Optimizing Wiggle in Storylines
Alexander Dobler =
TU Wien, Austria

Tim Hegemann &
Universitdt Wiirzburg, Germany

Martin Nollenburg &
TU Wien, Austria

Alexander Wolff &

Universitat Wiirzburg, Germany

—— Abstract

A storyline visualization shows interactions between characters over time. Each character is

represented by an x-monotone curve. Time is mapped to the x-axis, and groups of characters that
interact at a particular point ¢ in time must be ordered consecutively in the y-dimension at x = t.
The predominant objective in storyline optimization so far has been the minimization of crossings
between (blocks of) characters. Building on this work, we investigate another important, but less
studied quality criterion, namely the minimization of wiggle, i.e., the amount of vertical movement
of the characters over time.

Given a storyline instance together with an ordering of the characters at any point in time, we
show that wiggle count minimization is NP-complete. In contrast, we provide algorithms based on
mathematical programming to solve linear wiggle height minimization and quadratic wiggle height
minimization efficiently. Finally, we introduce a new method for routing character curves that
focuses on keeping distances between neighboring curves constant as long as they run in parallel.

We have implemented our algorithms, and we conduct a case study that explores the differences
between the three optimization objectives. We use existing benchmark data, but we also present a
new use case for storylines, namely the visualization of rolling stock schedules in railway operation.

2012 ACM Subject Classification Theory of computation — Graph algorithms analysis; Human-
centered computing — Graph drawings

Keywords and phrases Storyline visualization, wiggle minimization, NP-complete, linear program-
ming, quadratic programming, experimental analysis

Digital Object Identifier 10.4230/LIPIcs.GD.2025.39
Related Version Full Version: https://arxiv.org/abs/2508.19802 [7]

Supplementary Material Software (Source Code): https://github.com/hegetim/narrativiz [14]
archived at swh:1:dir:a7efa9c0ca674b6cf25b1c4b2c1£4793¢cc814723

Funding Alezander Dobler: Vienna Science and Technology Fund (WWTF) grant [10.47379/ICT19035].
Tim Hegemann: Federal Ministry of Research, Technology and Space (BMFTR) grant [011S22012C].
Martin Néllenburg: Vienna Science and Technology Fund (WWTF) grant [10.47379/1CT19035].

Acknowledgements We thank Marie Schmidt for discovering the similarities between Storylines and
Rolling Stock Schedules. We thank Rowan Hoogervorst and Boris Grimm for providing the Rolling
Stock Schedules dataset and for their helpful feedback.

1 Introduction

A storyline can be seen as a temporal hypergraph; the vertices represent characters and
the hyperedges, which correspond to given points in time, represent meetings (also called
interactions) among the characters. A storyline visualization draws each character as an
© Alexander Dobler, Tim Hegemann, Martin Nollenburg, and Alexander Wolff;

oY licensed under Creative Commons License CC-BY 4.0
33rd International Symposium on Graph Drawing and Network Visualization (GD 2025).
Editors: Vida Dujmovié¢ and Fabrizio Montecchiani; Article No. 39; pp. 39:1-39:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:adobler@ac.tuwien.ac.at
https://orcid.org/0000-0002-0712-9726
mailto:hegemann@informatik.uni-wuerzburg.de
https://orcid.org/0009-0008-4770-3391
mailto:noellenburg@ac.tuwien.ac.at
https://orcid.org/0000-0003-0454-3937
https://www.informatik.uni-wuerzburg.de/en/algo/team/wolff-alexander
https://orcid.org/0000-0001-5872-718X
https://doi.org/10.4230/LIPIcs.GD.2025.39
https://arxiv.org/abs/2508.19802
https://github.com/hegetim/narrativiz
https://archive.softwareheritage.org/swh:1:dir:a7efa9c0ca674b6cf25b1c4b2c1f4793cc814723;origin=https://github.com/hegetim/narrativiz;visit=swh:1:snp:b18239e66463dee63bc79cf243cc2afca36ef668;anchor=swh:1:rev:24dd910cfb575574c90d7aa0650ab69cfcd11b07
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

39:2

Optimizing Wiggle in Storylines

3 et

el J

=z
[1/
=

3

Figure 1 A storyline that visualizes the nationalities of the crew members of expeditions to the
International Space Station. Linear wiggle height is minimized using our LP formulation.

O I

x-monotone curve and each meeting as a vertical line segment at the x-coordinate that
corresponds to the point in time when the meeting happens; see Figures 1 and 2a. Storyline
visualizations have been made for books or movies [8,13,20,22,26] (where the meetings are
the scenes of the story), but they have also been used to illustrate scientific collaboration [15]
(where the meetings are joint publications), for genealogical data [17] (where the meetings
are marriages and have size 2), or for tweets following certain topics [20].

In order to measure the quality of storyline visualizations, various metrics have been
suggested. Most works have focused on reducing the number of crossings of the character
curves (simple pairwise crossings [13,19] or so-called block crossings [27,28]). Others have
also tried to reduce the number of wiggles [11,20,26] (that is, the number of turns) and/or
the amount of vertical white-space [20, 26].

In this paper, we follow the storyline layout pipeline that has been suggested by Liu, Wu,
Wei, Liu, and Liu [20, Fig. 2]. It breaks down the overall problem into four steps; 1. hierarchy
generation, 2. ordering (crossing minimization), 3. alignment (wiggle minimization), and
4. compaction (white-space reduction). For step 1, Liu et al. assume that the characters
form a given hierarchy that must be respected in step 2. We assume that steps 1 and 2 have
been settled, optimally or heuristically. Note that crossing minimization is NP-hard [19, 27].

This paper focuses on wiggle minimization, which appears in step 3 and, in a different
form, in step 4. We differentiate between three variants; in each of them, we are given, for
every point in time, the vertical ordering of the characters, which for us is fixed. In wiggle
count minimization (WCMIN) the task is to find, for each point in time, y-coordinates for the
character curves such that the total number of inflection points (points where the curvature
of the character curves changes sign) is minimized. In linear wiggle height minimization
(LWHMIN), the total change in y-coordinate is minimized (see the example in Figure 1).
Finally, in quadratic wiggle height minimization (QWHMIN), the total sum of the squared
wiggle heights is minimized.

