Reconfiguration in Curve Arrangements to Reduce
Self-Intersections and Popular Faces

Florestan Brunck 2 &
University of Copenhagen, Denmark

Hsien-Chih Chang &2 &
Dartmouth College, Hanover, NH, USA
Maarten Loffler =&

Department of Information and Computing Sciences, Utrecht University, The Netherlands
Department of Computer Science, Tulane University, New Orleans, LA, USA

Tim Ophelders &
Department of Information and Computing Sciences, Utrecht University, The Netherlands
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Lena Schlipf =

AT Center, Department of Computer Science, University of Tiibingen, Germany

—— Abstract

We study reconfiguration in curve arrangements, where a subset of the crossings are marked as
switches which have three possible states, and the goal is to set the switches such that the resulting
curve arrangement has few self-intersections, or few faces that are incident to the same curve multiple
times (a.k.a. popular faces). Our results are that these problems are NP-hard, but FPT in the
number of switches. Minimizing self-intersections is also FPT in the number of non-switchable
crossings; for minimizing popular faces this problem remains open. Our results can be applied
to generating curved nonograms, a type of logic puzzle that has received some attention lately.
Specifically, our results make it possible to efficiently convert expert puzzles into advanced puzzles
(or determine that this is impossible).

2012 ACM Subject Classification Theory of computation — Computational geometry; Theory of
computation — Fixed parameter tractability

Keywords and phrases Curve Arrangements, Reconfiguration, Curve Arrangements, NP-hardness,
Fixed-Parameter Tractability, Puzzle Generation

Digital Object Identifier 10.4230/LIPIcs.GD.2025.36

Funding Tim Ophelders: Partially supported by the Dutch Research Council (NWO) under project
no. VI.Veni.212.260.

1 Introduction

We study reconfiguration problems in curve arrangements in the plane. A set of open or
closed curves that are well-behaved induces an arrangement that partitions the plane into
faces, edges, and vertices; we consider a switch operation that locally uncrosses two crossing
curves [7, 8, 10, 9, 14, 11]. Note that under this operation each arrangement vertex has three
possible “states”; but in two of the three states the vertex will no longer be a vertex after
the switch; we therefore define switches to be local regions which either contain a vertex
(crossing) or two disjoint strands of curves, see Figure 1.

Our terminology is formally defined in Section 1.2. We are interested in reducing the
number of self-intersections and popular faces [5] in the arrangement using — ideally few —
such switch operations.

? Florestan Brunck, .Hsien-Chih Cha}ng, Maarten LofHer, Tim Ophelders, and Lena Schlipf;
37 icensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Graph Drawing and Network Visualization (GD 2025).

Editors: Vida Dujmovié¢ and Fabrizio Montecchiani; Article No. 36; pp. 36:1-36:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:flbr@di.ku.dk
https://www.uu.nl/staff/MLoffler/Profile
https://orcid.org/0000-0003-4921-2824
mailto:hsien-chih.chang@dartmouth.edu
https://www.dartmouth.edu/
https://orcid.org/0000-0001-6714-7988
mailto:m.loffler@uu.nl
https://www.uu.nl/staff/MLoffler/Profile
https://orcid.org/0009-0001-9403-8856
mailto:t.a.e.ophelders@uu.nl
https://orcid.org/0000-0002-9570-024X
mailto:lena.schlipf@uni-tuebingen.de
https://orcid.org/0000-0001-7043-1867
https://doi.org/10.4230/LIPIcs.GD.2025.36
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

36:2

Reconfiguration in Curve Arrangements

=7) =

Figure 1 The three states of a switch. Only the left one contains a crossing and hence a vertex.

1.1 Motivation & Background

Our question is motivated by the problem of generating curved nonograms. Nonograms, also
known as Japanese puzzles, paint-by-numbers, or griddlers, are a popular puzzle type where
one is given an empty grid and a set of clues on which grid cells need to be colored. A clue
consists of a sequence of numbers specifying the numbers of consecutive filled cells in a row
or column. A solved nonogram typically results in a picture (see Figure 2(a)). There is quite
some work in the literature on the difficulty of solving nonograms [1, 3, 15, 17].

1 1{1 1{1

al2|2|1]2| 11411 E ®\
11f1]3]2]s]2f1]1]1]1]1 o @

11 [312]
143 [ﬂ'
11121
2113 -’I’II
211
4
11

[L15]
(a) (b) %@/

Figure 2 Two nonogram puzzles in solved states. (a) A classic nonogram. (b) A curved nonogram.
(Puzzles in Figures 2 and 3 are part of the supplementary material of van de Kerkhof et al [16].)

Van de Kerkhof et al. [16] introduced curved nonograms, a variant in which the puzzle is
no longer played on a grid but on any arrangement of curves (see Figure 2(b)). In curved
nonograms, a clue specifies the numbers of filled faces of the arrangement in the sequence of
faces that are incident to a common curve on one side. Van de Kerkhof et al. focused on
heuristics to automatically generate such puzzles from a desired solution picture by extending
curve segments to a complete curve arrangement. They observed that curved nonograms
come in different flavours of increasing complexity — not in terms of how hard it is to solve a
puzzle, but how hard it is to understand the rules (see Figure 3).

Basic nonograms are puzzles in which each clue corresponds to a sequence of unique faces.

The analogy with clues in classical nonograms is straightforward.

Advanced nonograms may have clues that correspond to a sequence of faces in which

some faces appear more than once because the face is incident to the same curve multiple

times. When such a face is filled, it is also counted multiple times; in particular, it is
no longer true that the sum of the numbers in a clue is equal to the total number of filled
faces incident to the curve. This makes the rules harder to understand.

Ezxpert nonograms may have clues in which a single face is incident to the same curve

on both sides. They are even more confusing than advanced nonograms.

