
A Walk on the Wild Side: A Shape-First
Methodology for Orthogonal Drawings
Giordano Andreola #

Roma Tre University, Italy

Susanna Caroppo #

Roma Tre University, Italy

Giuseppe Di Battista #

Roma Tre University, Italy

Fabrizio Grosso #

CeDiPa - University of Perugia, Italy

Maurizio Patrignani #

Roma Tre University, Italy

Allegra Strippoli #

Roma Tre University, Italy

Abstract

Several algorithms for the construction of orthogonal drawings of graphs, including those based
on the Topology-Shape-Metrics (TSM) paradigm, tend to prioritize the minimization of crossings.
This emphasis has two notable side effects: some edges are drawn with unnecessarily long sequences
of segments and bends, and the overall drawing area may become excessively large. As a result,
the produced drawings often lack geometric uniformity. Moreover, orthogonal crossings are known
to have a limited impact on readability, suggesting that crossing minimization may not always be
the optimal goal. In this paper, we introduce a methodology that “subverts” the traditional TSM
pipeline by focusing on minimizing bends. Given a graph G, we ideally seek to construct a rectilinear
drawing of G, that is, an orthogonal drawing with no bends. When not possible, we incrementally
subdivide the edges of G by introducing dummy vertices that will (possibly) correspond to bends in
the final drawing. This process continues until a rectilinear drawing of a subdivision of the graph
is found, after which the final coordinates are computed. We tackle the (NP-complete) rectilinear
drawability problem by encoding it as a SAT formula and solving it with state-of-the-art SAT
solvers. If the SAT formula is unsatisfiable, we use the solver’s proof to determine which edge
to subdivide. Our implementation, domus, which is fairly simple, is evaluated through extensive
experiments on small- to medium-sized graphs. The results show that it consistently outperforms
ogdf ’s TSM-based approach across most standard graph drawing metrics.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases Non-planar Orthogonal Drawings, SAT Solver, Experimental Comparison

Digital Object Identifier 10.4230/LIPIcs.GD.2025.35

Related Version Full Version: https://arxiv.org/abs/2508.19416 [1]

Funding This research was supported, in part, by MUR of Italy (PRIN Project no. 2022ME9Z78 –
NextGRAAL and PRIN Project no. 2022TS4Y3N – EXPAND). The fourth author was supported
by Ce.Di.Pa. - PNC Programma unitario di interventi per le aree del terremoto del 2009-2016 -
Linea di intervento 1 sub-misura B4 - “Centri di ricerca per l’innovazione” CUP J37G22000140001.

© Giordano Andreola, Susanna Caroppo, Giuseppe Di Battista, Fabrizio Grosso, Maurizio Patrignani,
and Allegra Strippoli;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Graph Drawing and Network Visualization (GD 2025).
Editors: Vida Dujmović and Fabrizio Montecchiani; Article No. 35; pp. 35:1–35:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giordano.andreola@uniroma3.it
https://orcid.org/0009-0003-7406-3514
mailto:susanna.caroppo@uniroma3.it
https://orcid.org/0009-0001-4538-8198
mailto:giuseppe.dibattista@uniroma3.it
https://orcid.org/0000-0003-4224-1550
mailto:fabrizio.grosso@unipg.it
https://orcid.org/0000-0002-5766-4567
mailto:maurizio.patrignani@uniroma3.it
https://orcid.org/0000-0001-9806-7411
mailto:allegra.strippoli@uniroma3.it
https://orcid.org/0009-0003-7412-5543
https://doi.org/10.4230/LIPIcs.GD.2025.35
https://arxiv.org/abs/2508.19416
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

35:2 A Walk on the Wild Side: A Shape-First Methodology for Orthogonal Drawings

1 Introduction

Orthogonal drawings, where edges are represented as chains of horizontal and vertical segments,
are a foundational topic in Graph Drawing, valued both for their practical applications and
for the rich body of research they have inspired over the past four decades.

The most well-known and widely studied methodology for constructing orthogonal draw-
ings is the Topology-Shape-Metrics (TSM) approach (see, e.g., [19, 42, 43]). TSM generates
an orthogonal drawing in three steps. First, a planar embedding (topology) of the graph is
computed, and dummy vertices are possibly introduced to represent edge crossings. Second,
a shape – minimizing the number of bends (points where two edge segments meet at a right
angle) – is computed, see [40]. Third, an orthogonal drawing (metrics) consistent with the
computed shape is constructed. Although originally designed for graphs with maximum
degree 4, TSM has been extended to general graphs by either representing vertices as boxes
sized proportionally to their degree (see, e.g., [4, 5]), or by allowing partial edge overlaps,
which requires adapting the flow-based optimization accordingly (see, e.g., [22, 24]).

While TSM is arguably the most well-known method, alternative approaches have
been proposed for orthogonal drawings (see, e.g., [10, 11, 33, 34, 39]). Nonetheless, the
comprehensive and still influential quantitative aggregate [3] evaluation in [20] shows that the
TSM approach outperforms all the above cited alternative methods across nearly all standard
graph drawing metrics. Note that other algorithms (see e.g., [28]) have been proposed and
assessed not through quantitative measures but via user studies. Also, the algorithm in [26]
neglects the experiments in [20] in favor of a comparison with [28].

Furthermore, the success of TSM is underscored by its implementation in widely used
open-source libraries such as ogdf [13] and GDToolkit [18], as well as its adoption in the
Graph Drawing engine of yWorks [22, 24, 29, 36], a leading company in graph visualization.

However, two key observations can be made. (1) Existing algorithms, including those
based on TSM, prioritize minimizing crossings. This often leads to unnecessarily long edge
paths with many bends and results in drawings with large area and poor geometric uniformity.
(2) Several studies (e.g., [27]) have shown that orthogonal crossings, where edges meet at
right angles, have minimal impact on readability. This suggests that aggressively minimizing
crossings in orthogonal drawings may not always be the optimal design goal.

In this paper, we start from the two aforementioned observations and introduce a
methodology, called Shape-Metrics (SM), that “subverts” the traditional TSM pipeline. SM
focuses first on bends. Namely, given a graph G, we ideally seek to construct a rectilinear
drawing of G, that is, a drawing in which all edges are represented by straight horizontal
or vertical segments with no bends. When such a drawing is not feasible, we incrementally
subdivide the edges of G by introducing dummy vertices. Each of these vertices will
(possibly) correspond to a bend in the final drawing. We continue this process until we obtain
a subdivision of G that admits a rectilinear drawing. Once such a subdivision is found, the
final metric phase computes the actual coordinates of the drawing.

SM is based on the concept of shaped graph, which we define as an assignment of a
label from the set L = {L, R, D, U} to each of its edges, indicating the direction – Left,
Right, Down, or Up – of that edge in a drawing. Given a shaped graph, it can be decided in
polynomial time [30] if it admits a rectilinear drawing with that shape. On the other hand,
checking if a graph admits a rectilinear drawable shape is NP-complete [21]. We exploit a
new simple characterization of rectilinear drawable shaped graphs. Informally, a shaped
cycle is said to be complete if its edges have all the four labels; we show that a shaped graph
is rectilinear drawable if and only if all its cycles are complete.

G. Andreola, S. Caroppo, G. Di Battista, F. Grosso, M. Patrignani, and A. Strippoli 35:3

We tackle the NP-hardness barrier by formulating the rectilinear drawability testing
problem as a Boolean satisfiability (SAT) problem and leveraging the power of modern SAT
solvers. SAT solvers have already proven to be effective in combinatorics and geometry (see,
e.g., [12, 17, 31, 37, 38]). However, as far as we know, SAT solvers have rarely been applied to
Graph Drawing. The related works we are aware of are [9], which employs a hybrid ILP/SAT
approach to compute st-orientations and visibility representations, [8] where a SAT solver
is used to compute book embeddings, and [14, 15, 16] where a SAT solver is used to test
upward planarity.

There are differences and analogies between SM and TSM. TSM leverages the fact that
checking if a graph is planar can be done efficiently. On our side we have that, unfortunately,
checking if a graph is rectilinear drawable is NP-complete [21]. On the other hand both
methodologies use specific properties of shapes: TSM’s cornerstone is the balance of turns in
shapes of faces of planar graphs [44], while SM’s cornerstone is the completeness of cycles.
Also, both methodologies augment the graph to be drawn with dummy vertices, TSM to
represent crossings, SM to represent bends.