Related work. In terms of wiggle minimization in storylines, the existing literature mostly
proposes heuristic methods, does not formally define a wiggle metric, or considers models
that differ from our setting. Ogawa and Ma [23] propose a greedy algorithm for storyline
visualization that attempts to simultaneously minimize crossings and wiggle, however, wiggle
is not formally defined. Tanahashi and Ma [26] present a genetic algorithm for drawing
storylines. They make use of slots, which are horizontal strips of the visualization. A genome
assigns each meeting to a slot. To evaluate a genome a pipeline approach is used, which
rearranges lines inside slots, and then computes a fitness function measuring crossings and
wiggle. Liu et al. [20] also present a pipeline approach for drawing storylines, where characters
further have geographic locations. Crossings are minimized first by applying a variant of the
barycenter heuristic [24] sequentially, then wiggle count is minimized heuristically by reducing
the problem to the weighted longest common subsequence problem of two neighboring time
steps. Lastly, quadratic wiggle height and whitespace is minimized using a quadratic program.
The authors of [25] generalize the earlier approach of Tanahashi and Ma [26] to streaming

A. Dobler, T. Hegemann, M. Nollenburg, and A. Wolff

T 9 T3 T4 5 T 7

Al ={12)
= M.

gé 1 HB Mg M, + Yt+1,c

et ﬁ%{ —— wiggle height
[Yir1,e = Y.l

M1 M5))
e ; Ms * Yt.c
¢
7 M4l Cg

| |
T T

v

T

AC(3) ={co,c3,...,cC
@ = onan ®)

Figure 2 (a) Notation of storylines. (b) Wiggle height of character ¢ between two time steps.

data, where time steps appear one by one. Arendt and Pirrung [1] consider a model where
characters can split and merge. They first minimize crossings, and then reduce wiggle
count minimization to the independent set problem, which they solve heuristically. Froschl
and Nollenburg [10,11] proposed a model for storyline visualization where characters are
assigned to discrete cells in a matrix for each time step. They used ILP and SAT solvers to

simultaneously minimize a combination of crossings, wiggle count, and linear wiggle height.

Wiggle minimization also plays a role in streamgraphs and stacked area charts [2,5,21],
which are visualizations of multiple time series vertically stacked on top of each other without
gaps. In these charts, wiggle is minimized combinatorially by computing the best stacking
order of the time series.

Our contribution. is as follows.
We present a linear program (LP) to solve LWHMIN efficiently; see Section 3.1.
We give a quadratic program (QP) to solve QWHMIN efficiently; see Section 3.2.
We prove that WCMIN is NP-hard, but can be formulated as an integer linear program
(ILP) and admits an efficient solution for two consecutive time steps; see Section 4.
We present a new method for routing character curves that focuses on keeping distances
between neighboring curves constant as long as they run in parallel; see Section 5.
We report the results of a case study with 17 benchmark instances in which we compare
optimal solutions for the three objectives qualitatively and quantitatively; see Section 6.1.
We present the visualization of rolling stock schedules as a new use case for storylines;
see Section 6.2. This can help railway experts to improve or compare such schedules.

Due to space constraints, statements marked with (x) are proved in the full version of this
paper [7].

2 Preliminaries

We use [n] as shorthand for {1,2,...,n}. A storyline instance is a 4-tuple (C,T, M, A),
where C = {c1,...,c,} is a set of characters, T = [{] is a set of totally ordered time steps (or
layers), and M = {My,..., M} is a set of meetings; see Figure 2a. Each meeting M € M
has a corresponding time step time(M) € [¢] and consists of a set of characters ch(M) C C.
Each character ¢ € C is active for a sequence A(c) = {i,i+ 1,...,;} of consecutive time
steps. For each t € [¢], we define the active character set AC(t) = {c € C |t € A(c)} and the
meeting set M(t) = {M € M | time(M) = t}.

39:3

GD 2025

39:4

Optimizing Wiggle in Storylines

An ordered storyline instance is furthermore given, for each ¢ € [¢], a permutation m; of
the characters AC(t). Here, for each meeting M with time(M) = ¢, the characters ch(M)
appear consecutively in m;. We write ¢ <; ¢’ if ¢ comes before ¢’ in m;. A coordination of
a storyline instance defines for each ¢ and each ¢ € AC(t) a y-coordinate y; . € R. The
coordination is valid w.r.t. an ordered storyline instance if for each t € [¢] and each pair
c,c € AC(t) with ¢ < ¢, yt.. < yr. holds. Given A, A € RY, a coordination is (A, A)-nice
(or nice if A and A are clear from the context) if it is valid and if, for every ¢ € [¢] and for
every pair of characters ¢, c’ that are consecutive in m;, it holds that

[Y1,c — Yr.cl = Aif c and ¢’ are in the same meeting at time step ¢, and

|Yt.r — Yt.c| > A otherwise.

A coordination is integral if its image contains only integers.

Given a coordination y of an ordered storyline instance, its total (linear) wiggle height

(see Figure 2b) is defined as

LWH Z Z ‘yt,c - yt+1,c|~ (1)

t=1 c€ AC(t)NAC(t+1)

Its total quadratic wiggle height is defined as

QWH(y Z > (Yt.c = Yri1,6)>- (2)

t=1 ce AC(t)NAC(t+1)

Finally, its total wiggle count is defined as
WC(y) ={(t,c) [1<t<l—1,c€ AC(t) NAC(t + 1), y.c # Yrt1.c}H- (3)

Note that this matches our intuitive definition of wiggles as inflection points of the character
curves.

» Problem 1 (LWHMIN). Given an ordered storyline instance and A, A € R, find a nice
coordination minimizing the total wiggle height.

» Problem 2 (QWHMIN). Given an ordered storyline instance and A, A € R, find a nice
coordination minimizing the total quadratic wiggle height.

» Problem 3 (WCMIN). Given an ordered storyline instance and A, A € R, find a nice
coordination minimizing the total wiggle count.

3 Wiggle Height Minimization

In this section, we describe a linear program (LP) for LWHMIN and a quadratic program
(QP) for QWHMIN. We also present observations about these programs.

3.1 Linear Program for LWHMIN

Note that linear programs are polynomial-time solvable [16]. The linear program makes use
of the following variables.
for t € [4],c € AC(t), yi,. encodes the y-coordinate of character ¢ at time step t.
fort € [{—1],c € AC(t)NAC(t+1), wy, . encodes the wiggle height of character ¢ between
time steps t and ¢ + 1.

A. Dobler, T. Hegemann, M. Nollenburg, and A. Wolff

For our LP formulation we define, for each ¢ € [¢], the sets

N(t) = {(c,

c
NM(t) = N(t)N{(c,d') | cand ¢’ are in the same meeting at time step ¢}, and
Na(t) = N(t)\ Na(t)
The LP is given as follows.

Minimize Z W e
te[f],ce AC(t)

") | ¢ and ¢’ are characters that are consecutive in 7; and ¢ <; ¢'},

subject to Yoo — Yt.e = A for all t € [{], (c,c) € Nam(t) (Cons-A)
Yot — Yo > A for all t € [{], (c,c) € Na(t) (Cons-A)

Yte — Yit1,e < Wi forallt € [¢ —1],c € AC(t) N AC(t + 1) (W1)

Yile — Yre < Wee forallt € [¢ —1],c € AC(¢t) N AC(t + 1) (W2)

Yt.e >0 for all ¢t € [¢],c € AC(t) (GO)

Constraints (Cons-A) and (Cons-A) ensure that the computed coordination is (A, A)-nice.
Together with the objective, (W1) and (W2) ensure that the wiggle value is computed
correctly as wic = |Yt.c — Yt+1,c]- The objective adds up the wiggle values. Our LP has the
following nice property.