Loffler et al. [12] strenghten this classification by observing that the different flavours of
nonograms also behave differently in terms of complexity of solving - in particular, they
show that the existing concept of simple classical nonograms [1] can be extended to curved
nonograms, and that basic and advanced simple curved nonogram can still be solved in
polynomial time while solving expert simple curved nonograms is likely to be hard.

F. Brunck, H.-C. Chang, M. Loffler, T. Ophelders, and L. Schlipf

g 2
B >)da m
] C o W
[o
(a) (b) (c)

Figure 3 Three types of curved nonograms of increasing complexity [16], shown with solutions.

(a) Basic puzzles have no popular faces. (b) Advanced puzzles may have popular faces, but no
self-intersections. (c) Expert puzzles have self-intersecting curves. We can observe closed curves
(without clues) in (a) and (c).

Van de Kerkhof et al. stated that it would be of interest to generate puzzles of a specific
complexity level. Their generators are currently not able to do so other than by trial and
error. Specifically, the puzzles they generate are almost always of the “expert” complexity
and occasionally of the “advanced” complexity; particularly the probability of generating
large basic puzzles is so small that trial and error is not a feasible approach.

De Nooijer et al. [4, 5, 6] explore one possible way to generate nonograms of a specific
complexity: rather than building a new generator from scratch, they suggest using an existing
generator and modifying the output. They define a popular face in a curve arrangement
to be a face that is incident to a single curve multiple times. With this definition, expert
puzzles correspond exactly to arrangements with self-intersecting curves, and advanced
puzzles correspond exactly to the presence of popular faces in the arrangement. Note that a
self-intersection necessarily implies at least one popular face.

De Nooijer et al. investigated how to reduce the number of popular faces by inserting
new curves into the arrangement. This approach ensures that the shapes of the faces are
not distorted. But the approach also has some drawbacks: by definition it increases the size
of the arrangement; also, by inserting curves we will never remove any self-intersection, so
this approach is only suitable for transforming advanced puzzles into basic puzzles but not
expert puzzles into advanced ones.

In this paper, we explore a different approach based on local changes to the arrangement.
This will keep the size of the arrangement and its visual complexity roughly the same.

However, in order to reconnect curves locally it is necessary to distort the curves a little bit,

which may be undesirable for curve pieces that outline vital parts of the solution picture.

Therefore, we assume that a set of switches is given in advance: (arbitrarily) small regions in
which the arrangement may be reconfigured. Such a set of switches could be obtained either
by human intervention, or automatically (for instance, one could take all crossings in the
arrangement that are sufficiently far from the solution picture).

1.2 Terminology & Preliminaries

Let A be a set of curves which lie inside the area bounded by a closed curve F, called the
frame. All curves in A are either closed or they are open with a start and end point on F'. We
refer to A as a curve arrangement, see Figure 4(a). We consider only simple arrangements,
where no three curves meet in a point, and all intersections are transversal crossings (no
tangencies). The arrangement 4 can be seen as an embedded multigraph whose vertices are
crossings between curves and whose edges are curve segments. Arrangement A subdivides
the region bounded by F into faces. We call a face popular when it is incident to multiple
curve segments belonging to the same curve in A (see Figures 4(b—c)).

36:3

GD 2025

36:4

Reconfiguration in Curve Arrangements

(a) (b) (c) (d) (e)

Figure 4 (a) An arrangement of curves inside a frame. (b) The highlighted curve is incident to
the top right face in two segments, making the face popular. (c) All popular faces are highlighted.
(d) A set of switches. (e) A possible reconfiguration after which no more faces are popular.

Now, let a switch be a tiny topological disk around each crossing, which is traversed
by exactly two curve segments, in which we are allowed to reroute the curves of A (see
Figures 4(d—e)). We study the problem:

» Problem 1. Given a curve arrangement and a set of switches, can we reconfigure the
curves so as to remove all, or as many as possible, self-intersections and/or popular faces?
And can we minimize the number of switch operations?

Once we are given a set of switches, the question above is essentially combinatorial.
Observe that the problem is only interesting if the arrangement has at least some non-
switchable crossings (or we want to minimize the number of switch operations).

» Observation 2. If all intersections are switches, it is possible to remove all popular faces.

Proof. Simply set every switch to any non-intersecting state. Then each curve bounds a
single face on each side, and thus no face is popular. |

1.3 Results & Organization

We make the following contributions. In Section 2, we show that the problem of testing
whether it is possible to remove either all self-intersections or all popular faces from an
arrangement, where some vertices are marked as switchable and some as non-switchable,
is NP-hard. On the other hand, when all vertices are switchable, the problem is trivial
(Observation 2). However, we do show that in this case finding a solution that minimizes
the number of switched vertices is also NP-hard. In Section 3, we turn our attention to
parameterized results. We show that when we have an arrangement with only k switchable
crossings, or k non-switchable crossings, the problem of removing all self-intersections is
fixed-parameter tractable in k. For k switchable crossings, the same is true for removing
the popular faces. Finally, we show that another natural parameter, the number of popular
faces in the input, does not help: the problem remains NP-hard even when the input has a
constant number of popular faces.

2 NP-hardness

In this section, we present NP-hardness results and bring a negative answer to Problem 1. We
begin by examining the problem of removing all self-intersections and derive Theorem 3, using
an intermediate Permuter problem. From there, we then reduce the problem of removing
popular faces using a technique of overlaying a global grid. Finally, we present subsequent
extensions concerning the minimal number of switch operations required by overlying local
grids, or waffles. The organisation of our results in this section is summarized in Figure 5.

F. Brunck, H.-C. Chang, M. Loffler, T. Ophelders, and L. Schlipf

3-SAT

Permuter Problem
Removing Self-Intersections

. Bruxelles Waffle ..
Prescribed Set of Minimizing Num-

Switches ber of Switches

Overlaying a Grid
\

Removing Popular Faces

y
Prescribed Set of Licge Waffle Minimizing Num-
Switches ber of Switches

Figure 5 The flow of successive reductions underlying our NP-hardness proofs. Each arrow
represents a reduction.