We implemented SM in a tool called domus (Drawing Orthogonal Metrics Using the Shape)
and experimented its effectiveness against the TSM implementation available in ogdf [13]
measuring widely adopted Graph Drawing metrics [3, 20]. Although other comparable tools
exist (e.g., GDToolkit [18]), we selected ogdf as our benchmark due to its open-source
nature, widespread adoption within the Graph Drawing community, and the fact that it has
benefited from over a decade of active development and optimization. In view of the results
in [20] it was pointless to compare domus with the algorithms in [10, 11, 33, 34, 39]. Also,
the algorithms in [26, 28] adopt a definition of orthogonal drawing which is different from the
widely adopted one given in this paper. E.g., even if a vertex has degree less or equal than
4 more than one of its incident edges can exit from the same direction. Hence, comparing
domus with them would be unfair.

We did two sets of experiments, which we refer to as “in-vitro” and “in-the-wild”. The
in-vitro experiments aim to thoroughly evaluate the performance and characteristics of
SM, including the use of the SAT solver, on a dataset of random graphs with predefined
sizes and densities. These graphs have a maximum degree of 4, which is the baseline for
orthogonal drawings, and contain 20 − 60 vertices, a range considered important for node-link
representations in graph visualization (see, e.g., [25]). The in-the-wild experiments use
the Rome Graphs dataset [20], which is one of the most popular collections of graphs [3],
comprised of 11, 534 graphs, having 10 − 100 vertices and 9 − 158 edges, with maximum
degree 13. The experiments show that for most of the typical graph drawing metrics [3],
domus outperforms the TSM algorithm implemented in ogdf. Moreover, SM is simple
to implement: it reduces shape constraints to a SAT formula, invokes an off-the-shelf SAT
solver, and computes the final drawing metrics using a slight variation of standard TSM
compaction techniques. Figure 1 shows two drawings of the same graph, one produced with
ogdf and the other with domus.

The paper is organized as follows. Preliminaries are in Section 2. Section 3 illustrates the
characterization of rectilinear drawable shaped graphs which is the milestone of SM. Section 4
describes SM, clarifying how its steps are activated and implemented and the role played by
the SAT-solver. Section 5 and Section 6 show the in-vitro and the in-the-wild experiments,
respectively. Conclusions and open problems are proposed in Section 7. Because of space
limitations some proofs are only sketched. A full version of such proofs and other extra
material is in [1].

GD 2025

35:4 A Walk on the Wild Side: A Shape-First Methodology for Orthogonal Drawings

765

43

210

(a)

0 1

2

3

4

5 6

7

(b)

Figure 1 The graph in Fig. 2.4 of [19], represented: (a) with domus and (b) with ogdf.

2 Preliminaries

For basic graph drawing terminology and definitions refer, e.g., to [19, 32].
Let G be a graph. with vertex set V (G) and edge set E(G). For technical reasons, we

assign an arbitrary (e.g., random) orientation to each edge in E(G); thus, if an edge is
denoted as (u, v), it is considered as directed from u to v. However, when referring to paths,
cycles, vertex degrees, or connectivity in G, we disregard these orientations. A path (resp.,
cycle) of G is simple if each of its vertices occurs only once.

A cut-vertex is a vertex whose removal disconnects G. Graph G is biconnected if it has
no cut-vertex. A biconnected component of G is a maximal (in terms of vertices and edges)
biconnected subgraph of G. A biconnected component is trivial if it consists of a single edge
and non-trivial otherwise. Unless otherwise specified we assume that graphs are connected.

In a rectilinear drawing of G: (i) Each vertex v ∈ V (G) is represented by a point with
integer coordinates, denoted by x(v) and y(v). (ii) No two vertices are represented by
the same point. (iii) Each edge is represented by either a horizontal or a vertical line
segment connecting the points that represent its end-vertices. (iv) The interior of a segment
representing an edge does not intersect any point representing a vertex. A graph is said to
be rectilinear drawable if it admits a rectilinear drawing. Note that such a drawing requires
each vertex to have degree at most 4. Hence, unless otherwise specified, we will consider
graphs with maximum vertex degree 4.

We use the label set L = {L, R, D, U} to denote directions, where L, R, D, and U stand
for left, right, down, and up, respectively. Also, we say that L and R are opposite labels, and
likewise, D and U are opposite labels. For any label A ∈ L, we denote its opposite by A.

A shape of a graph G is a function λ that assigns to each edge (u, v) ∈ E(G) a label from
the set L. Consider an edge (u, v). Labeling (u, v) with, say, R indicates that in the shape
of G, the edge is directed to the right when traversed from u to v. Clearly, if the edge is
traversed in the opposite direction (from v to u) the direction should be left. Hence, with
a little abuse of notation, if λ(u, v) = R (resp. λ(u, v) = L) we say that λ(v, u) = L (resp.
λ(v, u) = R). The other labels are treated analogously. Additionally, for each pair of edges
that share a vertex v it is mandatory that λ(v, u) ̸= λ(v, w). This constraint ensures that
two edges sharing the same vertex “cannot point in the same direction”, preventing the two
edges from “overlapping”. We define a shaped graph to be a graph with a shape.

A shape can be assigned to a graph by starting from one of its rectilinear drawings, if
such a drawing exists. Namely, given a rectilinear drawing Γ of a graph G we can label the
edges E(G) as follows. For each (u, v) ∈ E(G): (i) If x(u) < x(v) we set λ(u, v) = R, (ii) If

G. Andreola, S. Caroppo, G. Di Battista, F. Grosso, M. Patrignani, and A. Strippoli 35:5

4

3

2

1

0

11

8

7

9

5

D

D

D

D

D

D

L

L

R

R

R

UU

U

6

10

(a)

4

3

2

1

0

11

8

7

9

5
6

L

D

R

U

R

10

D

D

D

L

L

R

R

UU

U

(b)

4

3

2

1

0

11

8

7

9

5
6

U

R

10

D

D

D

D

D

L

R

U

(c)

43

2 1

5

10

0

9

6

7 8

11

U

U

D

D

R

R

D

L

D

D

D
R

RR

U

U

U

4

D

(d)

4

1

5

10

8

11

0

9

6

7

3

2
R

R

R

(e)

Figure 2 (a) A shaped graph G. (b) A complete cycle of G. (c) Another cycle of G. (d) A
failed attempt to draw G according to its shape. (e) Graph Gx for the shaped graph of Figure 2a.

x(u) > x(v) we set λ(u, v) = L, (iii) If y(u) < y(v) we set λ(u, v) = U , (iv) If y(u) > y(v)
we set λ(u, v) = D. We say that this is the shape of Γ. It is easy to check that this labeling
is consistent with the definition of shape, and hence it is also a valid shape for G.

A shaped graph is rectilinear drawable if it admits a rectilinear drawing having exactly its
shape. The shaped graph in Figure 2a is not rectilinear drawable. Figure 2d shows a failed
attempt to construct a rectilinear drawing of such a shaped graph.

Given a graph G a subdivision of G is a graph G′ obtained by replacing certain edges
of E(G) with internally vertex-disjoint simple paths. The new vertices in V (G′) \ V (G)
introduced along these paths are called dummy vertices. An orthogonal drawing Γ of G is
a rectilinear drawing of a subdivision of G. Let v be a dummy vertex, if the two segments
incident to v in Γ are one horizontal and one vertical, then v is called a bend.

GD 2025

35:6 A Walk on the Wild Side: A Shape-First Methodology for Orthogonal Drawings

Rvi−1 v∗

vi+3

U

(a)

vi+2
vi−1

vi+3

vi
vi+1

(b)

vi+2

vi−1

vi+3

vi

vi+1

(c)

vi+2
vi−1

vi+3
vi

vi+1

(d)

vi+2

vi−1

vi+3

vi

vi+1

(e)

Figure 3 Illustration for the proof of Theorem 1. (a) The partial rectilinear drawing of c′

according to the new sequence. The result of the extension of the drawing of c′ to c by re-inserting
labels (b) D and L; (c) U and R; (d) D and R; and (e) U and L.