» Proposition 1. If A, A € N, then all extreme points defined by the wiggle height minimiza-
tion polytope are integer.

Proof. Assume assignments to y- and w-variables corresponding to an extreme point. It is
clear that min{y; . | t € [¢],c € AC(¢)} = 0, as otherwise there is some small € > 0 such that
each y-variable can be simultaneously increased or decreased by ¢, contradicting that we are at
an extreme point. It is also clear that, for each t € [¢—1] and ¢ € AC(¢)NAC(t+1), either (W1)
or (W2) is binding. Now, let G be the graph defined by V(G) = {y.c | t € [{],c € AC(t)}
and E(G) = {yr.c¥v ' | Yt.c — Yoo € Z}. If G is connected, we are done as we have already
seen that the smallest y-variable is integer. Otherwise, consider some connected component
C of G such that V(C') Z Z. Note that it is possible to add to all y; . € V(C) some small
€ > 0, resulting in a different point enclosed in the polytope. Equivalently, there exists ¢ > 0
that can be subtracted from all y, . € V(C'), witnessing in fact that we are not at an extreme
point. Thus, G is connected and the extreme point is integer. <

3.2 Quadratic Program for QWHMIN

The quadratic program makes use of the same variables and constraints as the LP above. In
fact, we just replace the objective function by the definition of quadratic wiggle height

Minimize Z wt2, o

tel],ce AC(t)

It is easy to see that, in matrix form, the objective has diagonal entries that are either 0
or wy. (for some t € [¢ — 1] and ¢ € AC(t)). The entries of type w; . are non-negative by
definition, hence the matrix of the objective is positive semidefinite. QPs with such an
objective and with linear constraints can be solved in polynomial time [4].

Note that we can replace each of the summands wic in the objective by (yt.c — Yt+1.¢)%,
which is the same as (yi41,c — yr,c)* (for all ¢t € [(—1],¢ € AC(t) N AC(t + 1)). Then we can
drop the w-variables and the constraints (W1) and (W2).

39:5

GD 2025

39:6

Optimizing Wiggle in Storylines

4 Wiggle Count Minimization

In this section we consider the number of wiggles in the visualization as optimization criterion.
We show that for ¢ = 2 time steps, WCMIN is polynomial-time solvable, while it is NP-hard
in the general case. We also present an integer linear program to solve WCMIN.

4.1 Polynomial Cases

When ignoring the restriction that characters in meetings need to be equally spaced, finding
a storyline visualization with the fewest number of wiggles is polynomial-time solvable. The
problem is equivalent to finding the longest common subsequence between each pair of
adjacent orderings 7, i1, t € [€ — 1]. Integer coordinates can be obtained by scaling all
y-coordinates accordingly. A similar observation has been made in [20].

» Observation 2. Given an ordered storyline instance, one can compute in polynomial time
a valid integral coordination that minimizes the total wiggle count.

Rather surprisingly, we obtain the following result. It shows that we can compute the
“maximum wiggle-free” storyline — a set of characters that all can be realized without a single
wiggle — in polynomial time. The proof is in the full version [7].

» Theorem 3 (x). Let (C,T, M, A, (¢)c[q) be an ordered storyline instance. Let C' be the
set of characters in C that are active at all time steps, i.e., A(c) = [£] for all c € C'. Then,
given a pair (A, A), a (A, A)-nice coordination with the largest wiggle-free subset of C' can
be computed in O(|C|? - €) time.

The next result follows directly, as for £ = 2, the only characters that can have (at most one)
wiggle, are active at both time steps.

» Corollary 4. WCMIN is solvable in time O(|C|?) for £ = 2.

4.2 NP-Hardness

In this section, we prove the following result with a gadget-based reduction. We first describe
the source problem of the reduction, then the required gadgets, and finally the full reduction.

» Theorem 5. The decision variant of WCMIN is NP-complete.

Our proof reduces from the problem PLANAR MONOTONE 3-SAT, which is defined as follows.
Let ¢ be a Boolean 3-SAT formula in conjunctive normal form, let T be the set of variables
of ¢, and let I' be the set of clauses of ¢. The formula ¢ is monotone if every clause of ¢

1)1\/’[)3\/1)5

v1 Vv V ug v3 V vy V U5

V1 V2 V3 V4 Vs

Vg \ V3 V V4

—v1 V g Vs

Figure 3 An instance of PM3-SAT.

A. Dobler, T. Hegemann, M. Nollenburg, and A. Wolff

contains either only positive or only negative literals. We define the bipartite variable-clause
graph G(¢), consisting of vertex set 'UT and an edge between a clause v € T' and a variable
v € T if and only if v occurs in ¢ (positively or negatively). A monotone planar rectilinear
embedding £ of G(¢) is a planar embedding of G(¢) on an integer grid (see Figure 3) such
that

all vertices in G(¢) are represented by disjoint integer coordinate rectangles,

the y-coordinates of all variable vertices are the same,

all positive clause vertices are placed above the variable vertices,

all negative clause vertices are placed below the variable vertices, and

edges are straight vertical segments with integer x-coordinates connecting the borders of

their corresponding rectangles.

» Problem 4 (PLANAR MONOTONE 3-SAT (PM3-SAT)). Given a monotone 3-SAT formula ¢
and a monotone planar rectilinear embedding &£ of G(¢), decide whether ¢ is satisfiable.

PM3-SAT is NP-complete [6]. We can assume w.l.o.g. that the coordinates in the
embedding £ have the following special properties:

The x-coordinates of edges and vertical borders of the vertex rectangles are multiples of 8.

All edge lengths are multiples of 4.

The clause vertices have height 4 and the variable vertices have height 1.
Notice that Figure 3 shows an instance satisfying these properties.

Now, given such an instance Isat = (¢,€) of PM3-SAT, we construct an instance
Is, = (C, T, M, A, (7t)eeqq, A, A) of WCMIN. We will give the precise number of wiggles
W for the decision variant of WCMIN later, and set A = A = 1, thus, we can assume that
coordinations of Igy, contain only integer coordinates (see Lemma 11).

To have a better correspondence between the two instances, we assume in the reduction

that the storyline curves are not x-monotone, but are y-monotone from bottom to top.

That is, we rotate the storyline drawing by 90 degrees counterclockwise. All figures for the
reduction reflect this. We assume w.l.o.g. that the smallest y-coordinate of any vertex in £
is 3. Let ymax be the largest y-coordinate. We set T'= {1, ..., ymax + 2}. The main part of
our reduction will be in [3, ymax] € T, while the remaining four time steps will be used for
an auxiliary bounding frame.

