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Abstract
Stress in a graph drawing has been a popular layout principle for more than two decades. Low
stress drawings exhibit the property that the geometric distances between all pairs of nodes correlate
with the shortest paths between them. The assumption has always been that low stress drawings
are “nicer” and better support human perception and comprehension than high stress drawings.
In this paper, we put these assumptions to the test. We use a normalised scale-independent and
rotation-independent metric for stress; this is necessary to ensure strict controls on our experimental
stimuli. We report on three experiments, exploring human perception of stress, preference for stress,
and the effect of stress on a graph performance task. We conclude that people can see stress in a
graph drawing, that they prefer low stress drawings, and that their performance in a shortest path
task improves as stress decreases – thus empirically confirming long-standing assumptions.
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1 Introduction

Since its introduction in the 1980s [12], minimising stress has remained one of the most popular
layout criteria in graph drawing with implementations in GraphViz [10] and NetworkX [19]. It
is among the most frequent quality metrics that researchers use to evaluate layout algorithms,
being the third most used metric behind run time and edge crossings [7]. Although stress is
believed among experts to reflect aesthetic, symmetric, and general high quality layouts [27],
validating stress as a metric has only been considered in a handful of limited studies [5, 18].
The assumption is that humans can perceive stress, prefer low stress, and understand low
stress drawings better than high stress ones. This paper reports on empirical studies that
address these assumptions.

While the fundamental principle of measuring stress relates to the extent to which the
geometric distances between pairs of nodes correlate with the graph theoretic distances
between them, there are several different definitions of stress. Many formulae for stress
depend on the scale of the drawing [24] – that is, since the physical size of a drawing
determines geometric distances, it also determines the value of the drawing’s stress. These
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38:2 Stress in Graph Drawings: Perception, Preference, and Performance

ambiguities in the definition of stress means that it is difficult to compare the stress of two
graph drawings of different size, and not easy to create a unique graph drawing with given
stress.

To investigate the human response to varying stress in graph drawings, we use a scale-
independent and rotation-independent normalised metric for stress [18]. Having a robust
metric like this enables rigorous formal experiments to be conducted, since it provides a
means by which graph drawings of different size and scale can be quantitively compared for
the extent of stress within them.

Based on this stress metric, a large set of graph drawings with different stress values
served as stimuli for our three human empirical studies. The first experiment addresses the
question of whether people can see stress in a graph drawing or not, gathering qualitative
interview data that validates the results of prior quantitative work [18]. We find that while
participants can recognise differences in stress, they have difficulty describing what it is. Since
these “perception” results may have been due to the preferences of the participants for low
stress drawings, our second experiment investigated preference, asking participants to identify
which of a several pairs of drawings they most preferred in a two-alternative-forced-choice
experiment. We found that they did, indeed, prefer the drawing with lower stress, but
that this was not the same as comparing two drawings and identifying the one with least
stress. The final experiment is arguably the most important, since it focusses on actual task
performance, asking participants to complete shortest path tasks. As we had hoped, the
results reveal a correlation between task accuracy and stress: the lower the stress, the higher
the accuracy.

We have therefore considered stress in graph drawings from three human perspectives:
perception, preference and performance.

2 Background: Stress in Graph Drawings

The concept of stress in graph drawing is based on the principle that any two vertices should
have a geometric distance proportional to their graph theoretic distance. While there are
several variants for the definition of stress, the one proposed by Gansner et al. [10] is most
popular (Equation 1).∑

i<j

d−2
i,j (||Xi − Xj || − di,j)2 (1)

where Xi is the coordinate position of vertex i and di,j is the graph theoretic distance
between vertices i and j. Gansner et al. [10] note that the sum of square differences over-
penalises large differences and under-penalises small distances. Hence, the inclusion of the
d−2

i,j “normalisation” term, weighting distant pairs proportionally to an inverse-square law;
thus this definition is known as normalised stress. This equation has roots in statistical
analysis and dimension reduction, where it is known as Multi-dimensional Scaling (MDS) or
Sammon mapping [14,22].