3 Rectilinear Drawable Shapes and the Shape of Cycles

The methodology we present in Section 4 is based on the results presented in this section.
Consider a shaped simple cycle c = v0, v1, . . . , vp−1, with p ≥ 4, of G. We say that c is

complete if it contains four pairs of vertices vi, vi+1, vj , vj+1, vh, vh+1, and vk, vk+1 such that:
(i) λ(vi, vi+1) = L, (ii) λ(vj , vj+1) = R, (iii) λ(vh, vh+1) = D, (iv) λ(vk, vk+1) = U , where
the vertices indexes of c are intended mod p. An example of a complete cycle is shown in
Figure 2b, while Figure 2c illustrates a cycle that is not complete.

▶ Theorem 1. A shaped simple cycle c = v0, v1, . . . , vp−1 with p ≥ 4 is rectilinear drawable
if and only if it is complete.

Sketch of Proof. If c admits a rectilinear drawing, then intersecting it with horizontal and
vertical lines (avoiding vertices) reveals edges labeled U , D, L, and R. Hence, c is complete.
Conversely, suppose c is complete. We prove that it admits a rectilinear drawing by induction
on the number of vertices p. For p = 4, the completeness implies the presence of all directions
in {L, R, U, D}. The only valid labelings without consecutive opposites are R–U–L–D and
R–D–L–U , which form rectangles. Now, assume that any complete cycle with p − 2 vertices
(p ≥ 6) is drawable. Let c be a complete cycle with p ≥ 6 vertices. Without loss of generality,
assume no two consecutive labels are equal. Then, the label sequence Λ = s0, . . . , sp−1
alternates between {L, R} and {U, D}, contains all four labels, and avoids consecutive equal
or opposite pairs. Then, there exists a removable pair si, si+1 such that the resulting cycle c′

remains complete. By induction, c′ is drawable. Denote (see Figure 3) by (vi−1, v∗) (resp.,
by (v∗, vi+3)) the edge of c′ corresponding to si−1 (resp., si+2), where v∗ represents the
vertices vi, vi+1 and vi+2 that have been merged together from the removal of the two edges.
Reinserting si, si+1 as a right-angle bend (e.g., ⟨U, R⟩, ⟨D, L⟩) and applying simple geometric
adjustments yields a drawing of c. Thus, c is rectilinear drawable. ◀

To test if a shaped graph is rectilinear drawable we can use the following theorem, which
has been proved in [30].

▶ Theorem 2 ([30, Theorem 3]). Given a shaped graph G, there exists an O(|V (G)| · |E(G)|)
algorithm to test if it is rectilinear drawable. In the positive case a rectilinear drawing can be
found in O(|V (G)| · |E(G)|) time.

The proof in [30] is based on constructing, starting from the given shaped graph, two
auxiliary directed graphs which we call Gx and Gy. For the sake of readability, we call the
vertices and the edges of such graphs nodes and arcs, respectively.

We say that two vertices v0 and vk−1 of G are x-aligned if a path v0, . . . , vk−1 exists in G

such that λ(vi, vi+1) = D (i = 0, . . . , k − 2). Also, we say that a vertex of G is x-aligned with
itself. Graph Gx is defined as follows. A node of Gx is a maximal set of x-aligned vertices of
G. Given two nodes µ and ν of Gx, by the definition of shape, they are disjoint sets. There

G. Andreola, S. Caroppo, G. Di Battista, F. Grosso, M. Patrignani, and A. Strippoli 35:7

starting C

shape for G

add c to C

Γ

G′ with (u, v) subdivided in (u,w) and (w, v)

Shape

Construction

Drawing

Construction

G

Figure 4 SM: a methodology for constructing orthogonal drawings of graphs.

is an arc from node µ to node ν if there are two vertices u and v of G such that u ∈ µ, v ∈ ν,
and either (u, v) ∈ E, and λ(u, v) = R or (v, u) ∈ E, and λ(v, u) = L. Figure 2e shows graph
Gx for the shaped graph in Figure 2a. Graph Gy is defined analogously.

In [30] it is proved that if there is an arc in Gx (resp., Gy) from µ to ν, then in any
rectilinear drawing of G the vertices in µ should be placed to the left of (resp., above) the
vertices in ν. Also all the vertices in the same node should be vertically (resp., horizontally)
aligned. This implies that a necessary condition for the shape to be rectilinear drawable is
that both Gx and Gy are acyclic. Observe that graph Gx of Figure 2e is cyclic and the shaped
graph in Figure 2a is not rectilinear drawable. The authors show that this condition is also
sufficient by constructing a drawing. Namely, they assign the x-coordinates to the vertices
of V (G) as follows: (1) the same x coordinate is assigned to all the vertices corresponding
to the same node of Gx, (2) different coordinates are assigned to vertices corresponding to
different nodes of Gx, and (3) x-coordinates increase according to the orientations of the
nodes of Gx. The y-coordinates are assigned analogously. Since in our case the vertices of
V (G) have degree at most 4, it easy to see that the construction of Gx and Gy, the acyclicity
test, and, in case, the construction of the drawing can be accomplished in O(|V (G)|) time.

We are now able to prove the following characterization.

▶ Theorem 3. A shaped graph G is rectilinear drawable if and only if all its simple cycles
are complete. In case G is not rectilinear drawable, a simple cycle of G which is not complete
can be found in O(|V (G)|) time.

Sketch of Proof. The necessity follows from Theorem 1. To prove the sufficiency consider a
shaped graph G and its auxiliary directed graphs Gx and Gy. From the proof of Theorem 2
we have that the presence of a cycle in Gx or Gy implies that G is not rectilinear drawable
using the prescribed shape. We prove that a cycle in Gx or in Gy implies a non-complete
simple cycle in G. Let Cx = µ0, . . . , µp−1 be a cycle in Gx, possibly p=1. See Figure 2e,
where p = 2. Consider the p pairs ui, vi+1 of vertices of G, such that ui ∈ µi and vi+1 ∈
µi+1, (ui, vi+1) ∈ E(G), and λ(ui, vi+1) = R, for i ∈ {0, . . . , p − 1} (where indices are
taken mod p). By the construction of Gx, there exists a path Πi in G from vi to ui that
contains edges all labeled D or all labeled U . The concatenation of the paths and edges
Π0, (u0, v1), Π1, . . . , (up−2, vp−1), Πp−1, (up−1, v0) forms a simple cycle c in G that is not
complete. The cycle of Figure 2e contains vertices 8, 11, 4, 10, 5, 1, 0, 6, 9, and 7. The
construction of Gx and of Gy, the acyclicity test, the search of a cycle Cx, and the computation
of c can all be done in O(|V (G)|) time. ◀

4 A Methodology for Constructing Orthogonal Drawings of Graphs

This section presents SM. Given an n-vertex graph G as input, it produces an orthogonal
drawing Γ of G as output. SM consists of two steps, called Shape Construction and Drawing
Construction, see Figure 4. Each of these steps can be repeated multiple times.

GD 2025

35:8 A Walk on the Wild Side: A Shape-First Methodology for Orthogonal Drawings

4.1 Shape Construction
We know from Theorem 3 that G admits a rectilinear drawable shape if and only if it admits a
shape in which all simple cycles are complete. Consequently, the Shape Construction step may
attempt to compute a shape for G that enforces completeness for all simple cycles. However,
since the number of simple cycles in G can be exponential in the size of G, checking all of
them is computationally infeasible. To address this, the first phase of Shape Construction,
called Cycle Selection, selects a subset C of simple cycles in G so that the Shape Construction
searches for a shape that ensures completeness only for the cycles in C, with the hope that
this will be enough to enforce completeness for all cycles.

If no such shape exists, this implies that a rectilinear drawable shape for G does not
exist–since adding more constraints cannot make a previously unsolvable problem solvable. In
this case, the Shape Construction step attempts to identify an edge (u, v) that is “responsible”
for the infeasibility, and splits it into two edges, (u, w) and (w, v), by introducing a dummy
vertex w. It then restarts the process on the modified graph G′, which is a subdivision of G.
The vertex w will possibly be drawn as a bend in the final orthogonal drawing. Additionally,
splitting the edge (u, v) indirectly alters the cycle set C, producing a new set C′, as the new
vertex w is now included in all cycles of C that originally contained (u, v).

If such a shape exists, this does not necessarily imply that it is rectilinear drawable. Thus,
the shape is passed as input to the Drawing Construction step for further verifications.