Our reduction consists of three components: variable gadgets, clause gadgets, and a
rigid frame. For presentation purposes, we define the storyline instance graphically. That
is, we define the instance in terms of one of its coordinations. The definitions of C, M, A,
and (7¢).e[q can then be inferred from this coordination. In the main part of the paper,
we assume a black-box bounding frame, which we assume to have fixed coordinates in any
coordination. Clearly, this frame must consist of meetings and characters, its realization
is given in in the full version [7] due to space constraints. An instance of WCMIN that
results from the instance in Figure 3 can already be found in Figure 6 in the variant with a
black-box bounding frame. We start with the description of the variable gadget.

Variable gadget. Assume all variables in £ are embedded on the two y-coordinates ytop and
Ybot- INOw consider a variable v € T. We assume that the corresponding rectangle in £ has
width w,,, and its horizontal edges span from Zjef; t0 Zright. Then the corresponding variable
gadget (see Figure 4) consists of a set C, of w, characters which are ordered as in Figure 4
and are active at time steps Ypos and yiop. This set of characters can be further partitioned
into a set CP°® of positive characters (green in Figure 4) and a set C1°8 of negative characters
(red in Figure 4). Furthermore, using a frame as in the figure, the variable gadget is confined
to a space of width w, + 2, with coordinates from jest — 1 t0 Zyight + 1.

39:7

GD 2025

39:8 Optimizing Wiggle in Storylines

Lleft Lright xleft xnght
toh :)XX/&IJXXJ’JJ
(a) (c) FALSE
o \L\\\‘Ll\k\\\l\)J XXX XXXX)J
(b) TRUE (d)2- |C’U| wiggles

Figure 4 Illustration of a variable gadget. (a) The variable in the embedding £. (b) The
corresponding variable gadget in the TRUE state. (c¢) The variable gadget in the FALSE state.
(d) The variable gadget in a state with too many wiggles. Character curves are green and red.
meetings are brown horizontal blocks. The rigid frame is shown in gray. The dotted lines sketch the
connections to the corresponding clause gadgets.

For each occurrence of a variable in a clause, a character is extended towards a clause
gadget, as indicated with the dashed line ends in Figure 4. Positive characters are connected
with positive clauses, negative characters with negative clauses. More precisely, for a vertical
edge of £ connecting v with a positive (negative) clause v € I" at x-coordinate Tief, + 4 4
with z, , € Ny, let ¢, , € CP%® (¢, 4 € Cp°8) be the (14, ,/2)th (from left to right) positive
(negative) character in CP°® (Cn°8) (the values are always positive as x-coordinates of edges
are multiples of eight). We call such a character wire character. This character is extended
to time steps Yeop + 1, Ytop + 25+ (Ybot — L, Ybot — 2, ...) until it reaches the corresponding
clause gadget. This connection is along a corridor of width two defined by x-coordinates
Tileft + Ty,y a0d Tiefs + Ty~ + 1 (see Figure 4). In a potential coordination, we say that ¢, - is
satisfying if the x-coordinate of ¢, ~ at Yiop (Ybot) IS Tieft + v 4, and not satisfying otherwise.
We say that e + 24,4 is the satisfying x-coordinate of c, .

Due to the fixed coordinates of frames, we observe the following.

» Observation 6. The variable gadget has either |C,| (Figure 4b,c) or 2|C,| (Figure 4d)
wiggles between time steps Yiop aNd Ybot -

Furthermore, as desired, variable gadgets model a choice between TRUE and FALSE (see
Figure 4b,c).

» Observation 7. If the variable gadget has |C,| wiggles, then either all positive wire
characters are satisfying and all negative wire characters are not satisfying, or vice versa.

Clause gadget. At the heart of the reduction is the clause gadget, see Figure 5. We desribe
the gadget for positive clauses only. The gadgets for negative clauses are the same but
mirrored along the x-axis and can also be found in Figure 6. Thus, let v be a positive
clause with three variables v, vs,v3 € Y, such that vy is the left, vy is the middle, and vs
is the right variable. Assume that the clause rectangle in £ is defined by the coordinates
[@ieft, Tright] X [Ubot, Ytop)- The clause gadget for vy is essentially placed into the rectangle

A. Dobler, T. Hegemann, M. Nollenburg, and A. Wolff

Tleft xright Tleft xright
ytop LLLLLLLLL]L LLLLLLLLLLL]
Ybot | <| < d\|
: (a) FALSE FALSE FALSE
C
Yrop LLI L L L L] S S SRR RS
B LT L FLEE
- FALSE TRUE FALSE TRUE TRUE TRUE

(b) (d)

Figure 5 Illustration of a positive clause gadget. (a) The clause in the embedding €. (b-d) The
same clause gadget in three different states depending on whether its wire characters are satisfying
(TRUE) or not (FALSE). A character belonging to the rigid frame is shown with the gray line.

[T1ett — 4, Tright + 1] X [Ybots Ytop].! The rest of the clause gadget depends on the satisfying
x-coordinates of the characters c,, 4 with i € [3]; see Figure 5. Thus, let z7, 3, x5 be the
satisfying x-coordinates of c,, ~, Cy, v, Cug,v, T€spectively. Each of the three wire characters
is active until time step ytop, and it is part of some meetings with clause gadget characters
(blue in Figure 5). For each wire character c¢,, v, we have the following construction.
A fizing character which is a character from the frame fixed at z{ — 4 which is extended
until Yypot + 2, see the gray line in Figure 5.
The two blocking meetings of size three at time steps Yot + 1 and ypoy + 2 that ensure
that c,, , must have at least one wiggle if its x-coordinate at ypot is not satisfying.

Lastly, the clause gadget has two choice meetings of size Zright — Tiett +4 at Yiop and Yeop — 1.
Each clause character c,, , with ¢ € [3] appears inside these meetings at position «§ — e, + 4.

The remaining positions are filled by clause characters which have the same position in
both meetings. Essentially, the addition of 7, which slightly shifts the relation of satisfying
x-coordinate and position in the meeting, ensures that we cannot prevent multiple wiggles by
having multiple satisfying wire characters. The following two lemmas show that the clause
gadget can be realized with the fewest wiggles if at least one of its characters is satisfying,
and otherwise with one wiggle more. We assume that wire characters do not have wiggles
between their variable gadget and ¢, as they are either unnecessary or can be moved into
the clause gadget.

» Lemma 8. Assume that there exists a nice coordination in which none of cy, v, Cuy,~, and
Cug,y 15 satisfying. Then a nice coordination of the clause gadget has at least siz wiggles, and
such a coordination with exactly siz wiggles always exists.

Proof. Figure 5 depicts such a nice coordination. We show that the number of wiggles of
each wire character ¢,, , with ¢ € [3] and its corresponding fixing character is at least two
between ypot and yiop. If the number of wiggles is at least two between ypor and ypor + 1, we
are done.

Otherwise, ¢y, 4 has x-coordinate x{ — 3 at time step ytop — 3. Now notice that there
is no nice coordination of the choice and blocking meetings such that c,, , can be drawn
without a wiggle between yiop — 3 and yop — 1. |

! That is also partially why we need x-coordinates being multiples of eight.