Stress was first introduced to graph drawing as an objective function, that is, something
to be minimised to produce a desirable drawing, and several variants of Equation 1 have been
proposed as objective functions in various algorithms. Gansner et al. [9] and Ortmann et
al. [20] use approximation in order to avoid the expensive all-pairs-shortest-path computation
that is required for normalised stress. Chen and Buja [4] and Miller et al. [16] modify the
function to measure only “local” (small) distances.
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When optimising stress, Ahmed et al. [1] and Devkota et al. [6] use stress-based optimisa-
tion schemes alongside other aesthetic criteria, and stress is used as an evaluation metric
by Hong et al. [11] and Marmer et al. [15], as well in dynamic graph layout methods from
Simonetto et al. [23] and Arleo et al. [2]. Kruiger et al. [13] and Zhu et al. [29] evaluate the
stress of their layouts to determine how much “global” distances are lost.

When investigating stress, Brandes and Pich [3] evaluate layout algorithms by stress and
Welch and Kobourov [27] use stress as an alternative measure of symmetry in graph layouts.
Wang et al. [26] both optimise and evaluate stress. Wageningen et al. [25] extend stress as
an evaluation for 3-dimensional drawings, by considering each orthographic viewpoint.

2.1 Scale-Independent Stress
Normalised stress (Equation 1) is susceptible to changes in the scale (size) of a drawing [24]:
that is the same drawing will have different stress values when drawn at different sizes. While
this may not be a concern when the aim of a layout algorithm is to minimise the stress in a
drawing, it means that the measured stress value of a drawing is objectively meaningless
outside of the specific implementation. In particular, it means that it is impossible to
meaningfully compare the stress vales of two graph drawings.

If we are to empirically investigate the effect of stress on human perception, preference
and performance, we need a stress metric that is scale-invariant and bounded. There are three
main contenders. Scale-normalised stress has been deployed in recent evaluations [25, 26],
where the size of the drawing is chosen which yields the smallest normalised stress, and
the Shepard goodness score measures the rank correlation between the graph-theoretic and
geometric distances between vertices.

The option we have chosen is the non-metric stress of Kruskal [14], which has several
desirable properties as a metric. Unlike normalised stress which is unbounded and scale-
sensitive, non-metric stress lies in the range [0, 1] and is scale-invariant. The two stress
functions share the same overall complexity to compute (quadratic, once all-pairs shortest-
path lengths are precomputed), and the difference in runtime is also small in practice. Mooney
et al. [18] show that this Kruskal’s stress metric (KSM) is highly correlated with Gansner
et al.’s [10] normalised stress.

KSM = 1 −

√√√√∑
i<j(||Xi − Xj || − d̂i,j)2∑

i<j ||Xi − Xj ||2
(2)

where Xi is the position of vertex i, and d̂i,j is the horizontal distance to the monotonic
regression line of best fit in the Shepard diagram of the drawing. A more detailed description
is given in [24]. Note that, consistent with other literature on normalised evaluation metrics
(e.g., [17,18,21]), a value of 1 represents the assumed “best” case (i.e., zero stress). Therefore,
high KSM values indicate low stress.

There are few empirical studies that compare the effectiveness of stress. Computational
experiments have shown that the low stress of a drawing tends to correspond to exhibiting
symmetries in the graph when they exist [27]. A small-scale experiment indicates that people
prefer less stress and fewer crossings [5]. However, in this experiment, it is unclear the level
of difference of stress values between drawings, or even what variant of stress was deployed
(stated “scaled by average edge length”). The measure of stress used relies on normalising by
average edge lengths, which may invalidate comparisons between drawings where the average
edge length (or scale of the overall drawing) are different. Our use of the scale-invariant and
bounded KSM allows for meaningful stress comparison between graph drawings, ensuring
that valid experimental stimuli can be created.

GD 2025
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Other studies consider the length of shortest paths and Euclidean distances without
referring to stress directly. Yoghourdjian et al. [28] evaluate shortest path task difficulty
with respect to features of the shortest path, including a stress variant called “geodesic path
deviation”. However, they find that this feature of the shortest path does not influence task
difficulty as much as several other layout parameters that relate to crossings (e.g. number of
edge crossings, angle of crossings, node-edge crossings).

2.2 Experimental Stimuli
Our experiments require a set of graph drawings with known stress values; a basic hill
climbing algorithm was used to optimise the Kruskal Stress Metric (KSM) described in
Section 2.1. Drawings were generated with distinct KSM values from 0.4 to 0.8, incrementing
by 0.05. This gives nine unique stress values and nine unique differences in stress values
between pairs of drawings, which we refer to as “deltas”. For example, for a pair of drawings
with KSM of 0.45 and 0.55, the delta would be 0.1, thus the deltas range from 0 to 0.4. In
total, 405 graph drawings were created, from 15 randomly generated graphs at three sizes
(10, 25, 50 nodes). Mooney et al. [18] describe the process for creating these drawings in
more detail. It is important to note that KSM assigns a value of 1 to represent the ideal case
(zero stress); thus “low stress” has a high KSM value; “high stress” has a low KSM value.