4.2 Drawing Construction
The Drawing Construction step relies on two theorems. Theorem 2, states that a shape can
be efficiently tested for rectilinear drawability, and if the test is positive, a rectilinear drawing
can be constructed efficiently. Theorem 3, states that if a shape is not rectilinear drawable a
cycle c that is not complete can be efficiently identified. Hence, the Drawing Construction
step either produces Γ directly or suggests to the Shape Construction step to add c to the
cycle set C, selectively enlarging the set of cycles considered for completeness.

Observe that, in general, due to the possible introduction of dummy vertices during the
Shape Construction step, the resulting rectilinear drawing Γ is the rectilinear drawing of a
subdivision of G. Hence, Γ is an orthogonal drawing of G.

4.3 Implementing the Shape and the Drawing Construction
Implementing the Shape Construction step essentially involves selecting an initial cycle set C
and checking whether a shape of G exists that enforces completeness for all cycles in C.

The selection of C can be done in various ways. A natural and intuitive strategy is to
include cycles that cover all edges belonging to non-trivial biconnected components of G.
Further details are given in Section 5.

The checking for the existence of a shape is the most important part of the Shape
Construction. We do this by converting completeness constraints into a CNF Boolean
formula, FG,C and then by using a SAT solver to check satisfiability. This method benefits
from (1) the efficiency of modern SAT solvers and (2) the solver’s ability to provide a proof
if unsatisfiable. From this proof, we identify an edge label variable causing unsatisfiability,
indicating the edge (u, v) is over constrained, so we split it by adding a dummy vertex.

Formula FG,C has four boolean variables for each edge (v, w) of E(G). Such variables
state if λ(v, w) is equal to L, R, D, or U . It also has three types of clauses to state that: (1)
each edge is assigned to exactly one label, (2) no vertex has two adjacent edges with the
same direction, and (3) each simple cycle in C is complete.

G. Andreola, S. Caroppo, G. Di Battista, F. Grosso, M. Patrignani, and A. Strippoli 35:9

The full formal description of FG,C is as follows. Formula FG,C has four boolean variables
for each edge (v, w) of E(G). We call them ℓv,w, rv,w, dv,w, and uv,w. We have that:
1. ℓv,w = true iff λ(v, w) = L,
2. rv,w = true iff λ(v, w) = R,
3. dv,w = true iff λ(v, w) = D, and
4. uv,w = true iff λ(v, w) = U

To simplify the description, we also introduce the variable ℓw,v (resp. rw,v), which is
equal to rv,w (resp. ℓv,w). Analogously, we introduce the variable dw,v (resp. uw,v), which is
equal to uv,w (resp. dv,w).

Formula FG,C has three sets of clauses.
The first set of clauses ensures that each edge (v, w) is assigned exactly one label. Namely,

for each edge (v, w) we have the following clauses: (i) (ℓv,w ∨rv,w ∨dv,w ∨uv,w), (ii) (¬ℓv,w ∨
¬rv,w), (iii) (¬dv,w ∨¬ℓv,w), (iv) (¬dv,w ∨¬rv,w), (v) (¬uv,w ∨¬ℓv,w), (vi) (¬uv,w ∨¬rv,w),
(vii) (¬uv,w ∨ ¬dv,w). Clause (i) is true if at least one label is assigned to (v, w), clauses
(ii)–(vii) are true if at most one label is assigned to (v, w).

The second set of clauses guarantees that for each vertex v with at least two neighbors,
there are no two of such neighbors w′ and w′′ of v such that λ(v, w′) = λ(v, w′′). Let
u0, . . . , uk be the neighbors of v, with k = 1, 2, 3 according to the degree of v minus one.
We distinguish two cases. If v has degree 4, we have 4 clauses, (ℓv,u0 ∨ ℓv,u1 ∨ ℓv,u2 ∨ ℓv,u3),
(rv,u0 ∨ rv,u1 ∨ rv,u2 ∨ rv,u3), (dv,u0 ∨ dv,u1 ∨ dv,u2 ∨ dv,u3), and (uv,u0 ∨ uv,u1 ∨ uv,u2 ∨ uv,u3),
that are satisfied if for each label l ∈ L there exists an index i (i = 0, . . . , 3) such that
λ(v, ui) = l. Otherwise (v has degree 2 or 3), for each pair of neighbors ui and uj of v, we
have (¬ℓv,ui ∨ ¬ℓv,uj), (¬rv,ui ∨ ¬rv,uj), (¬dv,ui ∨ ¬dv,uj), and (¬uv,ui ∨ ¬uv,uj).

The third set of clauses guarantees that all simple cycles in C are complete. For each
simple cycle v0, v1, . . . , vn−1 of C we impose that it contains all labels in L while traversing
it. This is done with four clauses as follows: (ℓv0,v1 ∨ ℓv1,v2 ∨ · · · ∨ ℓvn−2,vn−1 ∨ ℓvn−1,v0),
(rv0,v1 ∨ rv1,v2 ∨ · · · ∨ rvn−2,vn−1 ∨ rvn−1,v0), (dv0,v1 ∨ dv1,v2 ∨ · · · ∨ dvn−2,vn−1 ∨ dvn−1,v0), and
(uv0,v1 ∨ uv1,v2 ∨ · · · ∨ uvn−2,vn−1 ∨ uvn−1,v0)

It is easy to see that FG,C is satisfiable if and only if G has a shape such that all the
cycles in C are complete.

Implementing the Drawing Construction step primarily involves building the two auxiliary
graphs Gx and Gy and checking each for acyclicity. If either graph contains a cycle, it can
be used to identify a corresponding cycle c in G that is not complete.

Finally, we observe that the process described in the methodology is guaranteed to
terminate, since an orthogonal drawing of a graph always exists (see, e.g, [10, 11]).

5 An Experimental Evaluation on Maximum Degree 4 Graphs

We implemented SM in our tool domus and evaluate its effectiveness through comprehensive
“in vitro” experiments conducted using domus. Specifically, we describe: (i) the implemen-
tation choices in domus that define some aspects of SM, (ii) the benchmark adversary for
comparison, (iii) the graph dataset and its key characteristics, (iv) the computational
platform used, (v) the evaluation metrics, (vi) the experimental results for each metric,
and (vii) internal performance indicators, such as SAT solver invocations per graph.

Two drawings of a graph in the dataset are in Figure 5. (i) In domus, we made
specific implementation choices regarding the SAT solver, the initial cycle set C, coordinate
computation, and randomization. For the SAT solver, we chose Glucose [2] because it is
open source and it is well known for its efficiency. Importantly, Glucose provides proofs of

GD 2025

35:10 A Walk on the Wild Side: A Shape-First Methodology for Orthogonal Drawings

27

3

12

11

10

9

8

7

6

5

4

12

28

29

0 13

14

15

16

17

18

19

20

21

22

23

24

25

26

(a)

26

25

24

23

22

2120 19

18

17

16 1514

13

0

29

28 2

1

4

5 678

9

1011

12

3

27

(b)

Figure 5 A graph in the dataset: (a) drawn by domus and (b) drawn by ogdf.

unsatisfiability, which we use to identify edges to split, thereby increasing flexibility in the
drawing. To initialize the cycle set C, domus computes a cycle basis covering all edges in the
non-trivial biconnected components of the input graph G. This is done via a BFS from an
arbitrary root to construct a tree T ; for each non-tree edge (u, v), we add the cycle formed by
(u, v) and the unique paths from u and v to their lowest common ancestor in T . This results
in an initial set of size |C| = |E(G)| − |V (G)| + 1. For coordinate assignment, after computing
Gx and Gy, domus uses a compaction algorithm similar to that in ogdf. For details on
compaction algorithms see, e.g., [6, 7, 29, 35]. Finally, Glucose can make random choices. In
order to enforce replicability of the experiments we forced it to work deterministically.
(ii) For the motivations discussed in Section 1, we compared the performance of domus
against the TSM implementation available in ogdf [13]. Another option was to use as a
benchmark one of the tools (see, e.g. [28]) that have been evaluated via user studies. However,
this comparison would be useless, since most of this tools adopt a definition of orthogonal
drawing which is different from the widely adopted one given in Section 2. E.g., even if a
vertex has degree less or equal than 4 more than one of its incident edges can exit from the
same direction. Also, vertices and bends neither have integer coordinates nor it is easy to
“snap” them to a grid (see [1] for a comparison with these models).
(iii) We generated 4,100 connected graphs uniformly at random, each with maximum vertex
degree 4. Their sizes range from 20 to 60 vertices, and their densities – defined as the ratio
between the number of edges to the number of vertices – span 1.25 to 1.75 in steps of 0.005.
For degree 4 graphs, the theoretical maximum density is 2. Namely, for each n = 20, . . . , 60
and i = 1, 2, . . . , 100 we generated a graph Gn,i with density di = 1.25 + i · (1.75 − 1.25)/100.
Hence, for each value of n the graphs have roughly 100 possible densities ranging from 1.25
to 1.75, in increments of 0.005. In terms of number of edges we have |E(Gn,i)| = ⌊n · di⌋.
For instance, the graph G20,50 has 30 edges, while G60,100 has 105 edges. For each n and
di we initialized a graph with n vertices and no edges. Then, we repeatedly randomized
two vertices u and v of the graph and added an edge between them, until di was reached.
If u = v or if (u, v) was already in the graph, or if either u or v was already degree 4, we
skipped the pair. Finally, the instance was rejected if non-connected.

