing of the
construction in [3, Theorem 4].

▶ Construction 6. For infinitely many values of n, there is a simple n-vertex graph with
7n − 30 edges that admits a 3 -free drawing.

Proof. Fix m ≥ 1 and start with an m × 3-grid of hexagons on n = 8m + 6 vertices, each
hexagon containing a straight-line drawing of K6 \ e where the vertical diagonal is missing
(see Figure 6, left). Now, identify opposite vertices along the side of the grid of length m to
obtain the surface of a cylinder whose top and bottom boundary contain 6 vertices. In the
resulting drawing, every vertex not on the boundary has degree 11. Now, add long edges
as depicted in the center of Figure 6 whenever this is possible. This increases the degree of
every vertex sufficiently far away from the boundary to 14. After adding three uncrossed
edges each on the top and bottom (see Figure 6, right), we arrive at the final drawing Γ.
Counting vertex degrees near the boundary, it can be confirmed that the number of edges
in Γ is 7n − 30.

Figure 6 Illustrations of Construction 6.

Before adding the long edges, the drawing is clearly 3 -free and no 3 -cells are created
by adding the long edges and the six planar edges. Finally, the simplicity of Γ follows from
the fact that Γ is locally homeomorphic to a straight-line drawing and no two edges are long
enough to meet twice on the cylinder. ◀
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In the remainder of this section, we construct non-homotopic drawings of simple graphs.
We start with a quasiplanar construction, followed by a construction of 3 -free such drawings.

▶ Construction 7. For infinitely many values of n, there is a simple n-vertex graph with
7.5n − 28 edges that admits a non-homotopic quasiplanar drawing.

Proof. Let n ≥ 14 be even. We describe a drawing on n vertices with the desired properties.
Precise edge paths are obtained by avoiding unnecessary crossings. Figure 7 (Top) depicts
the final drawing Γ. We draw
1. an n

2 -cycle Cin as a circle with equidistant points.
2. a concentric copy Cout of Cin with larger diameter.

We call two radially aligned vertices on Cin and Cout partners. For any vertex x, we
denote by x′ its partner, by x+k the vertex reached by k clockwise steps on the cycle of x,
and by x′

+k the partner of x+k. We continue drawing
3. a straight edge between any pair of partners.
4. for any vertex v, a straight edge to v′

+1.
5. for any vertex v on Cin an edge from v to v+2, drawn through the interior of Cin.
6. for any vertex v on Cout an edge from v to v+2, drawn through the exterior of Cout.
7. for any vertex v on Cin, an edge to v′

+2. The edge passes through the space between Cin
and Cout, crosses Cout in the edge v′v′

+1 and continues through the exterior of Cout.
8. for any vertex v on Cout, an edge to v′

+2. Edges are drawn symmetrically to the last step.
9. for any vertex v on Cin an edge to v+3. The edge first passes through the space between

Cin and Cout, crosses Cin between v+1 and v+2 and then goes through the interior of Cin.
10. an edge between v and v+3 for any vertex v on Cout, symmetrically to the last step.
11. a zig-zag path inside of Cin whose edges connect vertices of distance at least 4 on Cin.
12. another different zig-zag path in the interior of Cin such that no parallel edges are created.
13. a zig-zag path outside of Cout, again connecting vertices of distance at least 4 on Cout.
14. another such zig-zag path in the exterior of Cout.

The first three steps add n
2 edges each, step 4 adds n edges, the six steps thereafter n

2
edges each, and the last four steps n

2 − 7 edges each, totaling the desired 7.5n − 28 edges. As
the various steps connect vertices at different distances, the underlying graph is simple.

We now argue that Γ is quasiplanar. First, consider all edges except those in zig-zag
paths. These can be locally 3-colored such that one color class consists only of the edges in
step 3 and edges of the same color do not cross (see Figure 7). Therefore, any 3 pairwise
crossing edges would contain an edge from step 3, but each such edge is only crossed by two
other edges, which in turn do not cross.

Now, consider without loss of generality the zig-zag paths P and P ′ in the interior of Cin
and some edge e = uv in P . Observe that e is crossed by three sets of edges: (i) Edges in P ′,
(ii) edges from steps 1-10 that cross e at u, and (iii) edges from steps 1-10 that cross e at v.

