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Abstract
A k-layer polyline drawing of a planar graph G is a planar drawing of G on a set L of k parallel lines
such that each vertex is mapped to a point on L and each edge is mapped to a polygonal chain with
the endpoints and bends lying on L. In the fixed embedding setting, the output drawing maintains
the given planar embedding, whereas in the variable embedding setting, the embedding may change.
Every n-vertex planar graph admits a polyline drawing on 2n/3 layers, which is the best known
upper bound for both settings. We improve this bound in the variable embedding setting. We
show that every planar graph can be drawn on 14n/27 + O(

√
n) layers by choosing a proper planar

embedding, breaking the long-standing 2n/3-layer barrier.
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1 Introduction

A polyline drawing of a planar graph G maps each vertex of G to a distinct point in the
Euclidean plane, and each edge of G to a polygonal chain such that no two edges cross except
possibly at their common endpoints. A straight-line drawing is a special case of polyline
drawing where every polygonal chain is a straight line segment. The area of a drawing Γ is
the area of the smallest axis-aligned rectangle R that encloses Γ. The width and height of Γ
are the width and height of R, respectively. Since a drawing can be scaled down arbitrarily,
to measure the area we often require Γ to be a grid drawing, i.e., a drawing where all the
vertices and bends have integer coordinates.

Drawing planar graphs on a small integer grid is an active research area in graph
drawing [5, 6, 11, 13, 16, 27, 22, 25]. In this paper we focus on layered polyline drawings that
attempt to reduce the height of the drawing while the other dimension could be unbounded.
This can be seen as a drawing of a graph on a set of parallel lines or layers. Formally, a
k-layer polyline drawing of a planar graph G is a planar drawing of G on a set L of k parallel
lines (i.e., layers) such that each vertex is mapped to a point on L and each edge is mapped
to a polygonal chain with the endpoints and bends lying on L. This drawing model has been
studied extensively in the literature [4, 14, 17, 24, 26]. The distances between consecutive
layers in a layered drawing can be assumed to be one unit, as any drawing with non-uniform
spacing can be modified to satisfy this property without increasing the number of layers [17]
(e.g., by adding extra bend points on edges at their intersections with layers and adjusting
the gaps between layers). The results on the grid drawing of planar graphs readily imply
upper bounds on the number of layers for their layered drawings. We briefly review these
results under two drawing models. One is the fixed embedding setting, where the output
drawing must respect the input planar embedding (i.e., a fixed combinatorial embedding
with a prescribed outer face), and the other is the variable embedding setting, where the
embedding in the output drawing can be different from the input embedding.
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34:2 Layered Polyline Drawings of Planar Graphs

Fixed Embedding Setting. Every n-vertex planar graph admits a straight-line grid drawing
with O(n2) area [11, 25]. Many algorithms have appeared in the literature that compute
straight-line drawings [8, 9] and polyline drawings [6, 29] of planar graphs, where one
dimension of the drawing (equivalently, number of layers) is bounded by 2n/3. To provide an
upper bound on area, drawing algorithms are typically presented on maximal planar graphs
or planar triangulations, where each face of the given embedding is a cycle of three vertices.
Similarly, throughout the paper, we will consider the input to be a planar triangulation. This
upper bound on the number of layers is tight, that is, every polyline drawing of an n-vertex
nested triangles graph requires at least ⌊2(n − 1)/3⌋ layers [6].

Variable Embedding Setting. The upper bound of 2n/3 layers implied by the results in
the fixed embedding setting [8, 6, 28] applies also to the variable embedding setting. To the
best of our knowledge, it is not known whether a better bound can be achieved for arbitrary
planar graphs in the variable embedding setting. However, better upper bounds are known
in the variable embedding setting for several subclasses of planar graphs (e.g., outerplanar
graphs [3], series-parallel graphs [31, 30], planar graphs with small maximum degree or small
cycle separator [17], planar 3-trees [21, 20], and nested triangles graphs [18]). The best
known lower bound on layers in the variable embedding setting is ⌊n/3 − 1⌋ [18]. The large
gap between the upper and lower bounds motivates this paper.