Conducting experiments on a set of randomly generated graphs was a necessary choice,
as, to the best of our knowledge, no publicly available collection of maximum-degree-4 graphs
is currently recognized as a standard benchmark for graph drawing experiments.
(iv) All the experiments were performed running ogdf and domus on a personal computer
with a 3.15 GHz Intel processor (comparable with an M1 Apple processor).

G. Andreola, S. Caroppo, G. Di Battista, F. Grosso, M. Patrignani, and A. Strippoli 35:11

0 10 20 30 40 50 60
OGDF

0

10

20

30

40

50

60

DO
M

US

y = x
Best fit: y = -0.0027x² + 0.9892x + -1.8819
(R² = 0.85)

(a) Bends.

0 25 50 75 100 125 150 175
OGDF

0

25

50

75

100

125

150

175

DO
M

US

y = x
Best fit: y = -0.0167x² + 3.2537x + 9.9160
(R² = 0.86)

(b) Crossings.

0.0 0.2 0.4 0.6 0.8
OGDF

0.2

0.0

0.2

0.4

0.6

0.8

1.0

DO
M

US

y = x
Best fit: y = -0.7307x² + 1.6178x + -0.2095
(R² = 0.54)

(c) Bends Deviation.

0 1 2 3 4 5 6
OGDF

0

1

2

3

4

5

6
DO

M
US

y = x
Best fit: y = -0.0959x² + 0.7220x + 0.6604
(R² = 0.11)
1
10
100

(d) Max Bends.

Figure 6 Effectiveness of ogdf and domus “in vitro”: Bends and Crossings.

(v) Following the framework proposed in [20], we compared the drawings produced by
domus and those generated by ogdf using the following metrics: the total number of Bends
in the drawing; the total number of edge Crossings; the standard deviation of the number
of bends per edge (Bends Deviation); the maximum number of bends on any single edge
(Max Bends); the Area occupied by the drawing; the sum of the length of all the edges
(Total Edge Length); the length of the longest edge (Max Edge Length); the standard
deviation of edge lengths (Edge Length Deviation) and the total computation Time to
build the drawing, measured in seconds. Using the terminology in [3], we adopt most of the
metrics suggested for “quantitative individual” and “aggregated” evaluations. A note on how
the above metrics were computed is in [1].
(vi) The results of our experiments are shown in Figures 6 and 7, where each random graph

is represented by a small circle. The x-coordinate corresponds to the metric value produced
by ogdf, while the y-coordinate reflects the value obtained by domus. Points below the
bisector of the first quadrant (gray dashed line) indicate cases where domus outperformed
ogdf; points above indicate the opposite. To account for overlapping data points (caused by
graphs with same metric values), each plot includes a red dashed trend line summarizing
the comparative performance. We also report the coefficient of determination (R2, with
0 ≤ R2 ≤ 1), with values closer to 1 indicating a better interpolation.

GD 2025

35:12 A Walk on the Wild Side: A Shape-First Methodology for Orthogonal Drawings

0 200 400 600 800 1000
OGDF

0

200

400

600

800

1000
DO

M
US

y = x
Best fit: y = -0.0001x² + 0.7831x + 22.3997
(R² = 0.85)

(a) Area.

0 200 400 600 800
OGDF

0

200

400

600

800

DO
M

US

y = x
Best fit: y = -0.0002x² + 1.0522x + 7.1869
(R² = 0.91)

(b) Total Edge Length.

0 10 20 30 40 50 60 70 80
OGDF

0

10

20

30

40

50

60

70

80

DO
M

US

y = x
Best fit: y = -0.0031x² + 0.5474x + 3.9111
(R² = 0.45)

(c) Max Edge Length.

0 2 4 6 8 10 12
OGDF

0

2

4

6

8

10

12

DO
M

US

y = x
Best fit: y = -0.0100x² + 0.5913x + 0.7530
(R² = 0.58)

(d) Edge Length Deviation.

Figure 7 Effectiveness of ogdf and domus “in vitro”: Area and Edge Length.

Figure 6a focuses on Bends. domus outperformed ogdf on 78% of the graphs and
matched its performance on another 7%. The trend line indicates a modest quadratic
improvement, a linear improvement of approximately 2%, and a constant improvement of
about 2.5 bends per graph. Notably, 89 of the random graphs admit a rectilinear drawing.
Conversely, as expected (Figure 6b), ogdf sharply outperforms domus in terms of Crossings.
In this case, 149 random graphs admit a planar drawing. Additional insights regarding bends
are in Figures 6c and 6d, which report the Bends Deviation and the Max Bends per edge,
respectively. For the former metric, domus outperforms ogdf on 85% of the graphs. For
the latter, domus matches ogdf on 50% of the graphs and outperforms it in the remaining
50%. Since the possible values of the maximum number of bends per edge are relatively few,
many graphs correspond to the same point. Because of this, in Figure 6d we represent with
a variable size circle the number of graphs having the maximum number of bends per edge.
The area of each circle is proportional to the corresponding number of graphs. These results
indicate that our approach not only reduces the total number of bends but also achieves a
more uniform distribution of bends across edges, thereby avoiding drawings with edges that
contain long sequences of consecutive bends.

G. Andreola, S. Caroppo, G. Di Battista, F. Grosso, M. Patrignani, and A. Strippoli 35:13

20 25 30 35 40 45 50 55 60
Number of Vertices (n)

1.2

1.3

1.4

1.5

1.6

1.7

De
ns

ity
 (m

/n
)

(a) Bends

20 25 30 35 40 45 50 55 60
Number of Vertices (n)

1.2

1.3

1.4

1.5

1.6

1.7

De
ns

ity
 (m

/n
)

(b) Crossings

20 25 30 35 40 45 50 55 60
Number of Vertices (n)

1.2

1.3

1.4

1.5

1.6

1.7

De
ns

ity
 (m

/n
)

(c) Bends Deviation

20 25 30 35 40 45 50 55 60
Number of Vertices (n)

1.2

1.3

1.4

1.5

1.6

1.7

De
ns

ity
 (m

/n
)

(d) Max Bends

Figure 8 The effect of density: Bends and Crossings. Blue: domus is better. Red: ogdf is
better. Grey: parity.

domus yields more compact drawings compared to those generated by ogdf (Figure 7a).
Specifically, our approach results in smaller drawing areas for 78% of the graphs, and matches
ogdf in 18% of the cases. The trend line indicates a consistent improvement, with an
average area reduction of approximately 25%. We also achieve slightly better results than
ogdf in terms of edge length. domus produces drawings with lower Total Edge Length
for 50% of the graphs and matches ogdf on 1% of them (Figure 7b). More significantly,
domus outperforms ogdf on Max Edge Length (Figure 7c) for 87% of the graphs and
obtain equal results for an additional 10%. Similarly, for Edge Length Deviation (Figure 7d),
domus performs better on 89% of the graphs. These results indicate that SM not only
tends to produce slightly shorter edges overall but also ensures a more uniform edge length
distribution, thereby avoiding disproportionately long edges that can hinder readability and
spatial coherence.