39:9

GD 2025

39:10

Optimizing Wiggle in Storylines

g/II !I !l

:;: :Ili%lllllllllli% !%Il;ﬁlllllllllli%
| la

/

i::IIIIIIIIIIII::: :IIIIIIIIII;II 1
o S

Figure 6 The complete reduction (with black-box frame) resulting from the instance in Figure 3.

» Lemma 9. Assume a nice coordination in which some of c,, , with i € [3] is satisfying.
Then a nice coordination of the clause gadget has at least five wiggles, and such a coordination
with exactly five wiggles always exists.

Proof. For the existence, let ¢,, , with j € [3] be some satisfying wire character. Simply
draw ¢, 4 without wiggle, by adjusting the coordination of the choice meetings accordingly.
The remaining two wire characters can be drawn with two wiggles, while their fixing character
remains without wiggle between ynor and yiop (see Figure 5a, where j = 2).

For the lower bound we have already seen in the proof of Lemma 8 that if a fixing character
remains without wiggle between yno¢ and yop, then its corresponding wire character must
have at least one wiggle between yop —2 and yiop — 1. Thus, for there to be at most 4 wiggles,
two wire characters would need to be realized without wiggles. This is not possible because of
the slight shift of positions of the wire characters in the choice meetings, a contradiction. <«

We define k.. as the number of crossings in the reduced storyline instance; in any
coordination they will introduce a wiggle. Now, let k = k¢, + 5|T'|. We claim the following; a
proof without treating the rigid frame as black-box is given in the full version [7].

» Lemma 10 (x). Isar is a yes-instance of PLANAR MONOTONE 3-SAT if and only if Isr,
has a nice coordination with at most k wiggles.

Proof (assuming a black-box bounding frame). The forward direction follows immediately
from our construction.

For the backward direction, assume a nice coordination of Is;, with at most k wiggles.
Because k., wiggles are unavoidable, and we have at least 5 wiggles for each clause gadget by
Lemmas 8 and 9, we must have exactly 5 wiggles per clause gadget. Further, each variable
gadget has |C,| wiggles for each variable v. Hence, at least one wire character per clause
gadget is satisfying, and we can use the variable assignment corresponding to satisfying
characters to verify the satisfiability of the PM3-SAT instance by Observation 7. <

Proof of Theorem 5. For NP-membership we provide a polynomial certificate and a certifier
for the decision problem of deciding whether there is a nice coordination with at most k wiggles.
The certificate consists of a set of pairs X C C x [£ — 1] of size at least) __-(|A(c)| —1) — k.
Each pair (¢,t) € X defines that ¢ can be drawn without wiggle between time steps ¢ and
t + 1. The certifier can certify the certificate using a linear program. The linear program

A. Dobler, T. Hegemann, M. Nollenburg, and A. Wolff

is essentially the one from Section 3 using constraints (Cons-A) to (GO) and the additional
constraints y.; = yc,+1 for each pair (c,t) € X. If the polytope defined by the program is
non-empty, then the certifier reports yes.

NP-hardness follows from Lemma 10 and the fact that PM3-SAT is NP-hard. Clearly,
the reduction is polynomial. <

4.3 ILP Formulation for WCMIN

We have established that WCMIN is NP-complete. We now present an ILP formulation for
WCMIN (assuming A, A € N) that we will use in Section 6 to construct storyline drawings
with minimum wiggle count. The formulation requires the following lemma.

» Lemma 11. Consider an ordered storylines instance and A, A € N. For each k € N, if
there is a nice coordination with k wiggles, there is one with at most k wiggles using integer
coordinates.

Proof. The proof is similar to the one of Proposition 1. We recommend reading that proof
first. Consider a nice coordination with k wiggles. We build a graph G with V(G) = {yi.. |
te[l],ce AC(t)} and E(G) = {yt.c¥v.c' | Yt,c — Yoo € Z}. If G has multiple connected
components, the y-coordinates corresponding to vertices in a single connected component
can be increased until the number of connected components of G is decreased. When G is
connected, all y-coordinates can be increased until they are all integers. <

The ILP makes use of the following variables (refer to Section 3 for details).

ytc for t € [€],c € AC(¢), y-coordinate of character ¢ at time step t.

zte for t € [—1],¢ € AC(t) N AC(t + 1), equals 1 if character ¢ wiggles between ¢
and t + 1, 0 otherwise.

By Lemma 11 we can assume the y-coordinates of the characters to be integers. To
enforce that z,. = 0 if and only if y, . = Y41, (i-e., there is no wiggle), we use a large
constant Y € N; see constraints (M1) and (M2) below. A trivial upper bound for the
y-coordinates is max{A, A} - Zte[é] | AC(t)|. We use this bound for Y. The sets N (t) and
N4 (t) are defined in Section 3. Now we can formulate the ILP:

Minimize Z Zt.c
te[l—1],ceAC(t)
subject to Yt — Yo = A for all t € [{], (¢,) € Nam(t) (Cons-A)
Yoo — Yo > A for all t € [{], (¢,) € Na(t) (Cons-A)
Yet+Y 2t > Y1 forallt e[l —1,ce ACt)NAC(t+1) (M1)
Yo=Y - 2pe <ypy1,. forallte [l —1],ce AC(t)NAC(t+1) (M2)
Yre €No, 0<y.<Y for all t € [¢],c € AC(t) (Int)
ziec € {0,1} forall t € [¢],c € AC(t) (Bin)

Constraints (Cons-A) and (Cons-A) have been explained in Section 3. (Int) and (Bin) ensure
that y; . is a positive integer bounded by Y and z; . is binary, respectively. The objective
sums over all z-variables and therefore counts the number of wiggles.

As it turned out, optimal solutions created by state-of-the-art solvers produce unusably
large wiggles with this formulation. We thus introduce a new variable h for the height of the
drawing and, for each t € [¢] and ¢ € AC(¢), the new constraint y, . < h. By adding the term
h/Y to the objective, we also minimize h. The adjusted formulation still solves WCMIN.

39:11

GD 2025

39:12

Optimizing Wiggle in Storylines

Cle C1 .
N .\
/

C3

pz4(z)
= p33(z)

dx

(a) Wiggle geometry. (b) Not x-monotone. (c) Radial curve distance.

Figure 7 A wiggle is represented by a sequence of two circular arcs.

5 Routing Character Curves

In our storyline drawings, we represent each wiggle by a sequence of two circular arcs. In
order to generate a smooth transition, we require the tangents at the arcs to be equal where
the arcs cross over (see Figure 7a). In order to achieve visually pleasing transitions, we
require that all arcs have at least a certain radius and that consecutive lines wiggle “ in
parallel” (a precise definition is given later in this section).