This set of drawings is used in all three experiments described below. Example stimuli
are shown in Figure 1.

3 Stress Perception Experiment

In this section we present results of an extended version of an experiment that investigated
whether humans can perceive stress in a graph drawing [18]. The stress perception experiment
validates and extends the work of Mooney et al. [18], with the inclusion of more participants
and some interviews.

3.1 Methodology
Three cohorts – trained novices (25), untrained novices (25), and experts (9) – were asked
to determine which of a pair of graph drawings had the lowest stress (or if they had the
same stress) in an online survey offered through the “Qualtrics” platform. Three graph sizes
were shown to participants, resulting in a total of 177 participant data points. Accuracy,
response time, and confidence data were collected. Participants were also asked to describe
the strategies that they used to determine stress in the drawings. In-person interviews with
five novice participants aimed to gain a deeper understanding of participants’ strategies
when comparing stress. Interview participants were also asked to explain what “stress” is;
we wanted to see if participants really understood the theoretical notion of “stress”. The
methodology is otherwise the same as Mooney et al. [18].

3.2 Summary of results
The results reinforced those of Mooney et al. [18], indicating that even untrained novices can
identify stress, although less successfully than trained novices or experts. Surprisingly, the
size of the graph (number of nodes) did not alter these results. Participants devised (visible)
proxies for (invisible) stress – for example, the length of edges, the distances between nodes,
extent of edge crossings, and node distribution, using words like “compactness”, “clustering”,
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Figure 1 Example stimuli used in the experiments. The top row shows three drawings of the
same 10-node graph with different highlighted end points for shortest paths at KSM values of 0.4,
0.6, and 0.8 (left to right), used in the Shortest Path Experiment. The middle and bottom rows show
drawings of the same 25-node and 50-node graphs, respectively, at KSM values of 0.4, 0.6, and 0.8
(left to right), used in the Perception and Preference experiments.

“density” – we call these “Stress Identification Proxies”. Only one of the interview participants
gave a reasonable definition of stress (“it’s the way the objects are positioned that matches
the length of paths.”). We conclude that while it is unclear whether participants utilised
the exact geometric definition of stress their performance suggests that they were able to
perceive it (“I know it when I see it”).

4 Stress Preference Experiment

While the results of the Stress Perception Experiment in the previous section suggest that
participants can correctly identify the difference between high and low stress drawings, it
is not clear that they can “see” stress in the literal sense. Perhaps they simply chose the
drawing that they preferred?

In this section, we describe a two-alternative forced choice experiment that simply asks
participants to choose which of two graph drawings they prefer. We use the same stimuli
from Mooney et al. [18]: 405 graph drawings with KSM stress values ranging from 0.4 to 0.8,
in 0.05 increments (Section 2.2), using graphs with 10, 25 and 50 nodes and 25 participants
per graph size.

GD 2025
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4.1 Methodology
Participants were shown 45 pairs of drawings and asked to choose their preferred drawing
(left or right). We represent these choices as a binary value: 1, if the participant selected
the drawing with lower stress (to match the accuracy measure for the stress perception
experiment), and 0 if they chose the drawing with higher stress. To be consistent with the
prior perception experiment, the trials where stress is the same in both drawings were shown
to participants but the responses discarded from analysis.

Participants in these experiments were given a layperson’s description of networks, but
no specific information on paths or stress. At the end of the experiment they were asked
demographic questions (including their familiarity with “stress in a graph drawing”) and
asked “Please describe in your own words which visual aspects of the drawings affected your
choice.”

4.2 Results
75 people participated in the Stress Preference Experiment (25 per graph size). Figure 2
shows the distribution of preferences for each participant, grouped by graph size. If stress
did not affect preference choice, we would expect these distributions to approximate normal
distributions centred around a mean of 50%, since each data point is the percentage of
times a participant chose the lower stress drawing, and 50% represents a random choice.
The high median values (>80%) and skewed distributions show a tendency for preference of
lower stress drawings. A Wilcoxon signed-rank test for each graph size (comparing observed
distributions against the median of 50% expected for a random choice) gave p-values <0.001
for all graph sizes. Thus, each distribution in Figure 2 differs significantly from random
chance and we conclude stress affects preference choices.
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Figure 2 Box plot showing the distribution of preferences for each participant. Each data point
represents the percentage of times the participant preferred the lower stress drawing. Skewed
distributions show a preference for low stress drawings for all three graph sizes (10, 25, 50).