Figure 8 illustrates how the relative performance of domus and ogdf varies with the
number of vertices and the density of the input graphs. In each subfigure, a circle positioned
at coordinates (x, y) represents all graphs with x vertices and density y. For a given metric
M and each pair (x, y), let MO (respectively, MD) denote the average value of M for the
drawings produced by ogdf (respectively, domus) over all graphs with x vertices and density
y. The circle at (x, y) is colored red, blue, or gray if MO < MD, MO > MD, or MO = MD,

GD 2025

35:14 A Walk on the Wild Side: A Shape-First Methodology for Orthogonal Drawings

0 100 200 300 400
Value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Cycles added during the compu-
tation.

0 10 20 30 40 50
Value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Fictitious Vertices
Bends

(b) Dummy vertices and bends.

0 100 200 300 400
Value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(c) SAT invocations.

10 2 10 1 100 101 102 103 104

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(d) Time.

Figure 9 Several aspects of the domus computations.

respectively. Figure 8a shows that for small values of n, increasing graph density tends to
favor ogdf. However, this advantage gradually diminishes as n increases. For the Area, we
have a similar trend. The other metrics do not show any clear dependency on either the
number of vertices or the density (Figures 8b–8d). [1] contains additional diagrams about
the density.
(vii) To further characterize the computations performed by domus, for each run on a

single graph, we measured the following (see Figure 9).
First, we measured how many cycles were added to C during the computation. Each

addition corresponds to a case where the current shape was found to be non-rectilinear
drawable, triggering a new invocation of Shape Construction from Drawing Construction. In
each of such invocations, the SAT solver was able to quickly find a satisfying assignment.
The total number of Drawing Construction calls equals this number plus one. Figure 9a
shows a cumulative distribution function (CDF) of these data. For instance, in 80% of the
graphs, no more than 100 cycles were added to C.

Second, we measured the number of dummy vertices introduced by the Shape Construction,
corresponding to how often the Shape Construction called itself due to the absence of a shape
satisfying the constraints. In each of these invocations, the formula given to the SAT solver
was unsatisfiable. Figure 9b shows that at most 25 dummy vertices have been added for 80%
of graphs. Such vertices do not necessarily become bends in the final drawing, since some of
them can get an angle of π between their incident edges. So, a dummy vertex that does not
become a bend can be viewed as a failure in the attempt to decrease the constraints of the
drawing. Hence, we also computed how many dummy vertices actually became bends in the
final drawing. This is an indirect measure of the effectiveness of using SAT unsatisfiability
proofs to introduce bends. Figure 9b shows that almost all the dummy vertices became
bends in the drawing.

G. Andreola, S. Caroppo, G. Di Battista, F. Grosso, M. Patrignani, and A. Strippoli 35:15

Figure 10 Illustrations of how domus manages a vertex with degree greater than 4. The dashed
boxes show the expansions and the red segments show the bends that are added to the drawing.

Third, we measured the total number of SAT solver invocations, computed as the sum
of the Shape Construction self-invocations, the Shape Construction calls by the Drawing
Construction, plus one. Figure 9c shows that at most 120 SAT invocations have been done
for 80% of graphs. The similarity between Figure 9a and Figure 9c shows that most of the
SAT solver calls (80%) depend on the need to add a cycle to C. Also, the average number of
Boolean variables and clauses in the input to the SAT solver were 352 and 1224, respectively.

Fourth, Figure 9d shows that computing a drawing for domus required at most 10 seconds
for 80% of graphs and that there are graphs that required more than 100 seconds, with an
average latency of 70 seconds. ogdf did its work in an average of 0.06 seconds.

6 An Experimental Evaluation on the Rome Graphs

With small modifications, it is possible to apply our methodology to construct orthogonal
drawings of graphs with degree greater than 4. In representing such graphs, we use the
same convention introduced in [24]. Namely, the edges exiting the same side of a vertex
can partially overlap (they are distanced by a very small amount) only for the first segment
representing them. See Figure 10. The variation of the methodology works as follows. First,
we modify the FG,C formula in such a way that if a vertex v has degree greater than 4 more
than one edge can enter v from the same direction, while keeping the constraint that at least
one edge enters v from all the directions. After that, all the machinery that looks for a shape,
including the usage of the SAT solver, stays the same. Second, once a shape has been found,
v is temporarily expanded into a box (which will not be shown in the drawing) and the edges
incident to the same side of v are separated by introducing inside the box dummy vertices
that become bends in the final drawing. After that, a metric is computed with the same
technique as before. See drawings of Rome graphs in Figure 10.

We compared ogdf and domus in experiments that we call “in the wild” using the Rome
Graphs dataset [20], which was originated by real-life applications and whose vertices have no
degree restriction (see Figures 11 and 12). The experiments further increase the advantage of
domus with respect to ogdf (see Section 5) in terms of Bends (Figures 11a, 11c, and 11d)
and confirm that ogdf performs much better in terms of Crossings (Figure 11b). This
probably depends on the low densities of the Rome Graphs, which are close to planar in

GD 2025

35:16 A Walk on the Wild Side: A Shape-First Methodology for Orthogonal Drawings

terms of graph edit distance. Further, domus performs better than ogdf in terms of Area,
Max Edge Length, and Edge Length Deviation (Figures 12a, 12c, and 12d) and the two
tools are comparable for Total Edge Length (Figure 12b). Hence, the presence of vertices of
degree greater than 4 does not change too much the experimental results. ogdf was, even in
this case, much faster than domus, since the average duration of its computations was 0.07
seconds with a maximum of 3.3 seconds. The domus computations took an average of 1.44
seconds, with a maximum of 769 seconds.

7 Conclusions and Open Problems

About forty years after the introduction of the Topology-Shape-Metrics (TSM) approach
for orthogonal drawings, we propose a novel methodology that subverts the TSM pipeline
by prioritizing bend minimization over crossing minimization. Our experimental results
demonstrate that this shift yields improvements across most standard metrics used in Graph
Drawing to evaluate the effectiveness of a layout algorithm.

As a final remark, we observe that our methodology can be exploited to construct drawings
incorporating several types of constraints (for an introduction to constrained orthogonal
drawings, see, e.g., [23, 41]). If the graph contains edges that should be drawn upward it is

0 20 40 60 80 100 120
OGDF

0

20

40

60

80

100

120

DO
M

US

y = x
Best fit: y = -0.0005x² + 0.45x + 0.95
(R² = 0.86)

(a) Bends.

0 100 200 300 400 500
OGDF

0

100

200

300

400

500

DO
M

US

y = x
Best fit: y = -0.0447x² + 6.55x + 18.10
(R² = 0.80)

(b) Crossings.

0.0 0.2 0.4 0.6 0.8 1.0
OGDF

0.0

0.2

0.4

0.6

0.8

1.0

DO
M

US

y = x
Best fit: y = -0.0239x² + 0.57x + 0.02
(R² = 0.67)

(c) Bends Dev.

0 1 2 3 4 5 6 7
OGDF

0

1

2

3

4

5

6

7

DO
M

US

y = x
Best fit: y = -0.0977x² + 0.828x + 0.092
(R² = 0.36)
1
10
100

(d) Max Bends.

Figure 11 Effectiveness of ogdf and domus “in the wild”: Bends and Crossings.

G. Andreola, S. Caroppo, G. Di Battista, F. Grosso, M. Patrignani, and A. Strippoli 35:17

0 500 1000 1500 2000 2500
OGDF

0

500

1000

1500

2000

2500

DO
M

US
y = x
Best fit: y = -0.0001x² + 0.86x + -0.45
(R² = 0.92)

(a) Area.

0 250 500 750 1000 1250 1500 1750 2000
OGDF

0

250

500

750

1000

1250

1500

1750

2000

DO
M

US

y = x
Best fit: y = -0.0003x² + 1.24x + -0.92
(R² = 0.92)

(b) Total Edge Length.

0 20 40 60 80 100 120
OGDF

0

20

40

60

80

100

120

DO
M

US

y = x
Best fit: y = -0.0039x² + 0.62x + 3.59
(R² = 0.71)

(c) Max Edge Length.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
OGDF

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
DO

M
US

y = x
Best fit: y = -0.0204x² + 0.72x + 0.71
(R² = 0.75)

(d) Edge Length Deviation.