2.1 Base Results

We start by proving our base results: we introduce the Permuter problem, we show that
3-SAT reduces to the Permuter problem, and we show that the Permuter problem reduces to
removing self-intersections in curve arrangements.

» Theorem 3. Given a curve arrangement and a prescribed set of switches, it is NP-hard to
decide whether it is possible to configure the switches such that the resulting arrangement has
no self-intersections.

2.1.1 The Permuter Problem and its Reduction from 3-SAT

Consider the straight-line drawing of the complete bipartite graph Kj, in the plane, with
bi-partition I and O (referred as its inputs and outputs) such that I and O are evenly
distributed on opposite sides of a rectangle R. Fixing the same linear horizontal order on
the vertices of I and O, the k-permuter Il , is the matching of K} ; associated to the
permutation o of [n]. An instance of the Permuter problem consists of a finite collection
{[lg,, i }ien) of ki-permuters, realised in the plane using an associated collection {R;}icn
of rectangles, together with a finite collection of paths {P;};c[,, outside the rectangles, such
that:

Every element of {P;};c[has both its endpoints in one of the k-permuters (possibly

the same, and possibly both inputs/outputs).

Every input and output of every permuter is connected to a unique element of {P;};c[m)-
For all i € [m], for all j € [n], P,N R; = @; i.e., each path P; is outside each rectangle R;.

By construction, every path of {P;};c},) belongs to a unique closed loop. The Permuter
problem then consists in deciding whether or not there exists a choice of n permutations
01,02,...,0p of [k1], [k2], ..., [kn] such that each resulting loop is simple (see Fig. 6).

36:5

GD 2025

36:6

Reconfiguration in Curve Arrangements

Figure 6 An instance of the k-Permuter problem with a 4-permuter and a 5-permuter, assigned
with the permutations o1 = Id and o2 = (12534). There are 3 resulting closed loops: one simple
(green) and two self-intersecting (blue and brown).

We believe that the Permuter problem is of independent interest, and we show that it is
NP-hard. We will prove Theorem 3 by reduction from the Permuter problem.

» Theorem 4. The Permuter problem is NP-hard.

Proof. The proof is by a polynomial-time reduction from 3-SAT. We shall use two types of
gadgets: 2-permuters for variable assignment and 3-permuters for clause verification (see
Fig. 7). For simplicity, each k-permuter is depicted by a black box on the diagram, where the
value of k is made clear by the number of incoming/outgoing paths. Each different colour in
the figure indicates a different variable. The thick or thin dashed lines on the top, bottom
and middle-left part of the diagram indicate respectively the false and true literals of each
variable. The thick and thin solid lines in the middle-right section of the diagram indicate
respectively the true or false assignment of each variable. Given a Boolean formula in 3-CNF
form with n variables, we construct 2n non-crossing semi-circular arcs. We replicate this
construction twice to form the top and bottom parts of the diagram. In the middle, we show
a single clause gadget, involving two 3-permuters. To simulate the two logical OR of the
clause, we proceed as follows: if the corresponding 3-clause involves the variables x;, ; and
x, we select the wire opposite to their desired truth value in the clause (i.e. thick for 7,
thin for z;) and “drag” them towards the gadget to intersect the same single path chosen
among the three paths linking the output of the first 3-permuter to the inputs of the second.
By construction, there is no valid permutation assignment to the two 3-permuters which
avoids all possible self-intersections with the three black paths if and only if z;, z; and xi
all have the wrong truth assignment. Furthermore, to the right of the 3-clause gadget, we
have weaved the incoming paths of the first and the outgoing paths of the second in such a
way that, if the composition of the two 3-permuters were not the identity, at least one of the
resulting closed loop would self-intersect. Thus each such pair of 3-permuters cannot “cheat”
and has to compose to the identity. As a consequence, for each of the variables involved,
the composition of its two 2-permuters must also be the identity. By construction, there are
then exactly two ways of ensuring this is the case: either both 2-permuters are the identity
themselves (setting the variable to be true), or both of them correspond to the transposition
(12) swapping the inputs (setting the variable to be false). Fig. 8 shows the instance created
for the Boolean formula (7 V z2 V x3) A (T1 V 25 V Tg). <

2.1.2 The Permuter Problem Reduces to the Self-Intersection Problem

» Lemma 5. The problem of configuring a given set of switches to avoid self-intersections is
polynomial-time reducible from the Permuter problem.

F. Brunck, H.-C. Chang, M. Loffler, T. Ophelders, and L. Schlipf 36:7

Ti Ty Tj T; T Tk
| | |
L] J J L] J
. T VIV A) .]
Figure 7 A single 3-clause in the reduction from 3-SAT to the Permuter problem.
AN A AN A

T1 Ty X2 Tz X3 T3 T4 Ty4 Ts Tz Te Tp

Figure 8 The instance of the Permuter problem created for the Boolean formula (Z7 V x2 V z3) A

(TzV x5 V Tp).

GD 2025

36:8

Reconfiguration in Curve Arrangements

Proof. The proof of the claim proceeds as follows: we first construct self-intersection gadgets
to simulate 2-permuters, take note of the fact that .S, is generated by transpositions and show
how to use 2-permuters to construct general k-permuters. The construction for 2-permuters
is presented on Fig. 9: the inputs and outputs are connected by two curves weaved into a
double coil structure with two intersections, one of which is a switch. The three resulting
configurations are shown on the figure; only the leftmost two are free of self-intersections.

Figure 9 Constructing a 2-permuter using two “doubly-coiled” curves. The grey disk indicates the

only switch available, the yellow disk highlights the self-intersection forbidding the third possibility
given by the switch.

To simulate a general k-permuter, we introduce the gadget illustrated in Fig. 10. We
begin with a k-by-k square and evenly distribute k inputs and outputs on its top and bottom
edges, respectively. For every ¢ € [n], the top i-th input is connected to the bottom (n —i)-th
output by the path of slope —1 which gets reflected into a path of slope 1 upon meeting the
left edge of the square. We then insert a total of k(kT_l) 2-permuters: one at every site where

two paths intersect inside the square.