We argue that no edges from (i), (ii), or (iii) cross. Note that no pair of edges in the
same group crosses. Next, an edge from (ii) cannot cross an edge from (iii) since u and v

have distance at least 4 on Cin, which two edges cannot span while crossing. Further, note
that no edge in (i) is incident to u or v. Since edges in (ii) and (iii) cross edges from zig-zag
paths only at u and v, they cannot cross edges from (i). Thus, e is not part of three pairwise
crossing edges, and in total, the drawing is quasiplanar.

Finally, we argue that Γ is non-homotopic. Note that in the above iterative construction,
simplicity is only violated by the edges added in steps 9 and 10. Each such edge is part of
four lenses (see dashed edges in Figure 7 (Top)), all of which are non-empty. ◀
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Figure 7 The drawings of Constructions 7 and 8 with the outer zig-zag paths omitted for visual
clarity, as well as zoomed-in strips of the local edge patterns.
Top: Construction 7 where edges except on the inner zig-zag paths are partitioned by color into
three plane drawings. The edges that form lenses with the thick edge are dashed.
Bottom: Construction 8 where green edges are those not present in Construction 7. The shaded
area is bounded by three pairwise crossing edges.

▶ Construction 8. For infinitely many values of n, there is a simple graph on n vertices and
8n − 28 edges that admits a non-homotopic drawing without 3 -cells.

Proof. Let n ≥ 14 be even and start with the 3 -free drawing from Construction 7. We
will reuse the notation established there. For any vertex v on Cout, we draw an edge from v

to v′
+3 that first moves through the space between Cin and Cout, crosses Cin in v′

+1v′
+2 and

then passes through the interior of Cin. The resulting drawing is shown in Figure 7 (Bottom).

Checking along the paths of the newly added edges, it can be verified that the drawing
remains 3 -free. Note that this process adds n

2 edges, none of which are parallel to each
other or previous edges. Therefore, we obtain the claimed density. ◀
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7 Non-homotopic drawings without 4 -cells

In this section, we consider the 4 -cell. In particular, we show that n-vertex graphs with
simple 4 -free drawings can have Θ(n2) many edges and minimum degree Ω(n). The
underlying graph in our construction is disconnected but can be made connected by adding
a constant number of edges and vertices.

▶ Construction 9. For infinitely many values of n, there is a simple n-vertex graph on
n2

18 − O(n) edges admitting a simple 4 -free drawing.

Proof. For each integer k ≥ 2, we construct a simple k-regular graph G(k) on n = 3 · (3k − 1)
vertices together with a simple 4 -free drawing; see Figures 8 and 9 for an illustration.
The graph G(k) consists of three isomorphic copies of a graph G′(k) on 3k − 1 vertices. To
describe G′(k) (and its drawing), we start with a set A of 3k − 1 equidistant points on a
circle Cout. The points in A will be the vertices of G′(k), which we denote a0, . . . , a3k−2 in
cyclic ordering around Cout. For each i = 0, . . . , 3k − 2 draw a straight-line edge ei between
ai and ai+k (throughout this construction all indices are taken modulo 3k − 1). Let bi be
the crossing point of ei and ei+1, and B the set of all such bi.

Then, b0, . . . , b3k−2 are equidistant points (blue disks in Figure 8) on a smaller circle Cin
concentric to Cout. Note that ei crosses ei+1 at bi and ei−1 at bi−1. Next, we add further
edges such that each ai has exactly k incident edges and at each bi, exactly k edges pairwise
cross. To this end, we insert edges from ai to ai+k+1, . . . , ai+⌊3k/2⌋ where the edge aiai+k+j

with j = 1, . . . , ⌊k/2⌋ goes through bi−j−1 and bi+2j ; see again Figure 8 for an illustration.
This completes the construction of G′(k). Observe that the described drawing of G′(k) is
simple (in fact, almost straight-line) and every vertex of G′(k) lies on the same cell.

a0

a1

a2

a3 a4

b0

k = 2

b1

b2

b3

b4
e0

e1

k = 5

a0

a1

a2

a5

a6

a7

e0

e1

b0

b1

a3k−2

Cout

Cout

Figure 8 Illustration of the k-regular graph G′(k) on 3k − 1 vertices for k = 2 and k = 5. At
each of the 3k − 1 points in B (blue disks), k edges are pairwise crossing. Corridors are indicated in
red. (Due to space reasons, only some corridors are shown for k = 5.)