Figure 12 Effectiveness of ogdf and domus “in the wild”: Area and Edge Length.

easy to impose this by setting the value true for the corresponding u-variables of the FG,C
formula. Similarly, giving the appropriate true-false values to the corresponding ℓ-, r-, d-,
and u-variables it is possible to specify that certain edges should enter their end-vertices
respecting some specific orientations (so called side-constraints). Further, it is easy to specify
that a given edge should be horizontal or vertical or to impose the shape of entire sub-graphs.

We open several promising research directions, including the following:
Does there exist, at least for some families of graphs, a “small” set of cycles whose
completeness implies the completeness of all cycles in G? If so, can such a set be
efficiently computed? In [1] it is shown that this problem is not trivial.
Our methodology entirely disregards crossings. Is it possible to modify the approach to
incorporate constraints that upper-bound the number of crossings?
TSM and our methodology can be viewed as two extremes of a broader design space
for constructing orthogonal drawings. Can hybrid methods be developed that combine
elements of both approaches?
In this paper, we employed compaction techniques originally developed within the TSM
paradigm. It would be interesting to design compaction methods that do not work on
the planarized underlying graph, but that only preserve the shape of the edges.

GD 2025

35:18 A Walk on the Wild Side: A Shape-First Methodology for Orthogonal Drawings

Our approach can be leveraged to compute a maximal rectilinear drawable subgraph by
iteratively invoking a SAT solver. Can the methodology be redesigned or optimized for
greater efficiency when solving this specific problem?
For the sake of reproducibility all our software and our data sets are publicly available at

https://github.com/shape-metrics/domus.

References
1 Giordano Andreola, Susanna Caroppo, Giuseppe Di Battista, Fabrizio Grosso, Maurizio

Patrignani, and Allegra Strippoli. A walk on the wild side: a shape-first methodology for
orthogonal drawings, 2025. arXiv:2508.19416.

2 Gilles Audemard and Laurent Simon. On the glucose SAT solver. Int. J. Artif. Intell. Tools,
27(1):1840001:1–1840001:25, 2018. doi:10.1142/S0218213018400018.

3 Sara Di Bartolomeo, Tarik Crnovrsanin, David Saffo, Eduardo Puerta, Connor Wilson, and
Cody Dunne. Evaluating graph layout algorithms: A systematic review of methods and best
practices. Comput. Graph. Forum, 43(6), 2024. doi:10.1111/CGF.15073.

4 Carlo Batini, Enrico Nardelli, and Roberto Tamassia. A layout algorithm for data flow
diagrams. IEEE Trans. Software Eng., 12(4):538–546, 1986. doi:10.1109/TSE.1986.6312901.

5 Carlo Batini, Maurizio Talamo, and Roberto Tamassia. Computer aided layout of entity
relationship diagrams. J. Syst. Softw., 4(2-3):163–173, 1984. doi:10.1016/0164-1212(84)
90006-2.

6 Michael A. Bekos, Carla Binucci, Giuseppe Di Battista, Walter Didimo, Martin Grone-
mann, Karsten Klein, Maurizio Patrignani, and Ignaz Rutter. On turn-regular orthogo-
nal representations. In David Auber and Pavel Valtr, editors, Graph Drawing and Net-
work Visualization - GD 2020, volume 12590 of LNCS, pages 250–264. Springer, 2020.
doi:10.1007/978-3-030-68766-3_20.

7 Michael A. Bekos, Carla Binucci, Giuseppe Di Battista, Walter Didimo, Martin Gronemann,
Karsten Klein, Maurizio Patrignani, and Ignaz Rutter. On turn-regular orthogonal representa-
tions. J. Graph Algorithms Appl., 26(3):285–306, 2022. doi:10.7155/JGAA.00595.

8 Michael A. Bekos, Michael Kaufmann, and Christian Zielke. The book embedding problem
from a sat-solving perspective. In Emilio Di Giacomo and Anna Lubiw, editors, Graph Drawing
and Network Visualization - GD 2015, volume 9411 of LNCS, pages 125–138. Springer, 2015.
doi:10.1007/978-3-319-27261-0_11.

9 Therese Biedl, Thomas Bläsius, Benjamin Niedermann, Martin Nöllenburg, Roman Prutkin,
and Ignaz Rutter. Using ILP/SAT to determine pathwidth, visibility representations, and
other grid-based graph drawings. In Stephen K. Wismath and Alexander Wolff, editors, Graph
Drawing - 21st International Symposium, GD 2013, volume 8242 of LNCS, pages 460–471.
Springer, 2013. doi:10.1007/978-3-319-03841-4_40.

10 Therese Biedl and Goos Kant. A better heuristic for orthogonal graph drawings. In Jan
van Leeuwen, editor, Algorithms — ESA ’94, pages 24–35, Berlin, Heidelberg, 1994. Springer
Berlin Heidelberg. doi:10.1007/BFb0049394.

11 Therese C. Biedl and Goos Kant. A better heuristic for orthogonal graph drawings. Comput.
Geom., 9(3):159–180, 1998. doi:10.1016/S0925-7721(97)00026-6.

12 Timo Brand, Daniel Faber, Stephan Held, and Petra Mutzel. A customized sat-based solver
for graph coloring. CoRR, abs/2504.04821, 2025. doi:10.48550/arXiv.2504.04821.

13 Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W Klau, Karsten Klein, Petra
Mutzel, et al. The Open Graph Drawing Framework (OGDF). Handbook of graph drawing
and visualization, 2011:543–569, 2013.

14 Markus Chimani and Robert Zeranski. Upward planarity testing via SAT. In Walter Didimo
and Maurizio Patrignani, editors, Graph Drawing - GD 2012, volume 7704 of LNCS, pages
248–259. Springer, 2012. doi:10.1007/978-3-642-36763-2_22.

https://github.com/shape-metrics/domus
https://arxiv.org/abs/2508.19416
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1111/CGF.15073
https://doi.org/10.1109/TSE.1986.6312901
https://doi.org/10.1016/0164-1212(84)90006-2
https://doi.org/10.1016/0164-1212(84)90006-2
https://doi.org/10.1007/978-3-030-68766-3_20
https://doi.org/10.7155/JGAA.00595
https://doi.org/10.1007/978-3-319-27261-0_11
https://doi.org/10.1007/978-3-319-03841-4_40
https://doi.org/10.1007/BFb0049394
https://doi.org/10.1016/S0925-7721(97)00026-6
https://doi.org/10.48550/arXiv.2504.04821
https://doi.org/10.1007/978-3-642-36763-2_22

G. Andreola, S. Caroppo, G. Di Battista, F. Grosso, M. Patrignani, and A. Strippoli 35:19

15 Markus Chimani and Robert Zeranski. Upward planarity testing: A computational study. In
Stephen K. Wismath and Alexander Wolff, editors, Graph Drawing - GD 2013, volume 8242
of LNCS, pages 13–24. Springer, 2013. doi:10.1007/978-3-319-03841-4_2.

16 Markus Chimani and Robert Zeranski. Upward planarity testing in practice: SAT formulations
and comparative study. ACM J. Exp. Algorithmics, 20:1.2:1.1–1.2:1.27, 2015. doi:10.1145/
2699875.

17 Karl Däubel, Sven Jäger, Torsten Mütze, and Manfred Scheucher. On orthogonal symmetric
chain decompositions. Electron. J. Comb., 26(3):3, 2019. doi:10.37236/8531.

18 Giuseppe Di Battista and Walter Didimo. Gdtoolkit. In Roberto Tamassia, editor, Handbook
on Graph Drawing and Visualization, pages 571–597. Chapman and Hall/CRC, 2013.

19 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

20 Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Roberto Tamassia, Emanuele Tassinari,
and Francesco Vargiu. An experimental comparison of four graph drawing algorithms. Comput.
Geom., 7:303–325, 1997. doi:10.1016/S0925-7721(96)00005-3.

21 Peter Eades, Seok-Hee Hong, and Sheung-Hung Poon. On rectilinear drawing of graphs. In
David Eppstein and Emden R. Gansner, editors, Graph Drawing, GD 2009, volume 5849 of
LNCS, pages 232–243. Springer, 2009. doi:10.1007/978-3-642-11805-0_23.