1 2 3...k—2k-1k

Figure 10 Constructing a k-permuter, using @ 2-permuters.

While many configurations of this gadget are redundant and yield the same permutation,
a short inductive argument shows that it is indeed able to simulate any permutation on &
elements. The base case is simply the 2-permuter we previously described. Assume then
by induction that the version of our gadget with k — 1 inputs and outputs can successfully
simulate all permutations of [k — 1]. Note that any permutation o of [k] can be written as the
composition of a permutation of [k — 1] followed by the insertion of the element & into one of
the k positions before or after one of the k — 1 permuted elements. It is thus enough to show
that the addition of the last “row” of k — 1 2-permuters (highlighted in pink) can simulate
this last insertion step. Labelling the (k — 1) 2-permuters of the (k — 1)-th row according
to the direction indicated on Fig. 10, we insert the element & in position ¢ (before the i-th
element) by setting all the 2-permuters from positions ¢ to k to swap their inputs, and the
remaining ¢ 2-permuters to the identity. This effectively shifts all the elements with positions
greater than ¢ by 1 (the permuters reroute their corresponding wires to the segment of slope
1 instead of —1) as we sequentially shift the element k to the left ¢ times (the permuters
successively let the k-th input path “slide” on the last path of slope —1). |

Proof of Theorem 3. Theorem 3 now follows directly from Theorem 4 and Lemma 5. <«

F. Brunck, H.-C. Chang, M. Loffler, T. Ophelders, and L. Schlipf

2.2 Extensions

We now extend the result from Theorem 3 in several ways, to prove that the problem remains
hard when we wish to minimize the number of switch operations, or when the goal is to
remove all popular faces rather than self-intersections. The idea is always to locally alter the
reduction in a way that does not affect its global properties.

2.2.1 Minimizing the number of switches

In the previous section, we had a prescribed set of switches; indeed, this is necessary since
if we are allowed to switch everywhere, then we can always remove all self-intersections by
Observation 2.

However, now consider the scenario in which we wish to minimize the number of switch
operations, or, in the decision version, we wish to test for a given k& whether there exists a
sequence of k switch operations such that the resulting arrangement has no self-intersections.
In this scenario, we may or may not have a prescribed set of switches.

The idea is to emulate the construction from Section 2.1, but to replace every self-
intersection in the construction which is not a switch by a waffle gadget. Such a gadget is
built in such a way that even if every intersection in the gadget is a switch, the number of
switches required to change its global state is more than a parameter c. If we then choose
¢ > k, the result follows since essentially we are never allowed to switch these gadgets.

The Bruxelles Waffle. We introduce the Bruzelles waffle (in contrast to the Liége waffle
which we describe in Section 2.2.3). The construction is illustrated in Figure 11.

(a) (b) (c)

Figure 11 The Bruxelles waffle. (a) A crossing between two different curves. (b) To construct
a Bruxelles waffle at the crossing, we adapt the two curves so they intersect ¢® times. (c) Any
sequence of local switches to emulate a global switch must be of length at least ¢ or otherwise lead
to a self-intersection.

» Lemma 6. In a Bruzelles waffle, any sequence of fewer than c¢ switches must result in
an arrangement with either the same combinatorial structure as the original, or at least one
self-intersection.

Proof. Assume that after fewer than ¢ switches, no self-intersections remain. We need to
show that opposite terminals lie on the same strand. Assume for a contradiction that opposite
terminals do not lie on the same strand. Then the left terminal lies on the same strand as
either the top or the bottom terminal. Without loss of generality (by rotational symmetry of
the gadget) assume that the left terminal lies on the same strand as the bottom terminal.
Because there are ¢ rows, at least one row has not undergone any switch, and the
horizontal path in that row has a single color. Because there are no self-intersections, all
strands crossing the row vertically have a color different from the horizontal path of the row.

36:9

GD 2025

36:10

Reconfiguration in Curve Arrangements

Removing the row splits the gadget into a part above and a part below the row, and the
left and right endpoints of the horizontal path connect to different such parts. The strand
containing the horizontal path of the row cannot be closed up without crossing the row, so
the strand connects a terminal below and a terminal above the row. That is, it connects the
bottom or left terminal to the top or right terminal. This contradicts our assumption that
the bottom and left terminals lie on the same strand. <

» Theorem 7. Given a curve arrangement and an integer k, it is NP-hard to decide
whether there exists a sequence of k switches such that the resulting arrangement has no
self-intersections.

2.2.2 Removing popular faces

Next, we consider the problem of removing all popular faces rather than only self-intersections.

The idea is to globally overlay the construction from Section 2.1 with a sufficiently fine
grid of horizontal and vertical lines, in which none of the intersections with these new lines
are switches. In particular, we make the grid such that each cell of the grid contains either
a single strand of one of the curves, or two strands that intersect, or nothing at all (see
Figure 12).

(a) (b)

Figure 12 (a) A small section of the construction. (b) A fine grid that separates all elements of
the construction into separate cells.

After we overlay the grid, all (new) faces are incident to each grid line only once, and
incident to each original curve only once, unless two crossing strands inside a grid cell
belong to the same curve. In other words, all remaining popular faces are now due to
self-intersections. Therefore, in order to remove all popular faces we need to remove all
self-intersections, and this is also sufficient.

» Theorem 8. Given a curve arrangement and a prescribed set of switches, it is NP-hard to
decide whether it is possible to configure the switches such that the resulting arrangement has
no popular faces.

2.2.3 Removing popular faces with a minimum number of switches

Finally, we consider the setting where every intersection is an allowed switch; in this case,
testing whether all popular faces can be removed is again not hard by Observation 2. However,
when we wish to remove all popular faces using a minimum number of switch operations,
the problem remains NP-hard. The idea is similar to that in Section 2.2.1, but we will need
to use a different gadget that ensures we cannot perform any switches (since having no
self-intersections does not necessarily imply there are no popular faces).