Figure 3 presents a heatmap showing the percentage of times each individual drawing
was preferred, in relation to the number of times it was shown: the “preference ratio”. This
shows that low stress (high KSM) drawings were chosen more frequently than high stress
(low KSM) drawings. The outliers can be explained by the fact that drawings were chosen
randomly and so some were only shown a few times, and with small differences in KSM
values between the pairs.
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Figure 3 Heatmap showing the percentage of times each drawing was selected as the preferred
choice, in relation to the number of times shown.
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Figure 4 The Preference ratio of each drawing plotted against its KSM value. The linear
regression lines have confidence intervals shown by shading. The trends show a preference for low
stress (high KSM) drawings across all three graph sizes (10, 25, 50).

We plot the KSM values against the preference ratios over all graph sizes in Figure 4,
revealing that the preference ratio of a drawing tends to increase as KSM increases (regardless
of graph size). The Pearson correlation between preference and KSM (over all graph sizes) is
0.81.

Participants mentioned factors influencing their preference, including: more space between
nodes (39), overall shape/symmetry (7), space between edges (9), fewer edge crossings (21),
and less clutter/mess (10). Some responses can be interpreted as direct references to existing
graph drawing metrics: “I disliked overlapping edges, and preferred evenly spaced nodes.”
(Edge Crossings, Node Uniformity); while others were less specific: “How messy it appeared
to my brain”. One participant mentioned multidimensional scaling directly: “I found myself
preferring the pattern that looks more multidimensional. Multidimensional scaling appears
more structured and provides more information about the connections between the nodes
and the distances among them.”

From the participants’ responses, we identify five Stress Preference Proxies: Angular
Resolution, Edge Lengths, Node Uniformity, Edge Crossings, and Gabriel Ratio. The
correlation between these five proxies (measured with metrics defined by Mooney et al. [17])
and the KSM stress metric over all 405 stimuli are: Angular Resolution (0.61), Edge Lengths
(0.78), Node Uniformity (0.69), Edge crossings (0.66) and Gabriel Ratio (0.84), suggesting
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38:8 Stress in Graph Drawings: Perception, Preference, and Performance

that people prefer low stress drawings. Although their decision is based on identifiable visual
proxies, underlying these proxies is the unseen layout principle of “stress”. The distributions
of metric values for all 405 drawings in our dataset are in Appendix B.

4.3 Perception vs Preference
One of our motivations for following the Stress Perception Experiment with the Stress
Preference Experiment was to determine whether our results of the former were simply based
on participants’ preference for lower stress drawings (rather than on perception of stress).
To investigate this, we compare the 177 data points from the Perception Experiment with
the 75 from the Preference Experiment.

4.3.1 Results
Figure 5 (a) shows the distribution of mean accuracy across the aggregated groups in both
experiments, with bootstrapped 95% confidence intervals. We compare the distributions for
similarity (excluding same-stress pairs). Note that while we use the term “accuracy’ there
are no objectively “correct’ answers in the preference experiment. Here, accuracy refers to
whether the participant selected the drawing with lower stress.

A Wilcoxon rank sum test between the Perception data and the Preference data gives
a p-value of 0.0189 (less than 0.05) indicating a significant difference, albeit with a small
effect size. Thus, getting the correct answer in the Perception experiment is not the same as
preferring lower stress.

0.0 0.2 0.4 0.6 0.8 1.0
accuracy

Perception

Preference

Confidence intervals for mean accuracy

0 10 20 30
time (s)

Perception

Preference

Confidence intervals for mean time

(a) (b)

Figure 5 Bootstrapped 95% confidence intervals for (a) mean accuracy and (b) mean response
time in the Perception and Preference experiments, aggregated over all graph sizes.

Figure 5 (b) shows the distribution of mean response time across the aggregated groups in
both experiments, with bootstrapped 95% confidence intervals. We compare the distributions
for similarity (excluding same-stress pairs). A Wilcoxon rank sum test between the Perception
data and the Preference data gives a p-value of 2.6 × 10−6 (less than 0.05) indicating a
significant difference. Thus, the cognitive effort required for selecting the preferred drawing
(regardless of accuracy) was less than that required for comparing stress.