We now take three copies of G′(k), called G′
1(k), G′

2(k), G′
3(k), and interleave the three

drawings so as to contain no 4 -cell. See Figure 9 for an illustration. We shall move the
vertices in such a way that each vertex a of G′

1(k) lies close to a point b in the set B of G′
2(k).

We locally perturb the k edges of G′
2(k) that all cross in b so that each of the k edges of G′

1(k)
emanating from a has its first crossing with a different edge of G′

2(k). Loosely speaking, the
edges of G′

2(k) at point b “support” the edges of G′
1(k) starting at point a. Similarly, we let

the edges of G′
3(k) support the edges of G′

2(k), and the edges of G′
1(k) support the edges

of G′
3(k).
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G′
1(k)

G′
2(k)

G′
3(k)

Cin

Cout

Figure 9 Connecting the drawings of G′
1(k), G′

2(k), and G′
3(k) to a 4 -free drawing of G(k).

More precisely, we consider in the drawing of G′(k) for each b ∈ B a straight and very
narrow corridor starting at b and ending on Cout between a0 and a3k−2. Then, we perturb
the k edges close to b to obtain a simple drawing in which b sees a segment of each of these k

edges. Now, place the simple drawings of G′
1(k), G′

2(k), G′
3(k) with corridors disjointly next

to each other. Move the vertices of G′
1(k) (without introducing new crossings) through the

prepared corridors of G′
2(k) (each vertex through one corridor). Place each vertex a of G′

1(k)
at the end of the corridor of G′

2(k) (at the point b ∈ B) so that each edge (of G′
1(k)) at a

crosses through a different edge (of G′
2(k)) near b. This ensures that a is not part of any

4 -cell. By similarly threading the vertices of G′
2(k) through the corridors of G′

3(k) and
the vertices of G′

3(k) through the corridors of G′
1(k), 4 -freeness is ensured. The resulting

drawing, as illustrated in Figure 9, is simple, and a quick calculation ensures the desired
density. ◀

8 Concluding remarks

With this paper, we initiated the study of drawings of graphs with a forbidden type of
cell. For arbitrary, non-homotopic, and simple drawings, and all cell types c but 4 , we
determined whether graphs that admit a c-free drawing have at most linear or quadratic
edge density. In many cases we obtain near-tight bounds. Being unable to control the 4 -cell
with our methods and constructions, we wonder in which regime the number of edges in
4 -free drawings lies.

▶ Open Problem 1. Is the edge density of simple graphs that admit a (simple, non-homotopic)
4 -free drawing quadratic in n?

Planar and 1-planar graphs can be characterized by forbidding not only one, but infinitely
many types of cells. Perhaps there are other, less obvious, instances of beyond-planar graph
classes characterized by forbidden cells. For example, in light of the density results on 3 -free
and quasiplanar drawings (Section 6), the underlying graph classes might even coincide for
non-homotopic drawings.

GD 2025
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▶ Open Problem 2. Does every graph that admits a non-homotopic 3 -free drawing also
admit a non-homotopic quasiplanar drawing?

The vast number of questions asked about other beyond planar graph classes – e.g. about
complexity of recognition and stretchability – can be carried over to our setting. However,
our forbidden patterns rely on the topology of concrete drawings rather than only abstract
combinatorics of the graph or the drawing (such as crossing edge pairs). Hence, the resulting
graph classes are not always closed under taking subgraphs. For example, K5 admits a simple

6 -free drawing while K3 does not. In light of this, the results that almost all cell types can
be avoided in drawings of Kn from Section 3 raise the question of which cell types can be
avoided in drawings of any graph.

▶ Open Problem 3. For which cell types c does every graph admit a (simple, non-homotopic)
c-free drawing?
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