F. Brunck, H.-C. Chang, M. Loffler, T. Ophelders, and L. Schlipf

The Liege Waffle. We introduce the Liege waffle, illustrated in Figure 13.

D -
4) 4 A
(|) 4)
(A 4)
C A ANNND N
C v C EnEny,
\. J \. /
\. J \. /
\\)J \\))
(a) (b) (c)

Figure 13 The Liege waffle. (a) A crossing between two different curves. (b) To construct a
Liege waflle, we insert a set of ¢ new closed curves that surround the crossing. (¢) Any sequence of
local switches to emulate a global switch must be of length at least ¢ or lead to a popular face.

Essentially, we overlay ¢ new closed curves on the two (crossing) terminal strands, such
that each of the new curves is incident to each of the four unbounded faces, and that the
disk bounded by the curve contains the crossing between the two terminal strands.

» Lemma 9. In a Liége waffle, any sequence of fewer than c switches must result in an
arrangement with either the same combinatorial structure as the original, or at least one
popular face.

Proof. If we change the global connectivity, then one of the four unbounded faces will
globally have two strands of the same curve; say the top left face (Figure 13 (c)). In order for
this face to not be popular, these two strands must be consecutive along the curve. Initially,
all intersections incident to the face are crossing, so they must all be uncrossed. There are
¢ + 1 such intersections, so we need at least ¢ 4+ 1 switches. <

» Theorem 10. Given a curve arrangement and an integer k, it is NP-hard to decide whether
there exists a sequence of k switches such that the resulting arrangement has no popular faces.

3 Parameterized Results

Since the problem in general is NP-hard, we now turn our attention to parameterised
complexity. We can identify several natural parameters:

the number of popular faces in a provided configuration; or

the number of switches; or

the number of non-switchable crossings.

The number of popular faces is perhaps the most natural parameter when trying to
remove popular faces; in particular, existing heuristics for generating curve arrangements
do attempt to minimize the number of popular faces and often succeed in reducing their
number, but usually not all [16]. Unfortunately, as we show in Section 3.1, this does not make

the problem easier. Instead, we can also consider the number of switches as a parameter.

When there is only a small number of switches, it is easy to see that the problem becomes
polynomial, see Section 3.2. However, in our nonogram generation application, it seems
more reasonable to assume the number of non-switchable crossings is small: we may wish
to maintain some key features of the solution image, but otherwise want to have as much
freedom as possible. Here, we prove the problem is also in FPT when the goal is to reduce
the number of self-intersections; for removing popular faces, the problem remains open. In
Section 3.3, we explore this parameter in detail. Our parameterized results are summarized
in Table 1.

36:11

GD 2025

36:12

Reconfiguration in Curve Arrangements

Table 1 Results on parameterized complexity.

parameter avoid self-intersections | avoid popular faces
number of popular faces NP-hard NP-hard
number of switchable crossings FPT FPT
number of non-switchable crossings FPT open

3.1 Parameter: number of faces

We show that the problem of removing all popular faces remains hard if we are given a
starting configuration with only a constant number of popular faces. For this, we set the
permuters in the construction in Section 2.1.2 to some an initial state that leads to only
few popular faces but does not “help” with finding the actual solution. In particular, an
assignment of a 3-SAT formula that satisfies all but one clause corresponds to a setting of
permuters that results in constantly many popular faces.

We first show that 3-SAT remains hard if the input comes with an assignment that
violates at most one clause; call this problem Almost-3-SAT.

» Lemma 11. Almost-3-SAT is NP-complete.

Proof. NP-membership is trivial. To show NP-hardness, assume without loss of generality
that P#NP, and that we have a polynomial time algorithm Alg for deciding Almost-3-SAT.
We can use Alg to also output a satisfying assignment if the instance is satisfiable (by guessing
the value of a variable, removing all clauses satisfied by that variable, and calling Alg on the
resulting formula). We hence assume that Alg also outputs a satisfying assignment (if one
exists).

We show that we can use Alg to solve 3-SAT. Consider an instance F of 3-SAT that
consists of m clauses. We can solve F' by invoking Alg m times, namely on subformulas of
F'. Suppose that we have an assignment A that satisfies the first k clauses of F. Then the
first k + 1 clauses of F together with A form an instance of Almost-3-SAT, which we can
solve using Alg to either obtain an assignment A’ that satisfies the first k + 1 clauses of F,
or a proof that the first k + 1 clauses of F' are not satisfiable, and hence F is not satisfiable.
Starting with & = 0, and repeating the above m times and incrementing k, we either obtain
a satisfying assignment for F', or discover that F' is not satisfiable. Hence, Alg can be used
to solve 3-SAT in polynomial time. <

» Theorem 12. Given a curve arrangement with a constant number of popular faces, the
problem of deciding whether there exists a configuration without any popular faces (or self-
intersections) is still NP-complete.

Proof. Setting the permuters to an assignment that satisfies all except one clause results in
configuration in which all popular faces are incident to the clause gadget that corresponds to
the unsatisfied clause. Because a clause gadget has constant complexity, the configuration
has a constant number of popular faces. The popular faces can be removed by reconfiguring
switches if and only if the instance of Almost-3-SAT is satisfiable. <

3.2 Parameter: number of switches

Next, we show that the problem is not NP-hard when the number of switches is small.

» Observation 13. Given a curve arrangement with k switches, the problem of deciding
whether there exists a configuration without any popular faces (or self-intersections) is FPT
in k.

F. Brunck, H.-C. Chang, M. Loffler, T. Ophelders, and L. Schlipf

Proof. We can simply try all 3¥ combinations and then check whether the resulting ar-
rangement has self-intersections and/or popular faces. Both of these can be done in time
proportional to the complexity of the arrangement. So, the running time of this algorithm is
O(3F - n). <

3.3 Parameter: number of non-switchable crossings

Finally, we explore our third parameter: the number of non-switchable crossings in the input
arrangement. Throughout this section, we will denote this parameter as k. The case k =0
corresponds to Observation 2 and is easy. We will first explore the situation when k& = 1.