Our Contribution. We develop an algorithm that can draw arbitrary n-vertex planar graphs
on 14n/27 + O(

√
n) layers in the variable embedding setting. The idea is to use a balanced

cycle separator of size O(
√

n) to decompose the input planar graph into two subgraphs. We
draw these subgraphs separately such that they can be merged without adding too many
additional layers. The main challenge appears to be computing careful positions of the
separator vertices in both drawings such that during the merge step, the vertices can be
aligned with small modification. We tackle this by designing a drawing method that allows
flexible positioning of separator vertices with necessary visibilities.

Note that the technique of using a separator to decompose a graph into subgraphs and
then to merge the drawing of the subgraphs to obtain a drawing has previously been used
in the literature [31, 15]. In particular, Durocher and Mondal [15] used a cycle separator
of size λ ∈ O(

√
n) to draw an n-vertex planar graph in 4n/9 + O(λ∆) layers, where ∆ is

the maximum degree in the graph. If ∆ ∈ o(
√

n), the bound becomes 4n/9 + o(n) layers,
but for ∆ ≥

√
n, it can become larger than n layers. When drawing each subgraph in 4n/9

layers, their strategy was to contract the rest of the graph into a single vertex. However, the
merge step required rerouting the edges incident to the separator vertices, which added an
additional O(λ∆) layers. Later, they used an edge separator of size λ′ ∈ O(

√
n∆) instead of

a cycle separator to improve the bound to 4n/9 + O(λ′) [17]. However, both these additive
terms O(λ∆) and O(λ′) can sometimes be large (e.g., consider a wheel graph), and the total
layer count may exceed n.

2 Preliminaries

A planar graph G is called maximal if the addition of any more edges to G results in a
non-planar graph. Let Γ be a straight-line drawing of a maximal planar graph in R2. Then
every face in Γ corresponds to a triangle in R2, and hence the graph is also called a planar
triangulation. A planar graph is called internally triangulated if every inner face is a cycle of
length three. A simple cycle C of G is called a cycle separator if both the interior and exterior
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Figure 1 (a) Illustration for a canonical ordering. The graph G11 lies in the shaded region. (b)
Corresponding Schnyder realizer. (c) Illustration for a Schnyder realizer of H.

of C contain at most 2n/3 vertices. Every planar graph admits a simple cycle separator of size
O(

√
n) and several studies attempt to improve the constant factor [12, 19, 23]. Throughout

the paper we assume that the layers are horizontal and denote the x- and y-coordinates of a
vertex v by x(v) and y(v), respectively.

Canonical Ordering and Schnyder Realizer. Let G be a planar triangulation, and let
w1, w2 and wn be the outer vertices of G in counter-clockwise order. Let σ = (w1, w2, ..., wn)
be an ordering of all vertices of G. We denote by Gk, 3 ≤ k ≤ n, the subgraph of G induced
by {w1, w2, . . . , wk}, and by Pk, the clockwise path on the outer face of Gk that starts at w1
and ends at w2. The ordering σ is called a canonical ordering of G with respect to the outer
edge (w1, w2) if for each k, 3 ≤ k ≤ n, the following two conditions are satisfied [11]:
(a) Gk is 2-connected and internally triangulated.
(b) If k + 1 ≤ n, then wk+1 is an outer vertex of Gk+1 and the neighbors of wk+1 in Gk

appear consecutively on Pk.

For a vertex wk+1, let Pk be the outer path w1, . . . , wl, . . . , wr, . . . , w2 of Gk, where wl

and wr are the leftmost and rightmost neighbors of wk+1, respectively. We call the edges
(wl, wk+1) and (wk+1, wr) the l-edge and the r-edge of wk+1, respectively. The other edges
incident to wk+1 in Gk are called the m-edges of wk+1. For example, in Figure 1(a), the
edges (w12, w10), (w12, w2) are respectively the l-edge and r-edge of w12. The m-edges of w12
are (w12, w11), (w12, w9) and (w12, w6). The set of all m-edges in G corresponds to a tree
Tm, which is rooted at wn and spans all the inner vertices. Figure 1(b) illustrates Tm in thin
solid lines. Similarly, the set of l-edges in G except (w1, wn) and (w1, w2) corresponds to a
tree rooted at w1, and the set of r-edges except (w2, wn) and (w1, wn) is a tree rooted at w2.
Figure 1(b) depicts the trees Tl and Tr in thick black and thick gray edges, respectively. The
trees {Tl, Tr, Tm} form the Schnyder realizer [25] of G. Each of Tl, Tr and Tm corresponds
to a canonical ordering of G. Let leaf(Tl), leaf(Tr) and leaf(Tm) be the number of leaves in
Tl, Tr and Tm, respectively.