4.3.2 Discussion
From the Perception Experiment, we conclude that participants can ‘see’ stress, and can
identify the drawing with less stress within a pair (even if they can’t explain what ‘stress’
actually means). From the Preference Experiment, it is clear that participants prefer drawings
with lower stress. Our comparative analysis suggests, however, that when asked to choose the
drawing with least stress (in the earlier experiment), participants were not simply choosing
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the one they most preferred – they really were considering their perception of stress. This is
shown both by the differences in the choice of the least stress drawing (Figure 5 (a)) as well in
the difference in the time taken to make the decision (Figure 5 (b)). The difference in response
time shows that the perception task took longer than the preference task. This result suggests
that the task in the Perception Experiment had higher cognitive load (with participants
thinking carefully about stress in terms of graph structure and relative distances) while the
Preference task was enacted more intuitively, possibly based on immediate perception rather
than cognitive analysis.

We note that, while the difference in means between the two experiments is quite small,
it is still statistically significant. While we conclude that perceiving stress is distinct from
preferring lower stress, one is certainly a very strong predictor of the other.

5 Stress Performance

Assessing whether humans can see stress and what stress levels they prefer is all very well,
but task performance is what really matters. If we are to use graphs to depict information in
a meaningful way, so that it can be accurately used and understood, then stress perception
and preference is insufficient: we need to know how stress affects human”s ability to read
the information embodied in the graph. This Stress Performance experiment uses a shortest
path task to measure participant”s ability to interpret the graph.

5.1 Methodology
Participants in this study, conducted via the new reVISit framework [8], were shown a series
of drawings of graphs, which had two vertices highlighted in red – all other vertices were
transparent to reduce uncertainty when following edges which intersect nodes. They were
then asked, “What is the shortest path between the two highlighted nodes?” The possible
answers available were 2, 3, 4 or 5. Participants were also given the option “I am unable to
work this out”.

The stimuli were sourced from the perception and preference experiments described
earlier. We use a subset of drawings (243 of the original 405) to ensure an equal number of
responses for each drawing. The highlighted nodes were based on shortest paths randomly
selected through repeated sampling to ensure an even distribution of path lengths (2, 3, 4, or
5) across KSM values and graph sizes. Due to the structure of the 10-node graphs, their
corresponding stimuli only included shortest paths up to length 4.

Participants were given a short description about graphs, graph drawings, and shortest
paths. These descriptions are made available through supplemental material (Appendix A).
Participants were then informed they would be shown 6 training examples, that we discard
from analysis. These examples provided feedback on whether the participant answered the
task correctly, and were the same for each participant.

We used a within-subjects study design, where each participant sees all conditions during
the study. In this case, each participant saw one example of each stress level (9) for every
size of graph (3). Each size was broken into its own block during the study, so that for a
given size, all trials are shown sequentially. After seeing all trials of a size, participants could
take a short break. Additionally, each size block included two additional fixed trials at the
beginning which were discarded from the analysis to account for learning effects. In total,
this amounts to (9 + 2) × 3 = 33 trials per participant, after the training.

The exact stimuli used during the study varied per participant. We partitioned the
drawings used from the earlier two studies into nine disjoint groups, and assigned participants
a group number based on a Latin square, ensuring the same number of participants in each
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group. The order of trials was randomised in two ways: first the size blocks were shown
in random order, and second within each block the order of the stimuli was randomised.
Together these aimed to reduce learning effect noise in the collected data. Finally, after all
33 trials, participants were asked to provide basic demographic information the same as in
the previous two experiments.

5.2 Results & Discussion

Figure 6 (a) plots the mean accuracy against the KSM values over all graph sizes, showing a
clear upward slope: accuracy increases as stress decreases (where high KSM indicates low
stress). The linear fit line indicates a correlation of 0.97 with p < 0.001. Figure 6 (b) shows
the results according to graph size: clearly the larger the graph, the harder the task. The
lower correlation value for n=50 (0.80) compared with n=10 (0.94) suggests that the relative
effect of stress on performance is diminished for the larger graphs. From this, we might even
anticipate that for very large graphs, say n=1000, stress has no effect on task performance;
this is an interesting avenue for future work.