3.3.1 Removing self-intersections with exactly 1 non-switchable crossing

This question is already interesting when there is just one crossing that cannot be switched.
As a simple example, consider the arrangement in Figure 14, which shows an arrangement
with five switches, one of which is marked as non-switchable. There are exactly three states
in which there are no self-intersections, but to get from one to another, four switch operations
need to be done; that is, every single switchable switch needs to be flipped.

Figure 14 An arrangement with five switches, the middle of which is non-switchable. Left: one

possible state without self-intersections. Right: another state without self-intersections. A third
state is the mirror image of the right figure.

Define an Eulerian partition of a multigraph to be set of cycles and paths connecting
boundary edges, such that each edge is used exactly once. That is, each edge lies on a single
path or cycle, and no path or cycle revisits an edge. We say that an Eulerian partition is
simple if each of its paths and cycles is simple. For a surface-embedded graph, we endow each
vertex (of even degree) with the involution that pairs up incident edges on “opposite” sides.
An Eulerian partition is straight at a vertex v if whenever a path or cycle passes through v,
it does so using the edges related to each other by the involution.

Let G be the graph of the arrangement of the curves, where each switch and non-switch
corresponds to a vertex of G, and every maximal segment of the curves becomes an edge of
G. Assume that G has a single (degree 4) vertex v that is a non-switchable crossing. We are
looking for a simple Eulerian partition of G that is straight at v. Let G — v be the graph
obtained by subdividing the four edges incident to v using (in cyclic order) vertices vy, . .., vy,
and then removing v. We call v a cut-vertex if G — v has more components than G.

» Lemma 14. For any graph G that comes from a curve arrangement, and any non-boundary

vertex v of G, exactly one of the following is true:

1. There exists a simple FEulerian partition of G that is straight at v; or

2. v is a cut-vertex and at least one component of G — v incident to v; (i=1,...,4) does
not touch the boundary.

36:13

GD 2025

36:14

Reconfiguration in Curve Arrangements

Proof. We first show that Item 2 rules out Item 1. Let C' be a component of G — v that does
not touch the boundary and without loss of generality assume that it contains v; (otherwise
relabel the v;’s). Because C' does not touch the boundary, the vertices of C' of degree 1 form a
subset of {v1,vq,v3,v4}. Because v is a cut-vertex of G, there exists some v;, i € {2,3,4} that
does not lie in C'. By the handshaking lemma, C contains exactly two vertices of degree 1.

We claim that C does not contain v3. Suppose for a contradiction that C' contains vs,
then the path from v; to w3 corresponds to a cycle ¢ through v in G that by the Jordan
curve theorem separates the components Cy and C4 containing v and vy respectively, so
Cy # Cy. By the handshaking lemma, Cy and Cy must have an odd (and therefore nonzero)
number of boundary ports (to compensate for the vertex vy or vy of degree 1). However, Co
or Cj lies interior to the disk bounded by ¢ and hence has no boundary ports, which is a
contradiction, so C' does not contain vs.

Assume without loss of generality that C' contains v; and ve (the argument for v; and
vy is symmetric). Now, if the Eulerian partition of G that was straight at v is simple, then
G — v must contain an Fulerian partition that does not contain a path connecting v; to vs
(otherwise the path would self-intersect at v in G). However, because these are the only
vertices of C of degree 1, and Eulerian partition of G — v contains such a path, so Item 2
rules out Item 1.

It remains to construct a simple Eulerian partition (that is straight at v) if v is not a
cut-vertex, or if all components of G — v incident to v; (i € {1,...,4}) touch the boundary.
Let C; (i =1,...,4) be the component of G — v containing v;. We first show that there exists
a simple Eulerian partition that is straight at v if C1; = C3 (and by symmetric argument if
Cy = Cy). Assume that Cy = C3, then G — v contains a simple path 7; from v; to vs. Let
G — v — m; be the graph obtained from G — v by removing the edges of m;. If vy and vy are
connected in G — v — 71, then there exists a simple path 75 from vs to v4. Then 7 and g
correspond to simple cycles ¢; and ¢p in G that are straight at v, and the remainder of G
admits a Eulerian partition (and hence a simple one). If instead vy and v4 are not connected
after removing the edges of m; from G — v, then we pick an arbitrary Eulerian partition of
G — v — m;. This partition corresponds to a partition of G in which 7; corresponds to a
simple cycle that is straight at v, and the paths that contain v and v4 (call them 7o and my)
do not intersect because they lie in different components of G — v — 1. Hence, the paths mg
and 74 can be concatenated by replacing the end points v, and vy by the vertex v in G, to
obtain a simple path in G that is straight at v.

We have established that there exists a simple Eulerian partition that is straight at v if
C1 = Cs or Cy = Cy, so assume that Cy # C5 and Cy # Cy. Then v is a cut-vertex, so it
remains to show that if each C; touches the boundary, then there exists a simple Eulerian
partition that is straight at v. We claim that G — v contains edge-disjoint simple paths 7;
(¢ =1,...,4) that connect each v; to the boundary. For this, let 71 and 75 be arbitrary simple
paths and consider the component C% of G — v — m; — 3 that contains vy. We claim that
this component contains a boundary vertex. Indeed, by the handshaking lemma, C/ contains
an even number of vertices of degree 1, and one of them is vo. None of the vertices vy, vs, vy
lie in C%, because v; and v were isolated by removing the edges of 71 and 73, and vy lies on
a different component because Cy # Cy. Hence, C contains a boundary vertex, and hence a
simple path 7 to it from v,. By a symmetric argument, a component of G — v — 1 — 73
contains a simple path 74 from v4 to a boundary vertex. Because C; # C5 and Csy # CYy,
the “concatenations” of m; with w3 and of o with 74 in G are simple and straight at v. The
remainder of G (after removing these two paths) admits a Eulerian partition and hence a
simple one. Reinserting the two paths yields a simple Eulerian partition of G that is straight
at v. |

F. Brunck, H.-C. Chang, M. Loffler, T. Ophelders, and L. Schlipf

This now leads to the following result:

» Theorem 15. For an instance with exactly 1 non-switchable crossing, we can decide
whether there exists a configuration without self-intersections in O(n?) time.