▶ Lemma 1 (Bonichon et al. [7]). Let {Tl, Tr, Tm} be a minimum Schnyder realizer of an
n-vertex triangulation. Then leaf(Tl) + leaf(Tr) + leaf(Tm) = 2n − ∆, where ∆ is the number
of cyclic inner faces in the realizer.

Generalization to Internally Triangulated Graphs. The notions of canonical ordering and
Schnyder realizer have been extended to other classes of planar graphs that are not necessarily
triangulated [1, 2]. However, to describe our algorithm in this paper, we only need to consider
the 2-connected and internally triangulated graphs. Let H be a 2-connected and internally
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34:4 Layered Polyline Drawings of Planar Graphs

triangulated graph with the outer vertices v1, . . . , vk, vn in counter-clockwise order. If k > 2,
then consider a dummy edge (v1, vk) and triangulate the face v1, . . . , vk, v1. We can now
order the inner vertices of H satisfying properties (a) and (b) of a canonical ordering. We
can define the l- and r-edges in the same way as we defined for canonical ordering. Observe
that the set of m-edges corresponds to a tree Tm, which is rooted at vn, but the l-edges and
r-edges may no longer form the trees Tl and Tr. To form the trees Tl and Tr, we assume the
edges on the outer path v1, v2, . . . , vk to belong to both these trees, e.g., Figure 1(c). Let
Γ be a drawing of H. We call a vertex v of H to have top visibility in Γ if the vertically
upward ray starting at v does not intersect Γ except at v.

We now have the following lemma, which will be used later to describe our drawing
algorithm.

▶ Lemma 2. Let H be a 2-connected and internally triangulated graph with the outer vertices
v1, . . . , vk, vn in counter-clockwise order. Let Tl, Tr, Tm be a Schnyder realizer of H rooted
at v1, vk, vn, respectively, where v1, . . . , vk is a path in both Tl and Tr. Then H admits the
following types of layered drawings:
(a) A drawing on leaf(Tl) layers where the path v1, . . . , vk is drawn on the bottommost layer

and v1, vk have top visibility.
(b) A drawing on leaf(Tr) layers where the path v1, . . . , vk is drawn on the bottommost layer

and v1, vk have top visibility.
(c) A drawing on leaf(Tm) + k layers where the path v1, . . . , vk lies along a vertical line L

(perpendicular to the layers) and all other vertices and edges lie in the same half-plane
of L.

Proof. Here we show that H admits a drawing on a (leaf(Tm) + k) × leaf(Tl) grid where
the path v1, . . . , vk is drawn on the bottommost layer and v1, vk has top visibility. This
will correspond to the type-(a) drawing of the lemma, whereas the type-(c) drawing can be
obtained by rotating the drawing 90◦. To obtain the drawing of type-(b), one can construct
drawing on a (leaf(Tm) + k) × leaf(Tr) grid symmetrically.
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Figure 2 (a) A planar graph H. (b) Pseudo-segments of Tl are shaded in gray. (c)–(f) Illustration
for some vertex insertions in the order they appear in σ. (g) The final polyline drawing of H.
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We assume familiarity with the “shift algorithm” to compute grid drawings for planar
graphs [11]. We treat the vertex vn as a leaf of Tl. Let z1(= v1), . . . , zk(= vk), zk+1, . . . ,

zn(= vn) be the vertices listed according to a preorder traversal of Tl, where the children are
visited in counter-clockwise order. Then the ordering σ = (zk+1, . . . , zn) is another canonical
ordering of G [10, Lemma 3.5]. Let ℓ1(= zk), ℓ2, . . . , ℓs(= zn) be the leaves of Tl according to
the preorder traversal of Tl, where s is the number of leaves in Tl. We assign each leaf of Tl

a path called pseudo-segment, as follows. The first pseudo-segment S1 assigned to ℓ1 is the
unique path from z1 to l1(= zk). The pseudo-segment Sj assigned to ℓj , where 1 < j ≤ s,
is the shortest path in Tl that starts at ℓj and ends at a vertex which is adjacent to some
previous pseudo-segment. Figure 2(a)–(b) illustrates such a pseudo-segment decomposition
of Tl. Let Hq be the subgraph of H induced by the vertices z1, . . . , zq, where 1 ≤ q ≤ n. We
now show that Hq admits a drawing Γq satisfying the following properties.
I1. Γq is a polyline drawing on (δ + k) × j layers, where δ is the number of leaves of Tm in