When visualizing the transition between a pair of consecutive time steps t and ¢ + 1, for
each character ¢, the wiggle height dy; . = |yt.c — Ys+1,¢| is given by the coordination. Given
the radii 7} . and r{, of the two arcs of a character curve ¢ between time steps t and t + 1,
the required horizontal space dx; for this configuration fulfills

da? =2(r} .+ 11) dys.c — dy; .. (4)

Refer to the full version [7] for a detailed derivation. We require each character curve to
be x-monotone. If we choose dx; badly, we may end up with a sequence of arcs that is not
x-monotone (see Figure 7b). It is easy to see that a character curve is x-monotone if and
only if (. +r/.) > dys .. With Equation (4), we can state this as dz7 > dy7 ..

Between two time steps, two character curves run in parallel, if they do not cross and

‘ in parallel”

start and end with the same vertical distance. In order to have them wiggle
, we use concentric arcs. Generally, for two x-monotone differentiable curves ¢ and ¢’, we
define their directed radial distance at position z, denoted by m(z), as the length of a
normal line segment starting at ¢(z) and ending where it intersects ¢’ or infinity, if the
normal line does not intersect . See Figure 7c for an example. We define the radial distance
of p and ¢ at x as p, o (z) = min(m(x),m(x)) (see Figure 7c).

We call two x-monotone curves related if their axis-aligned bounding boxes overlap. We call
them upwards (downwards) co-oriented if they are also y-monotone and their y-coordinates
both increase (decrease). Let ¢ and ¢’ be two character curves between consecutive time
steps ¢t and t + 1. By construction, ¢ and ¢’ are y-monotone. If they are also related,
co-oriented, and do not cross each other, we require their radial distance to be monotone.

A. Dobler, T. Hegemann, M. Nollenburg, and A. Wolff

We define the set Ny . (¢) of all pairs of characters ¢,é € AC(t) N AC(t + 1) such that

Yt,c < Yt,e

c and ¢ are non-crossing, related, and upwards co-oriented, and

Yte — Yte S Yt1,6 — Ytt1ee
We define N . (t) for downwards co-oriented characters similarly as well as Ny _,(t) and
Ny (t) if yr0 — Yt.c > Ye+1,6 — Ye+1,c. Note that these sets contain only characters that
wiggle (i.e. their y-coordinates are different in ¢ and ¢t 4+ 1). We use the following LP to
determine da} as well as the radii r} . and r}, for each time step ¢ € [¢ — 1] and for each

c € AC(t) NAC(t + 1).

Minimize —dz?

subject to d:z:t2 > cen,l«x%)((t) dyf,c (XM)
dz} = 2(r} . + 71)dys,c — dy?, for all ¢ € AC(t) N AC(t + 1) (R1)

TterThe = Tmin for all c € AC(t) N AC(t + 1) (R2)

Tte 2 Tio+ (Yte — Yte) for all c,é € N| . (t) (D1)

e <Tie— (Yes1e — Yet1e) for all ¢,¢ € N () (D2)

Tte <Tto— WYte — Yte) for all ¢,é € Ny (t) (D3)

Tie > Tio+ (Yerte = Yerie) for all ¢,é € Ny (1) (D4)

The constraint (XM) ensures x-monotonicity between time steps t and ¢+ 1; (R1) ensures
that the two arcs meet at a distinct point and their tangents match. The remaining quality
criteria are addressed by (R2) (minimum radius) and (D1) to (D4) (monotone radial distance).
Note that we can model each variable of kind dx? as a linear variable because we do not
have any terms depend on dx; (non-squared).

6 Case Studies

We conducted two case studies that showcase wiggle minimization and the geometric re-
alization we proposed. Firstly, we compare the different metrics for storyline wiggle (see
Section 2) using both previous datasets from the literature and new instances. Secondly, we
present a new use case for storylines when visualizing rolling stock schedules.

6.1 Storyline Benchmark Data

We compiled a diverse set of benchmark instances for which we could create crossing minimal
ordered storylines using the ILP from [8]. It consists of three novels (n; to n3) originally
from The Stanford GraphBase [18] in a modified version by [13], eight blockbuster movies
(b1 to bs from [8] and bs to bg from [25]), one instance of publication data (p;) from [9], and
five rolling stock schedules (t; to ts; see Section 6.2). Refer to a table in the full version [7]
for more details about these instances, including objective values and running times.

We implemented the LP solving LWHMIN (see Section 3.1), the QP solving QWHMIN
(see Section 3.2), and the ILP for WCMIN (see Section 4.3) including the additional secondary
objective that minimizes drawing height. We refer to them as LP, QP, and ILP, respectively.
We implemented base — a heuristic that simply centers the character curves vertically in each
time step — as a baseline. Note that base produces drawings of minimum height.

39:13

GD 2025

39:14

Optimizing Wiggle in Storylines

= : 1 HR [— mﬂi‘qﬂ
o L U=
ILP H N 7 (41, 132, 692, 16)

(b) I =l

e = e
peNm—eee.- .

base (242, 180, 174, 10)

Figure 8 Storyline visualizations of the first chapter of Anna Karenina. The values in parentheses
are (wiggle count, linear wiggle height, quadratic wiggle height, height of the bounding box).

Drawings of n; created with each of the four methods can be found in Figure 8. We
see that minimizing the number of wiggles comes at a cost of some large wiggles and that
producing many — thus small — wiggles results in an unnecessarily wide drawing when using
our style. There could be a case for QP with an adjusted drawing style but for our current
rendering, LP produces the best results.

Detailed results of the performance metrics for the dataset can be found in Figure 9. We
see that optimizing for one objective can lead to poor performance in other metrics. Overall,
however, LP produces good results more consistently than the other methods. This is why
we used it for the drawings presented in our second case study.

6.2 Rolling Stock Scheduling

To our own surprise, storylines show up in a seemingly unrelated area, namely the visualization
of rolling stock schedules. Rolling stock scheduling, which is an important subtask in railway
optimization, is defined as follows. Given a set of train units, a set of possible compositions of
train units, a set of trips given by the timetable, and passenger demands per trip, the task is
to find a feasible assignment of train units (possibly in composition) to trips that minimizes a
weighted sum of operating costs. These costs include, e.g., the total distance driven, the load
factor, and the number of coupling operations. There are different approaches for visualizing
rolling stock schedules (see [3] and [12, Fig. 1] for examples).

We visualize such a schedule as a storyline where each character curve represents the
movement of a specific train unit over the planning period (usually one day of operation) and
the composition of (typically two or three) train units is modeled as a meeting. In contrast
to our basic model, such meetings now extend over several layers. Note that we use the term
layer to avoid confusion with time steps in the timetable. In order to satisfy the additional
constraints of “rolling stock” storylines, we needed to extend our basic model. We split each
trip into at least two meetings, one at the departure time and one at the arrival time. We
then group as many consecutive meetings (of pairwise different train units) into one layer as
possible so the storyline stays compact. If departure and arrival meeting of one trip do not
fall into consecutive layers, we insert an additional meeting for each intermediate layer.