Figure 7 (a) shows the mean duration of trials for each KSM value. We suggest the
following explanations for the shape of this trend: Drawings with high KSM (low stress) made
the task easier, and thus participants required less time to work out the answer. Drawings
with low KSM (high stress) were more difficult, causing participants to realise quickly that
they cannot easily find the correct answer. The middle KSM values indicate longer response
times where the drawing made the task neither too easy nor too difficult. This is also
supported by Figure 7 (b), which shows that the trials for n=25 had the longest duration
(n=10: too easy; n=25: neither too easy nor too difficult; n=50: too difficult). Figure 8
(a) further supports this argument, showing that participants were unable to determine the
answer for low KSM drawings. Figure 8 (b) shows the number of abandoned trials for each
graph size, further highlighting the difficulty of the task on larger graphs.
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Figure 6 Relationship between mean accuracy and Kruskal stress metric values. (a) Aggregated
across all graph sizes. (b) Disaggregated by individual graph sizes. Error bars represent standard
error of the mean. Linear regression lines indicate a positive correlation between stress and accuracy
for all graph sizes (r = 0.97, p < 0.001), with strongest correlation observed for smaller graphs (n =
10: r = 0.94, p < 0.001; n = 25: r = 0.87, p = 0.002; n = 50: r = 0.80, p = 0.01).
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Figure 7 Relationship between mean task duration (in seconds) and Kruskal stress metric values.
(a) Aggregated across all graph sizes. (b) Disaggregated by individual graph sizes. Error bars
represent standard error of the mean.

5.2.1 Anomalies
There are three noticeable anomalies in Figure 6 (b):

For n=25, KSM=0.60, the task seems to have been unusually difficult;
For n=50, KSM=0.60, the task seems to have been unusually easy;
For n=50, KSM=0.65, the task seems to have been unusually easy.

We investigated these anomalies by analysing the stimuli, considering the accuracy for
individual drawings (Figure 9) and features of the drawings that may have made them
particularly easy or difficult. For example, we looked at whether the shortest path was
unique, whether either the highlighted source or target nodes were of degree 1, or if they
overlapped another node, or whether an edge on the path was shorter than the radius of a
node (and therefore shown within the intersection of two nodes). Most of these features were
revealed to have little effect (see the heatmaps in Appendix C), but some of the data helps
explain our three anomalies:

Eight out of the nine n=25, KSM=0.60 drawings had edges on the shortest path that
were directly on top of another edge (more than any other set of n=25 graphs when
grouped by KSM). In addition, five of the nine n=25, KSM=0.60 drawings had a source
or target node overlapping an unconnected edge. The combination of these two factors
would have made these drawings naturally more difficult than the other n=25 ones.
Fewer n=50, KSM=0.60 and n=50, KSM=0.65 drawings (three and four respectively)
had source or target nodes overlapping another node (as opposed to five or more for other
n=50 drawings grouped by KSM); there were similarly fewer drawings where a node on
the shortest path overlaps another node. The combination of these two factors would
have made these drawings naturally easier than the other n=50 ones.

While we focused on the three obvious anomalies in Figure 6 (b), our investigation
revealed other sets of drawings that may have been easier than others of the same size.
Having source or target nodes on the convex hull might make the task easier; this was the
case for drawings of size 25 with KSM=0.55. Similarly, a shorter average geodesic node
distance (average of the perpendicular distances between nodes on the shortest path and a
straight line between the source and target) might also simplify a shortest path task; this was
the case for both n=25, KSM=0.55 and n=50, KSM=0.5 drawings. These smaller variations
can also be seen in the results chart in Figure 6 (a).
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Figure 8 Relationship between the percentage of “I am unable to work this out” responses and
Kruskal stress metric values. (a) Aggregated across all graph sizes. (b) Disaggregated by individual
graph sizes. Error bars represent standard error of the mean. Linear regression lines indicate a
negative correlation between Kruskal stress and task abandonment for all graph sizes (r = -0.93, p
< 0.001).

In exploring these anomalies, one issue became increasingly apparent: an alteration in
stress in a drawing naturally affects other visual features. If a graph drawing is generated by
an algorithm that only cares about the amount of stress, then undesirable visual phenomena
will appear as a matter of course: for example, overlapping nodes, overlapping edges, nodes
lying on top of edges – even in low stress drawings. An investigation of the (positive) effect
of (invisible) stress on performance is also therefore an implicit investigation of the (negative)
effect of these other consequent (visible) features.