Hq and zq belongs to the pseudo-segment Sj .
I2. The y-coordinates of the vertices of a pseudo-segment Si is i, where 1 ≤ i ≤ j.
I3. The clockwise path Pq on the outer face of Hq is drawn as a strictly x-monotone polygonal

chain in Γq, i.e., the vertices on Pq have top visibility.

We first draw the path z1(= v1), . . . , zk(= vk) by placing each zi, where 1 ≤ i ≤ k, at
(i, 1) (Figure 2(c)). It is straightforward to verify I1–I3 for Γk. We now add the remaining
vertices in the order they appear in σ. While inserting a new vertex zt, where t > k, we
consider two cases depending on whether zt is a leaf or an internal vertex in Tm. Let
Pt = (z1, . . . , zl

t, zt, zr
t , . . . , zk) be the clockwise path on the outer face of Ht. Let Sj′ be the

pseudo-segment that contains zt.

Case 1. If zt is a leaf of Tm, then we shift the vertices zr
t , . . . , zk and their descendants

in Tm one unit to the right, e.g., see the vertex insertions in Figure 2(d)–(f). Then we
place zt at (x(zr

t ) − 1, j′). Note that zl
t and zr

t have top visibility in Γt−1 and retain this
visibility even after the shift. Since j′ is the highest y-coordinate in the current drawing and
since x(zt) = x(zr

t ) − 1, we can draw the edge (zr
t , zt) with a straight line segment without

introducing any edge crossing. If zl
t belongs to Sj′ or if x(zt) = x(zl

t) + 1, then we can draw
(zt, zr

t ) with a straight line segment. Otherwise, we use a bend point at (x(zl
t) + 1, j′).

We now show that Γt satisfies properties I1–I3. Here I1 holds as the drawing width
increases by one unit due to the insertion of a new leaf and the height of the drawing becomes
j′. The shift operation keeps the resulting drawing planar, does not change the y-coordinates
of the vertices, and does not affect the x-monotonicity of the edges [11]. Therefore, the
drawing of the l- and r-edges of zt ensures that the path (zl

t, zt, zr
t ) is drawn as an x-monotone

polygonal chain where the vertices zl
t, zt, zr

t have top visibility. Consequently, the drawing Γt

satisfies I2 and I3.

Case 2. If zt is an internal vertex of Tm, then we place zt at (x(zr
t ) − 1, j′). Let (zt, z′) be

the first m-edge of zt in clockwise order. Since Pt−1 is strictly x-monotone in Γt−1, the other
vertices on the pseudo-segment Sj′ before zt lie to the left of the line x = x(z′). Since z′ is a
child of v in Tm, it cannot belong to Sj′ and hence its y-coordinate is smaller than j′. Hence
the grid point (x(zr

t ) − 1, j′) is empty.
Since x(zt) = x(zr

t )−1, we can draw (zt, zr
t ) with a straight line segment (e.g., insertion of

z14 in Figure 2(g)). If zl
t belongs to Sj′ or if x(zt) = x(zl

t) + 1, then we can draw (zt, zl
t) with

a straight line segment. Otherwise, we use a bend point at (x(zl
t) + 1, j′) (Figure 2(g)). We

now consider the drawing of the m-edges. To draw an m-edge (zt, w), we first check whether
y(w) = j′ − 1. If so, then we can draw the edge with a straight line segment. Otherwise, we
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34:6 Layered Polyline Drawings of Planar Graphs

create a bend point at (x(w), j′ − 1). This is possible because w appears in a pseudo-segment
Sj′′ where j′′ < j, and thus the grid point (x(w), j′ − 1) is empty. Here I1 holds as we do
not change the width of the current drawing and the height increases only when we start
adding a new pseudo-segment. I2–I4 hold by the drawing of the l- and r-edges of zt ensuring
the top visibility for zl

t, zt, zr
t , and by the property of the shift algorithm that it preserves

the y-coordinates of the vertices and the x-monotonicity of the edges [11]. ◀

3 Drawing Algorithm

We first choose a suitable embedding of G, then decompose the graph into two subgraphs
and draw them independently, and finally, merge these drawings by considering different
cases depending on the structure of their Schnyder realizers.