A. Dobler, T. Hegemann, M. Nollenburg, and A. Wolff

39| wig%le count, . . N 16 | linear wiggle height |
¢

6 4 o ¢ L ’, B 8+ -
IS |

8 +* 4 —

4 ¢ |

2 - A, " aaa AAA, 2r . B

17??\\?\\\????\\\\T7 17%%7“\%*\“\%%\“\???‘\$7
n1 n2 n3 by bz bg bg bs be b7 bg p1 t1 t2 t3 ta ts n1 n2 n3 by bz b bg bs be b7 bg p1 t1 t2 t3 ts4 ts5
T T

32 I quadratic wiggle height . total height

2.25 |- |

16 |- -

8, |

Al | 15} a

A A 4

20 x AA A A A A | : A A 8

tleeeetttoabvatonre] afiottrtatetedees s
n1 n2 n3 by bz bs bg bs be b7 bg p1 t1 t2 t3 ta ts n1 n2 n3 by bo b3 bg bs bg b7 bg p1 t1 t2 t3 ta ts

base ILP 4o LP « QP

Figure 9 Metrics (relative to the respective optimum) of the wiggle minimization methods for
our storyline benchmark set (novels, blockbusters, publications, trains). The y-axes are logarithmic.

Figure 10 Storyline visualization of a rolling stock schedule using our drawing style.

Furthermore, we had to slightly adjust the ILP for crossing minimizing. We fixed the
ordering of the characters within a meeting as they resemble the order of train units in
a composition, which is relevant for planning. Additionally, we could have required that
meetings belonging to the same trip must be drawn straight (as rectangles instead of as
sequences of vertical bars) and that meetings cannot take part in a crossing, but for simplicity,
we have not enforced this. However, we rewarded such solutions in the LP for linear wiggle
height minimization using soft constraints. In the same way, we rewarded the vertical
alignment of meetings where a train composed of the same units operates another trip.

An example of our visualization is shown in Figure 10 (larger versions are in the full

version [7]). It depicts the same data set as [12, Fig. 1] (but unfortunately a different solution).

Because of how we assign meetings to layers, the x-coordinates represent the departure and
arrival times only vaguely. Also the width of a box does not represent the duration of a trip

exactly. This was a deliberate (but optional) choice to achieve a more compact visualization.

39:15

GD 2025

39:16

Optimizing Wiggle in Storylines

7

Conclusion

We have given exact solutions for three variants of wiggle minimization. In particular, our
efficient LP solution of LWHMIN noticeably improves the aesthetic quality, while it does not
cost much in terms of computation time (compared to crossing minimization).

—— References

1

10

11

12

We leave several questions open.

We have shown that WCMIN is NP-complete, but we can solve the restriction to two
time steps efficiently. Is WCMIN in FPT with respect to the number of time steps?
Our geometric routing produces very readable drawings, but sometimes they are quite
wide. Is there a more compact geometric solution that maintains the advantages of our
method?

Despite the rich literature on optimizing quality metrics in storyline visualization, there
exists no formal user evaluation on the effects on readability of their optimization. In
particular, do visualizations of rolling stock schedules as crossing- and wiggle-optimized
storyline visualizations lead to improvements in train operation planning?

Dustin Arendt and Meg Pirrung. The “y” of it matters, even for storyline visualization. In
Brian D. Fisher, Shixia Liu, and Tobias Schreck, editors, Proc. Conference on Visual Analytics,
Science and Technology (VAST 2017), pages 81-91, 2017. doi:10.1109/VAST.2017.8585487.
Marco Di Bartolomeo and Yifan Hu. There is more to streamgraphs than movies: Better
aesthetics via ordering and lassoing. Comput. Graph. Forum, 35(3):341-350, 2016. doi:
10.1111/CGF.12910.

Ralf Borndoérfer, Boris Grimm, Markus Reuther, and Thomas Schlechte. Optimization of
handouts for rolling stock rotations. J. Rail Transport Planning & Management, 10:1-8, 2019.
d0i:10.1016/j.jrtpm.2019.02.001.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
7th edition, 2009.

Lee Byron and Martin Wattenberg. Stacked graphs — geometry & aesthetics. IEEE Trans.
Vis. Comput. Graph., 14(6):1245-1252, 2008. doi:10.1109/TVCG.2008.166.

Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geom. Appl., 22(3):187-206, 2012. doi:10.1142/S0218195912500045.
Alexander Dobler, Tim Hegemann, Martin Nollenburg, and Alexander Wolff. Optimizing
wiggles in storylines. CoRR, abs/2508.19802, 2025. arXiv:2508.19802.

Alexander Dobler, Michael Jiinger, Paul J. Jinger, Julian Meffert, Petra Mutzel, and Martin
Nollenburg. Revisiting ILP models for exact crossing minimization in storyline drawings. In
Stefan Felsner and Karsten Klein, editors, Proc. Graph Drawing and Network Visualization
(GD 2024), volume 320 of LIPIcs, pages 31:1-31:19. Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2024. doi:10.4230/LIPICS.GD.2024.31.

Alexander Dobler, Martin Nollenburg, Daniel Stojanovic, Anais Villedieu, and Jules Wulms.
Crossing minimization in time interval storylines. In Clemens Huemer and Carlos Seara, editors,
Proc. European Workshop on Compututational Geometry (EuroCG 2023), pages 36:1-36:7,
2023. doi:10.48550/arXiv.2302.14213.

Theresa Froschl. Minimizing wiggles in storyline visualizations. Master’s thesis, Technische
Universitat Wien, 2018. doi:10.34726/hss.2018.53581.

Theresa Froschl and Martin Nollenburg. Minimzing wiggles in storyline visualizations. In
Fabrizio Frati and Kwan-Liu Ma, editors, Proc. Graph Drawing and Network Visualization
(GD 2017), volume 10692 of Lecture Notes in Computer Science, pages 585—587. Springer,
2018. URL: https://www.ac.tuwien.ac.at/files/pub/fn-mwsv-18.pdf.

Boris Grimm, Rowan Hoogervorst, and Ralf Borndoérfer. A comparison of two models for
rolling stock scheduling. Transport. Sci., 59:1101-1129, 2025. doi:10.1287/trsc.2024.0505.

https://doi.org/10.1109/VAST.2017.8585487
https://doi.org/10.1111/CGF.12910
https://doi.org/10.1111/CGF.12910
https://doi.org/10.1016/j.jrtpm.2019.02.001
https://doi.org/10.1109/TVCG.2008.166
https://doi.org/10.1142/S0218195912500045
https://arxiv.org/abs/2508.19802
https://doi.org/10.4230/LIPICS.GD.2024.31
https://doi.org/10.48550/arXiv.2302.14213
https://doi.org/10.34726/hss.2018.53581
https://www.ac.tuwien.ac.at/files/pub/fn-mwsv-18.pdf
https://doi.org/10.1287/trsc.2024.0505

A. Dobler, T. Hegemann, M. Nollenburg, and A. Wolff

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Martin Gronemann, Michael Jiinger, Frauke Liers, and Francesco Mambelli. Crossing mini-
mization in storyline visualization. In Yifan Hu and Martin Néllenburg, editors, Proc. Graph
Drawing and Network Visualization (GD 2016), volume 8901 of Lecture Notes in Computer
Science, pages 367-381. Springer, 2016. doi:10.1007/978-3-319-50106-2_29.