Our stimuli were the same as those used for the previous Perception and Preference
experiments; they were not specifically created for the purposes of this shortest path Perform-
ance experiment. The source and target nodes for the shortest paths were chosen randomly,
ensuring an even distribution of path lengths across stress values. We could have created
specific stimuli for the Performance experiment, and carefully chosen our shortest paths to
avoid visual features that may have made the task easier or harder. However this would have
resulted in an inauthentic, contrived set of drawings that may have been seen as deliberately
formed so that they would support our intuition about the relationship between stress and
task performance.

5.2.2 Demographics & Participant Strategies
A total of 36 participants completed the demographic questionnaire. Most participants
reported feeling somewhat confident (30) in their responses, with only a few expressing very
confident (1) or not very confident ratings (4). The majority found the study difficult (26) or
very difficult (5), suggesting a reasonable level of challenge in the task. In terms of prior
exposure, most were somewhat familiar (17) or not very familiar (14) with network diagrams,
with only one participant indicating strong familiarity. There were 23 males and 13 females,
and participants spanned a wide age range, with the largest groups falling between 26–35
(10) and 36–45 (9) years of age.

Of the 36 participants, 29 described the strategy they used to complete the task. As
this was an optional, open-ended question, most of the responses were short or essentially
restated the task (“I just tried to follow the lines”, “I tried to look for the shortest paths”,
“Moving my mouse and counting”).
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Figure 9 Per-drawing accuracy percentages (based on 4 trials per drawing) for each unique
stimulus. Higher accuracy indicates better task performance. Each cell shows the mean accuracy
(%) across participants for a specific drawing.

Several participants provided more detailed accounts of their strategies. Some began by
scanning the whole diagram to “identify overall patterns” before following the “most intuitive
connections.” Others focused on counting steps, such as one who “looked for the shortest
visual route between the two red nodes and counted the steps,” or another who “tried to
count the number of nodes in the shortest route” but sometimes found the diagrams too
complex to work out. Some participants adapted their approach when a path became unclear:
one reported they “tried from the other red dot” if their initial attempt failed, while another
would abandon a path that took “over 5 hops” and try a different route. One participant
highlighted the range of difficulties between trials: “Some tasks were easy to visualise. Some
were impossible due to the complexity of lines making it difficult to see which node they
terminated on.” These responses indicate that while most participants relied on intuitive
tracing or counting, several applied more reflective or adaptive techniques when faced with
visual complexity.

6 Conclusions, Limitations and Future Work

Defining a normalised stress metric [24] that permits quantitative comparison between graph
drawings of different size, structure and scale has allowed us to investigate human responses
to stress in three ways: the perception of stress, preference for stress, and the effect of stress
on task performance.

We conclude that people (even untrained novices) can perceive the extent of stress in a
graph drawing, often using visible features (for example, “node distribution”) as a proxy for
the invisible “stress”, while typically being unable to accurately define what stress means.
People generally prefer low stress drawings, but making a preference choice is not the same
as identifying the drawing with least stress. Lower stress drawings support higher accuracy
in shortest path tasks.

Our conclusions are constrained by the natural limitations of the experimental method.
We used three graph sizes for comparative and generalisability purposes, but the maximum
graph size is only 50. Future experiments with larger graphs may have different findings.
Our intuition is that as the size of the experimental graphs increase, the effect of stress (in
all of perception, preference and performance) will decrease.
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The graph drawings used as stimuli were generated using an optimisation function based
only on the stress metric. Other metrics could conceivably be used, resulting in drawings
that avoid negative features like node or edge overlaps. Since our focus was on stress, we
did not want to create artificial experimental stimuli: changing stress naturally alters other
features and so any (initial) investigation of stress should simply accept the existence of these
features. Nevertheless, it would be interesting for future work to explore the effect of these
other visual features on perception, preference, and performance.

The Stress Performance experiment is based on only a shortest-path task, and future work
should investigate whether the same results hold true for other localised tasks (e.g., number
of common neighbours of two nodes) as well as global tasks (e.g., extent of clustering). Our
intuition is that, like with the shortest path task, lower stress will improve performance, as
long as the graphs are not much bigger than 100 nodes – at which point we expect it will
become difficult for change in stress to have any effect on human performance.