Embedding Selection. Let G be a planar triangulation with a simple cycle separator
C = (v1, . . . , vk) of size k = O(

√
n), as shown in bold in Figure 3(a). Let Γ be a planar

embedding of G and let (a, b, c) be an inner face in Γ such that (a, b) = (v1, vk) is an edge of
C and c is an inner vertex in Γ. We then create a new planar embedding Γ′ by choosing
(a, b, c) as the outer face (Figure 3(b)). We then add a subdivision vertex d on the edge
(a, b) (Figure 3(c)), and triangulate the inner face incident to d. Finally, for each pair of
vertices vi, vj in C, where 1 ≤ i + 1 < j ≤ k, if the edge (vi, vj) exists in G, then we add a
subdivision vertex on (vi, vj) and triangulate the graph. Let G′ be the resulting drawing.
By Gi (Go) we refer to the subgraph of G′ that lies in the closed interior (exterior) of C. By
no and ni we refer to the number of vertices of Go and Gi, respectively. Since we added at
most O(

√
n) division vertices, no, ni ≤ 2n/3 + O(

√
n).

a

bc

G

Go

Gi

Gi

Go

a

a

b

b

c c

d

Go

a b

c

a b

a

a b

b ab
d

a b

(a) (b) (c)

(d) (e) (f) (g)

(h) (i)

b

O(
√
n)

≤ αn

Gi

l′

dc

c c

a
(j)

b

c
d

Figure 3 (a) A planar graph G with a cycle separator shown in bold. (b) Computation of the
required embedding. (c) An illustration for G′. (d)–(e) A drawing of Go, where only a few edges
adjacent to the vertices of a, . . . , b are shown. (f)–(g) A drawing of Gi. (h)–(i) Modification of the
drawing of Go. (j) The final drawing of G′ obtained by merging the drawings of Go and Gi.
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Draw and Merge. Let T o
l , T o

r , T o
m be the trees of a minimum Schnyder realizer of Go rooted

at a, b, c, respectively. Similarly, let T i
l , T i

r , T i
m be the trees of a minimum Schnyder realizer

of Gi rooted at b, a, d, respectively. Let α ∈ (0, 2/3] be a positive constant to be determined
later. We now consider two cases depending on whether the following condition holds:
min{leaf(T o

l ), leaf(T o
r )} ≤ αn and min{leaf(T i

l ), leaf(T i
r)} ≤ αn.

Case 1 (min{leaf(T o
l ), leaf(T o

r )} ≤ αn and min{leaf(T i
l ), leaf(T i

r)} ≤ αn). In this
case we construct a drawing of G′ on αn+O(

√
n) layers, as follows. By Lemma 2, Go admits a

drawing on min{leaf(T o
l ), leaf(T o

r )} ≤ αn layers with the path v1(= a), v2, . . . , vk(= b) of the
cycle separator drawn on the bottommost layer (Figure 3(d)–(e)). Let l0 be the bottommost
layer and let l1 be the layer above l0. We consider a horizontal line l′ between these two layers
(i.e., the blue line in Figure 3(h)) and add a bend point at each intersection point between l′

and the edges. We insert k − 1 layers below l0 and move the vertices vk−1, . . . , v2, v1(= a)
on these newly inserted layers consecutively below b, as shown in Figure 3(h)–(i). We redraw
the edges and part of the edges below l′ with straight line segments. Since the ordering of the
bend points on l′ corresponds to the ordering of the vertices a, . . . , b in the newly inserted
layers, the resulting drawing remains planar. Since k + 1 = O(

√
n), the drawing takes at

most αn+O(
√

n) layers. We draw Gi using Lemma 2 on min{leaf(T i
l ), leaf(T i

r)} ≤ αn layers
with the path v1(= a), v2, . . . , vk(= b) of the cycle separator drawn on the bottommost layer
(Figure 3(f)–(g)). We then modify the drawing to bring the vertices vk−1, . . . , v1(= a) on
a set of (k − 1) consecutive bottommost layers of the drawing below b. To obtain the final
drawing of G′, we bring the drawings of Go and Gi close together such that they coincide on
the path a, . . . , b (Figure 3(j)). The top visibility of b ensures planarity, i.e., the polylines
representing (c, b) and (d, b) do not overlap. Since these drawings share a common set of
layers, the number of layers is bounded by αn + O(

√
n).