22 Markus Eiglsperger. Automatic layout of UML class diagrams: a topology-shape-metrics
approach. PhD thesis, University of Tübingen, Germany, 2003. URL: http://w210.ub.
uni-tuebingen.de/dbt/volltexte/2004/1028/index.html.

23 Markus Eiglsperger, Ulrich Fößmeier, and Michael Kaufmann. Orthogonal graph drawing
with constraints. In David B. Shmoys, editor, Proceedings of the Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA, pages 3–11.
ACM/SIAM, 2000. URL: http://dl.acm.org/citation.cfm?id=338219.338225.

24 Ulrich Fößmeier and Michael Kaufmann. Drawing high degree graphs with low bend numbers.
In Franz-Josef Brandenburg, editor, Graph Drawing, Symposium on Graph Drawing, GD ’95,
volume 1027 of LNCS, pages 254–266. Springer, 1995. doi:10.1007/BFB0021809.

25 Mohammad Ghoniem, Jean-Daniel Fekete, and Philippe Castagliola. On the readability
of graphs using node-link and matrix-based representations: a controlled experiment and
statistical analysis. Inf. Vis., 4(2):114–135, 2005. doi:10.1057/PALGRAVE.IVS.9500092.

26 Tim Hegemann and Alexander Wolff. A simple pipeline for orthogonal graph draw-
ing. In Michael A. Bekos and Markus Chimani, editors, Graph Drawing and Network
Visualization - GD 2023, volume 14466 of LNCS, pages 170–186. Springer, 2023. doi:
10.1007/978-3-031-49275-4_12.

27 Weidong Huang, Seok-Hee Hong, and Peter Eades. Effects of crossing angles. In 2008 IEEE
Pacific Visualization Symposium, pages 41–46, 2008. doi:10.1109/PACIFICVIS.2008.4475457.

28 Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael Wybrow. Hola: Human-like orthogonal
network layout. IEEE Transactions on Visualization and Computer Graphics, 22(1):349–358,
2016. doi:10.1109/TVCG.2015.2467451.

29 Gunnar W. Klau and Petra Mutzel. Optimal compaction of orthogonal grid drawings. In Gérard
Cornuéjols, Rainer E. Burkard, and Gerhard J. Woeginger, editors, Integer Programming and
Combinatorial Optimization, IPCO ’99, volume 1610 of LNCS, pages 304–319. Springer, 1999.
doi:10.1007/3-540-48777-8_23.

30 Ján Manuch, Murray Patterson, Sheung-Hung Poon, and Chris Thachuk. Complexity of
finding non-planar rectilinear drawings of graphs. In Ulrik Brandes and Sabine Cornelsen,
editors, Graph Drawing - GD 2010, volume 6502 of LNCS, pages 305–316. Springer, 2010.
doi:10.1007/978-3-642-18469-7_28.

31 Torsten Mütze and Manfred Scheucher. On l-shaped point set embeddings of trees: first
non-embeddable examples. J. Graph Algorithms Appl., 24(3):343–369, 2020. doi:10.7155/
JGAA.00537.

GD 2025

https://doi.org/10.1007/978-3-319-03841-4_2
https://doi.org/10.1145/2699875
https://doi.org/10.1145/2699875
https://doi.org/10.37236/8531
https://doi.org/10.1016/S0925-7721(96)00005-3
https://doi.org/10.1007/978-3-642-11805-0_23
http://w210.ub.uni-tuebingen.de/dbt/volltexte/2004/1028/index.html
http://w210.ub.uni-tuebingen.de/dbt/volltexte/2004/1028/index.html
http://dl.acm.org/citation.cfm?id=338219.338225
https://doi.org/10.1007/BFB0021809
https://doi.org/10.1057/PALGRAVE.IVS.9500092
https://doi.org/10.1007/978-3-031-49275-4_12
https://doi.org/10.1007/978-3-031-49275-4_12
https://doi.org/10.1109/PACIFICVIS.2008.4475457
https://doi.org/10.1109/TVCG.2015.2467451
https://doi.org/10.1007/3-540-48777-8_23
https://doi.org/10.1007/978-3-642-18469-7_28
https://doi.org/10.7155/JGAA.00537
https://doi.org/10.7155/JGAA.00537

35:20 A Walk on the Wild Side: A Shape-First Methodology for Orthogonal Drawings

32 Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of Lecture Notes
Series on Computing. World Scientific, 2004. doi:10.1142/5648.

33 Achilleas Papakostas and Ioannis G. Tollis. Improved algorithms and bounds for orthogonal
drawings. In Roberto Tamassia and Ioannis G. Tollis, editors, Graph Drawing, DIMACS
International Workshop, GD ’94, volume 894 of LNCS, pages 40–51. Springer, 1994. doi:
10.1007/3-540-58950-3_355.

34 Achilleas Papakostas and Ioannis G. Tollis. Interactive orthogonal graph drawing. IEEE
Trans. Computers, 47(11):1297–1309, 1998. doi:10.1109/12.736444.

35 Maurizio Patrignani. On the complexity of orthogonal compaction. Computational Geometry:
Theory and Applications, 19(1):47–67, 2001. doi:10.1016/S0925-7721(01)00010-4.

36 Mauricio G.C. Resende and Celso C. Ribeiro. A grasp for graph planarization. Networks:
An International Journal, 29(3):173–189, 1997. doi:10.1002/(SICI)1097-0037(199705)29:
3\%3C173::AID-NET5\%3E3.0.CO;2-E.

37 Manfred Scheucher. Two disjoint 5-holes in point sets. Comput. Geom., 91:101670, 2020.
doi:10.1016/J.COMGEO.2020.101670.

38 Manfred Scheucher, Hendrik Schrezenmaier, and Raphael Steiner. A note on universal point
sets for planar graphs. CoRR, abs/1811.06482, 2018. arXiv:1811.06482.

39 R. Tamassia and I.G. Tollis. Planar grid embedding in linear time. IEEE Transactions on
Circuits and Systems, 36(9):1230–1234, 1989. doi:10.1109/31.34669.

40 Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends.
SIAM J. Comput., 16(3):421–444, 1987. doi:10.1137/0216030.

41 Roberto Tamassia. Constraints in graph drawing algorithms. Constraints An Int. J., 3(1):87–
120, 1998. doi:10.1023/A:1009760732249.

42 Roberto Tamassia, Carlo Batini, and Maurizio Talamo. An algorithm for automatic layout of
entity-relationship diagrams. In Carl G. Davis, Sushil Jajodia, Peter A. Ng, and Raymond T.
Yeh, editors, Int. Conf. on Entity-Relationship Approach (ER’83), pages 421–439. North-
Holland, 1983.

43 Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini. Automatic graph drawing
and readability of diagrams. IEEE Trans. Syst. Man Cybern., 18(1):61–79, 1988. doi:
10.1109/21.87055.

44 Gopalakrishnan Vijayan and Avi Wigderson. Rectilinear graphs and their embeddings. SIAM
Journal on Computing, 14(2):355–372, 1985. doi:10.1137/0214027.

https://doi.org/10.1142/5648
https://doi.org/10.1007/3-540-58950-3_355
https://doi.org/10.1007/3-540-58950-3_355
https://doi.org/10.1109/12.736444
https://doi.org/10.1016/S0925-7721(01)00010-4
https://doi.org/10.1002/(SICI)1097-0037(199705)29:3%3C173::AID-NET5%3E3.0.CO;2-E
https://doi.org/10.1002/(SICI)1097-0037(199705)29:3%3C173::AID-NET5%3E3.0.CO;2-E
https://doi.org/10.1016/J.COMGEO.2020.101670
https://arxiv.org/abs/1811.06482
https://doi.org/10.1109/31.34669
https://doi.org/10.1137/0216030
https://doi.org/10.1023/A:1009760732249
https://doi.org/10.1109/21.87055
https://doi.org/10.1109/21.87055
https://doi.org/10.1137/0214027

	1 Introduction
	2 Preliminaries
	3 Rectilinear Drawable Shapes and the Shape of Cycles
	4 A Methodology for Constructing Orthogonal Drawings of Graphs
	4.1 Shape Construction
	4.2 Drawing Construction
	4.3 Implementing the Shape and the Drawing Construction

	5 An Experimental Evaluation on Maximum Degree 4 Graphs
	6 An Experimental Evaluation on the Rome Graphs
	7 Conclusions and Open Problems