Proof. Suppose we have an arrangement A for which the answer is yes, and let G be its
(planar) graph. G has one special vertex & that represents the non-switchable crossing. We
augment G by adding a new vertex w that represents the outer face; we create an edge from
all vertices on the frame to w Now consider a configuration K for A without self-intersections.
All curves in A are now edge-disjoint cycles in G. Now, consider the cycles that pass through
&. Note that these must be two cycles; we will refer to them as the red cycle and blue cycle.

Now, replace £ by four degree 1 vertices that we refer to as terminals. Let G’ be the
resulting (planar) graph. Note that now, we have a red and a blue path in G’, and the paths
incident to opposing terminals have the same color.

Now, our goal is to test whether such a configuration K can exist, based only on the
information in G. That is, we need to find whether there exist two edge-disjoint paths in G’
that connect opposite pairs of terminals. The existence of edge-disjoint paths that connect
two pairs of terminals can be tested in O(n?) time [13].

If so, by Lemma 14, we then have a Eulerian partition of the remainder, and we can
cover it by edge-disjoint cycles. In addition, when we re-insert £, the two paths become an
edge-disjoint red and blue cycle that are straight at &. |

The proof of Theorem 15 is constructive, and leads to the following algorithm:

» Algorithm 16.
Construct G’ by connecting all boundary vertices to an additional vertex w on the outer
face, and replacing & by four terminals.
Assign alternating colors to the terminals.
Run [13] (in O(n?) time).
If it returns false, return false. Otherwise:
For the two paths found by [13], set all switches along the paths accordingly so that two
curves will follow exactly these paths.
For the remainder, (greedily) cover G' with edge-disjoint cycles. If any cycle has a
self-intersections, simply split it into multiple cycles.
Set all remaining switches so that each cycle corresponds to a curve.

3.3.2 Removing self-intersections with k£ non-switchable crossings

Next, we can extend the ideas from the previous section to k& non-switchable crossings.

» Theorem 17. For an instance with k non-switchable crossings, we can decide whether
k

k
there is a configuration without self-intersections in O(kkk -n?) time.

Proof. Suppose we have an arrangement A for which the answer is yes, and let G be its
(planar) graph. We augment G by adding a new vertex w that represents the outer face; we
create an edge from all vertices on the frame to w Now consider a configuration K for .4
without self-intersections. All curves in A are now edge-disjoint cycles in G.

Consider the cycles that pass through at least one non-switchable crossing. Because each
non-switchable crossing involves only two cycles, there are at most 2k such cycles, and we
will assign distinct colors to these cycles.

36:15

GD 2025

36:16

Reconfiguration in Curve Arrangements

Replace each non-switchable crossing by four terminals corresponding to the four incident
edges. Let G’ be the resulting graph. This cuts up the cycles that pass through the non-
switchable crossings into exactly 2k edge-disjoint colored paths that each start and end at
terminals. For each non-switchable crossing, the paths incident to opposing terminals have
the same color. On the other hand, because any cycle passes through any non-switchable
crossing only once, every non-switchable crossing is incident to two distinct colors, so any
two of its terminals that are not opposing have different colors.

We wish to recover a configuration K’ without self-intersections for G based on only the
following information derived from K:

1. the pairs of terminals that are connected by the 2k edge-disjoint paths; and
2. for each such pair, the color of the path that connects them.
For a given graph, one can decide the existence of edge-disjoint pathf that connect specified

pairs of terminals (and report the paths if they exist) in O(/ﬂkkk -n?) time [13]. If we
apply this algorithm to G’ with the above information derived from K, it will return that
there exists a set of edge-disjoint paths.

For any such set of edge-disjoint paths, we can correspondingly color the edges of G, and
give all the edges that do not lie on any of the 2k paths a new color (e.g. color 2k + 1).
This results in an Eulerian partition of G that is straight at each of the non-switchable
crossings. Any switch will either be incident to four edges of the same color, or two pairs
of two edges with the same color. We now define our configuration K’ as follows. If the
four edges incident to a switch s have the same color, we configure s so as not to create a
crossing. If on the other hand, s is incident to two pairs of edges with different colors, we
configure s in the obvious way: connecting both pairs of edges with the same color. Now,
each strand of K’ has a single color. We show that no strand of K’ intersects itself. Indeed,
any self-intersection must occur at a vertex incident to four edges of the same color. Because
non-switchables are not incident to four edges of the same color, the only vertices at which
a strand might self-intersect is at a switch. However, by construction, switches whose four
incident edges all have the same color are configured not to cross. Hence, configuration K’
has no self-intersections. |

Again, the proof is constructive; we now have all the ingredients for our main algorithm:

» Algorithm 18.

Construct G' by connecting all boundary vertices to an additional vertex w on the outer

face, and replacing each non-switchable crossing by four terminals.

Call a coloring of the terminals valid if it uses at most 2k colors, and for each non-

switchable crossing, the opposing terminals have the same color, and non-opposing termi-

nals have distinct colors. There are at most k**¢=1) yalid colorings.

For each valid coloring of the terminals:
For a given coloring, call a matching between the terminals valid if it matches only
pairs of terminals that have the same color. For a given coloring, there are at most
(2k — D) valid matchings [2].

For each valid matching:

Run [13] (in O(kkkkk -n?) time).
If it returns true, store the resulting collection of paths.
If no paths were stored, return false.
Otherwise, set all switches along the stored paths accordingly so that they become curves.