Tim Hegemann. NarratiViz. Software, BMFTR grant 011S22012C, swhld: swh:1:dir:
aT7efa9c0cab74b6cf25b1c4b2c1£4793¢cc814723 (visited on 2025-11-10). URL: https://
github.com/hegetim/narrativiz, doi:10.4230/artifacts.25067.

Tim Hegemann and Alexander Wolff. Storylines with a protagonist. In Stefan Felsner and
Karsten Klein, editors, Proc. Graph Drawing and Network Visualization (GD 2024), volume
320 of LIPIcs, pages 26:1-26:22. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024.
doi:10.4230/LIPICS.GD.2024.26.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming. Comb.,
4(4):373-396, 1984. doi:10.1007/BF02579150.

Nam Wook Kim, Stuart K. Card, and Jeffrey Heer. Tracing genealogical data with timenets.
In Giuseppe Santucci, editor, Advanced Visual Interfaces (AVI), pages 241-248. ACM Press,
2010. doi:10.1145/1842993.1843035.

Donald E. Knuth. The Stanford GraphBase: A platform for combinatorial computing. ACM
Press, 1994.

Irina Kostitsyna, Martin Nollenburg, Valentin Polishchuk, André Schulz, and Darren Strash. On
minimizing crossings in storyline visualizations. In Emilio Di Giacomo and Anna Lubiw, editors,
Proc. Graph Drawing and Network Visualization (GD 2015), volume 9411 of Lecture Notes in
Computer Science, pages 192—-198. Springer, 2015. doi:10.1007/978-3-319-27261-0_16.
Shixia Liu, Yingcai Wu, Enxun Wei, Mengchen Liu, and Yang Liu. Storyflow: Tracking
the evolution of stories. IEEE Trans. Vis. Comput. Graph., 19(12):2436-2445, 2013. doi:
10.1109/TVCG.2013.196.

Steffen Strunge Mathiesen and Hans-Jorg Schulz. Aesthetics and ordering in stacked area
charts. In Amrita Basu, Gem Stapleton, Sven Linker, Catherine Legg, Emmanuel Manalo,
and Petrucio Viana, editors, Proc. Diagrammatic Representation and Inference (Diagrams
2021), volume 12909 of Lecture Notes in Computer Science, pages 3—19. Springer, 2021.
doi:10.1007/978-3-030-86062-2_1.

Randall Munroe. Movie narrative charts. Diagram available at https://xkcd.com/657/, 2009.
Accessed 2017/04/03.

Michael Ogawa and Kwan-Liu Ma. Software evolution storylines. In Alexandru C. Telea,
Carsten Gorg, and Steven P. Reiss, editors, Proc. ACM Symposium on Software Visualization
(SoftVis 2010), pages 35-42, 2010. doi:10.1145/1879211.1879219.

Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109-125, 1981.
doi:10.1109/TSMC.1981.4308636.

Yuzuru Tanahashi, Chien-Hsin Hsueh, and Kwan-Liu Ma. An efficient framework for generating
storyline visualizations from streaming data. IEEE Trans. Vis. Comput. Graph., 21(6):730-742,
2015. doi:10.1109/TVCG.2015.2392771.

Yuzuru Tanahashi and Kwan-Liu Ma. Design considerations for optimizing storyline visualiza-

tions. IEEE Trans. Vis. Comput. Graph., 18(12):2679-2688, 2012. doi:10.1109/TVCG.2012.

212.

Thomas C. van Dijk, Martin Fink, Norbert Fischer, Fabian Lipp, Peter Markfelder, Alexander
Ravsky, Subhash Suri, and Alexander Wolff. Block crossings in storyline visualizations. J.
Graph Alg. Appl., 21(5):873-913, 2017. doi:10.7155/jgaa.00443.

Thomas C. van Dijk, Fabian Lipp, Peter Markfelder, and Alexander Wolff. Computing
storylines with few block crossings. In Fabrizio Frati and Kwan-Liu Ma, editors, Proc. Graph
Drawing and Network Visualization (GD 2018), volume 10692 of Lecture Notes in Computer
Science, pages 365-378. Springer, 2018. doi:10.1007/978-3-319-73915-1_29.

39:17

GD 2025

https://doi.org/10.1007/978-3-319-50106-2_29
https://archive.softwareheritage.org/swh:1:dir:a7efa9c0ca674b6cf25b1c4b2c1f4793cc814723;origin=https://github.com/hegetim/narrativiz;visit=swh:1:snp:b18239e66463dee63bc79cf243cc2afca36ef668;anchor=swh:1:rev:24dd910cfb575574c90d7aa0650ab69cfcd11b07
https://archive.softwareheritage.org/swh:1:dir:a7efa9c0ca674b6cf25b1c4b2c1f4793cc814723;origin=https://github.com/hegetim/narrativiz;visit=swh:1:snp:b18239e66463dee63bc79cf243cc2afca36ef668;anchor=swh:1:rev:24dd910cfb575574c90d7aa0650ab69cfcd11b07
https://github.com/hegetim/narrativiz
https://github.com/hegetim/narrativiz
https://doi.org/10.4230/artifacts.25067
https://doi.org/10.4230/LIPICS.GD.2024.26
https://doi.org/10.1007/BF02579150
https://doi.org/10.1145/1842993.1843035
https://doi.org/10.1007/978-3-319-27261-0_16
https://doi.org/10.1109/TVCG.2013.196
https://doi.org/10.1109/TVCG.2013.196
https://doi.org/10.1007/978-3-030-86062-2_1
https://xkcd.com/657/
https://doi.org/10.1145/1879211.1879219
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TVCG.2015.2392771
https://doi.org/10.1109/TVCG.2012.212
https://doi.org/10.1109/TVCG.2012.212
https://doi.org/10.7155/jgaa.00443
https://doi.org/10.1007/978-3-319-73915-1_29

	1 Introduction
	2 Preliminaries
	3 Wiggle Height Minimization
	3.1 Linear Program for LWHMin
	3.2 Quadratic Program for QWHMin

	4 Wiggle Count Minimization
	4.1 Polynomial Cases
	4.2 NP-Hardness
	4.3 ILP Formulation for WCMin

	5 Routing Character Curves
	6 Case Studies
	6.1 Storyline Benchmark Data
	6.2 Rolling Stock Scheduling

	7 Conclusion