Our work represents the first comprehensive empirical investigation into the effect of
stress in graph drawing from a human perspective. We have investigated whether people
can actually perceive stress, what their preferences are with respect to stress, and whether
the amount of stress affects task performance. For many years graph drawing researchers
have made assumptions about the human response to stress: this paper validates these
assumptions.
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A Training Materials

Participants in the Perception experiment were shown training materials (1), (2) and (3).
Participants in the Preference experiment were only shown training material (1). Participants
in the Shortest Path experiment were shown training materials (1) and (2).

A.1 Training Material (1)

Definitions: networks and network drawings

A network is made up of objects and connections. For example, this social network depicts
people (represented as circles) and friendships (represented as lines between the circles).
Amy has four friends; Ted has two.

The same network can be drawn in many different ways by changing the position of the
objects. For example, here are four drawings of the same network.

A.2 Training Material (2)

A “path” is a series of steps between objects. For example, in the network below, the length of
the path between G and F is 4; the length of the path between A and D is 2 or 3 (depending
on whether you go through B or not).
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The “shortest path” is, as its name suggests, the shortest path when there is more than one
way to get from one object to another.

For example, in the network below, the shortest path between F and B is 2 (going through
A, but not C or G/H/E); the shortest path between D and H is 4 (going through C/A, but
not through B or F/G).

A.3 Training Material (3)
Definitions: visual properties of network drawings

Given that there is more than one way to draw a network, we can distinguish between them
by their ‘visual properties’.

For example, the drawing on the left has ‘tighter angles’ than the one on the right. These
are both drawings of the same network.

And the drawing on the right has “more symmetry” than the one on the left. These are both
drawings of the same network.

In this experiment, we are interested in the visual property of “stress”.
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A drawing has low stress if the distance between pairs of objects is proportional to the
length of the shortest path between them.

In its simplest form, the following network drawing has very low stress: the distance between
each pair of objects is directly proportional to the (shortest) path between them.

We just need to move one of the objects to increase the stress – the distance between the
two objects at each end (6cm) is now longer proportional to the length of the path between
them (5).

The same simple network can be drawn with even higher stress, where there is barely any
relationship between the distance between the objects and the length of the paths between
them.

Similarly, here is another network with very low stress, with two versions of higher stress.

Of course, this more-or-less-stress judgement becomes more difficult with larger networks.
Here are some more examples showing the same networks drawn with different amounts of
stress. In all cases, the network on the left has less stress than the network on the right.
Thus, the network on the left maintains the distance/path relationship between pairs of
objects better than the one on the right.
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lower stress higher stress

Of course, we cannot assess the differences in stress by doing all the distance and path length
calculations in our head! But we can get a ‘feeling’ as to when one drawing has less stress
than another.

Before you start the experiment, we will ask you to make your own judgements, and let you
know whether you are correct or not.

B Stimuli Metric Distributions and Correlations

We plot the distributions of 10 aesthetic metrics (defined by Mooney et al. [17]) for our 405
stimuli drawings (Figure 14). These distributions show that smaller graphs generally have a
wider range of possible metric values. This can be explained by the fact that many of the
metrics, such as Edge Crossings and Gabriel Ratio, compare a measurable value (e.g., the
number of edge crossings) to an estimated maximum value (e.g., the total number of possible
edge crossings). The estimated maximum typically grows much faster than the measured
values as graph size increases.

C Detailed Analysis of the Difficulty of the Task for Each Drawing

The following heatmaps (Figures 15–23) show particular properties of each drawing with
respect to the difficulty of the shortest path task. Higher row totals indicate greater difficulty
for each KSM.
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Figure 14 Distribution of metric values for the experiment stimuli, grouped by graph size.
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Drawing Has A Highlighted Node Which Overlaps An Edge

Figure 15 Drawings where a highlighted node overlaps another edge.
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Figure 16 Drawings where no highlighted node has degree 1.
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Drawing Does Not Have a Highlighted Node on Convex Hull

Figure 17 Drawings where no highlighted node is on the convex hull.
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Drawing Has A Highlighted Node Overlapping Another Node

Figure 18 Drawings where a highlighted node overlaps another node.
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Drawing Has Multiple Shortest Paths Between Highlighted Nodes

Figure 19 Drawings where there are multiple shortest paths between the highlighted nodes.
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Figure 20 Drawings where a node on the shortest path overlaps an edge.
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Figure 21 Drawings where a node on the shortest path overlaps another node.
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Figure 22 Drawings where an edge on the shorest path is shorter that the diameter of the nodes.
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Figure 23 Drawings where an edge in the shorest path overlaps another edge.
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