F. Brunck, H.-C. Chang, M. Loffler, T. Ophelders, and L. Schlipf

For the remainder, (greedily) cover G' with edge-disjoint cycles. If any cycle has a
self-intersections, simply split it into multiple cycles.
Set all remaining switches so that each cycle corresponds to a curve.

The above ideas can be partially extended to the case of removing popular faces. However,
the general question whether removing popular faces is FPT in the number of non-switchable
crossings remains open.

4 Conclusion

We have shown that the problem of minimizing either the number of self-intersections or the
number of popular faces in a curve arrangement is NP-hard. However, in our application of
puzzle generation, we expect the number of non-switchable crossings to be small, and we show
that minimizing the number of self-intersections is FPT in the number of non-switchable
crossings. This makes our results potentially suitable for generating advanced, rather than
expert, curved nonograms, although one remaining question from a practical point of view is
whether the dependency on k can be improved. On the other hand, the problem of minimizing
the number of popular faces remains open, which means we cannot yet (efficiently) generate
basic curved nonograms using this method.

—— References

1 Kees Batenburg and Walter Kosters. On the difficulty of nonograms. ICGA journal, 35:195-205,
December 2012. doi:10.3233/ICG-2012-35402.

2 David Callan. A combinatorial survey of identities for the double factorial. https://arxiv.

org/abs/0906.1317, 2009.

3 Yen-Chi Chen and Shun-Shii Lin. A fast nonogram solver that won the TAAI 2017 and ICGA
2018 tournaments. ICGA Journal, 41(1):2-14, 2019. doi:10.3233/ICG-190097.

4 Phoebe de Nooijer. Resolving popular faces in curve arrangements. Master’s thesis, Utrecht
University, 2022. URL: https://studenttheses.uu.nl/handle/20.500.12932/494.

5 Phoebe de Nooijer, Soeren Nickel, Alexandra Weinberger, Zuzana Masarovd, Tamara
Mchedlidze, Maarten Loffler, and Giinter Rote. Removing popular faces in curve arrangements.
In Proc. 81st International Symposium on Graph Drawing, 2023.

6 Phoebe de Nooijer, Soeren Terziadis, Alexandra Weinberger, Zuzana Masarova, Tamara
Mchedlidze, Maarten Loffler, and Giinter Rote. Removing popular faces in curve arrangements.
Journal of Graph Algorithms and Applications, 28(2):47-82, November 2024. doi:10.7155/
jgaa.v28i2.2988.

7 Cole A. Giller. A family of links and the Conway calculus. Transactions of the American
Mathematical Society, 270(1):75-109, 1982.

8 Jim Hoste. The Arf invariant of a totally proper link. Topology and its Applications, 18(2-3):163—
177, 1984.

9 Vaughan F. R. Jones. On knot invariants related to some statistical mechanical models. Pacific
journal of mathematics, 137(2):311-334, 1989.

10 Louis H. Kauffman. State models and the Jones polynomial. Topology, 26(3):395-407, 1987.

11 Louis H. Kauffman. Gauss codes, quantum groups and ribbon Hopf algebras. Reviews in
Mathematical Physics, 5(4):735-773, 1993.

12 Maarten LofHler, Ginter Rote, Soeren Terziadis, and Alexandra Weinberger. On solving
simple curved nonograms. In Proc. 36th International Workshop on Combinatorial Algorithms
(IWOCA 2025), 2025.

13 Neil Robertson and Paul D. Seymour. Disjoint paths—a survey. SIAM Journal on Algebraic
Discrete Methods, 6(2):300-305, 1985. doi:10.1137/0606030.

36:17

GD 2025

https://doi.org/10.3233/ICG-2012-35402
https://arxiv.org/abs/0906.1317
https://arxiv.org/abs/0906.1317
https://doi.org/10.3233/ICG-190097
https://studenttheses.uu.nl/handle/20.500.12932/494
https://doi.org/10.7155/jgaa.v28i2.2988
https://doi.org/10.7155/jgaa.v28i2.2988
https://doi.org/10.1137/0606030

36:18

Reconfiguration in Curve Arrangements

14

15

16

17

Alexander Schrijver. On the uniqueness of kernels. Journal of Combinatorial Theory, Series
B, 55(1):146-160, May 1992. doi:10.1016/0095-8956(92)90038-Y.

Nobuhisa Ueda and Tadaaki Nagao. NP-completeness results for NONOGRAM via parsi-
monious reductions. Technical Report TR96-0008, Department of Computer Science, Tokyo
Institute of Technology, 1996. CiteSeerX 10.1.1.57.5277, http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.57.5277.

Mees van de Kerkhof, Tim de Jong, Raphael Parment, Maarten Lofller, Amir Vaxman, and
Marc J. van Kreveld. Design and automated generation of Japanese picture puzzles. Comput.
Graph. Forum, 38(2):343-353, 2019. doi:10.1111/cgf.13642.

Jan van Rijn. Playing games: The complexity of Klondike, Mahjong, nonograms and animal
chess. Master’s thesis, Leiden Institute of Advanced Computer Science, Leiden University,
2012.

https://doi.org/10.1016/0095-8956(92)90038-Y
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5277
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5277
https://doi.org/10.1111/cgf.13642

	1 Introduction
	1.1 Motivation & Background
	1.2 Terminology & Preliminaries
	1.3 Results & Organization

	2 NP-hardness
	2.1 Base Results
	2.1.1 The Permuter Problem and its Reduction from 3-SAT
	2.1.2 The Permuter Problem Reduces to the Self-Intersection Problem

	2.2 Extensions
	2.2.1 Minimizing the number of switches
	2.2.2 Removing popular faces
	2.2.3 Removing popular faces with a minimum number of switches

	3 Parameterized Results
	3.1 Parameter: number of faces
	3.2 Parameter: number of switches
	3.3 Parameter: number of non-switchable crossings
	3.3.1 Removing self-intersections with exactly 1 non-switchable crossing
	3.3.2 Removing self-intersections with k non-switchable crossings

	4 Conclusion