Case 2 (min{leaf(T o
l ), leaf(T o

r )} > αn or min{leaf(T i
l ), leaf(T i

r)} > αn). Without
loss of generality assume that min{leaf(T o

l ), leaf(T o
r )} > αn. Then by Lemma 1, we have

leaf(T o
m) ≤ 2no − 2αn. In this scenario, we consider two subcases depending on whether

leaf(T i
m) ≤ 2ni/3 or not, and in both cases we construct a drawing of G′ on 2no − 2αn +

O(
√

n) + 2ni/3 layers.
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a b
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Gi

a b
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2αn+

O(
√
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2αn+

2ni/3

O(
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≤ 2no−
2αn+

≤ 2ni/3

(a) (b) (c) (d)

(e) (f) (g) (h)
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Go
Go

dd
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b

c
Go
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Figure 4 Illustration for (a)–(d) Case 2.1 and (e)–(h) Case 2.2.
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34:8 Layered Polyline Drawings of Planar Graphs

Case 2.1 (leaf(T i
m) ≤ 2ni/3). We first draw Go using Lemma 2 in leaf(T o

m) + k ≤ 2no −
2αn + O(

√
n) layers where the path v1, . . . , vk is drawn along a vertical line L (perpendicular

to the layers) and the drawing lies to the left half-plane of L (Figure 4(a)–(b)). We now
draw Gi on the right half-plane of L taking the drawing of v1, . . . , vk as input, and inserting
the remaining vertices of Gi following the method described in the proof of Lemma 2. This
inserts new layers within the drawing of Go. Since leaf(T i

m) ≤ 2ni/3, the total number of
layers remains bounded by 2no − 2αn + O(

√
n) + 2ni/3 (Figure 4(c)–(d)).

Case 2.2 (leaf(T i
m) > 2ni/3). We draw Go in the same way as in Case 2.1 on 2no −

2αn + O(
√

n) layers. By Lemma 1, either leaf(T i
l ) or leaf(T i

r) is at most 2ni/3. By Lemma 2,
Gi admits a drawing on 2ni/3 layers with the path v1(= a), v2, . . . , vk(= b) drawn on the
bottommost layer l0 (Figure 4(e)–(f)). We modify the drawing similar to Case 1 by inserting
new layers below l0 and moving the vertices vk−1, . . . , v1(= a) below b. However, instead of
placing these vertices on consecutive layers, we move them to their corresponding layers in
the drawing of Go. Hence the total number of layers after merging the drawings of Go and
Gi is bounded by 2no − 2αn + O(

√
n) + 2ni/3 (Figure 4(g)–(h)).

Upper Bound Computation. The algorithm produces a drawing on max{αn+O(
√

n), 2no −
2αn + O(

√
n) + 2ni/3} layers. Since no + ni = n + O(

√
n) and no ≤ 2n/3 + O(

√
n), we have

2no − 2αn + O(
√

n) + 2ni/3 = 2(no + ni)/3 + 4no/3 − 2αn + O(
√

n)
≤ 2n/3 + 8n/9 − 2αn + O(

√
n)

≤ 14n/9 − 2αn + O(
√

n).

Hence the number of layers is bounded by max{αn + O(
√

n), 14n/9 − 2αn + O(
√

n)}
layers, which is minimized when α = 14/27. We thus have the following theorem.

▶ Theorem 3. Every planar graph with n vertices admits a planar polyline drawing on
14n/27 + O(

√
n) layers.

4 Conclusion

In this paper we have shown how to draw an n-vertex planar graph using 14n/27 + O(
√

n)
layers. Since only a ⌊n/3 − 1⌋ lower bound is known [18], a natural open problem is to reduce
this gap. It would be interesting to investigate whether our strategy can be combined with
the techniques in [15, 17] to improve the upper bound further.

We did not analyze the number of bends produced in our drawing, which could be another
parameter for optimization. The trade-off between the number of layers and the number of
bends also requires further investigation.
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