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Abstract
Since many real-world graphs are nonplanar, the study of graphs that allow few crossings per edge
has been an active subfield of graph theory in recent years. One of the most natural generalizations
of planar graphs are the so-called 1-planar graphs that admit a drawing with at most one crossing
per edge. Unfortunately, testing whether a graph is 1-planar is known to be NP-complete even for
very restricted graph classes. On the positive side, Binucci, Didimo and Montecchiani [5] presented
the first practical algorithm for testing 1-planarity based on an easy-to-implement backtracking
strategy. We build on this idea and systematically explore the design choices of such algorithms and
propose several new ingredients, such as different branching strategies and multiple filter criteria that
allow us to reject certain branches in the search tree early on. We conduct an extensive experimental
evaluation that evaluates the efficiency and effectiveness of these ingredients. Given a time limit of
three hours per instance, our best configuration is able to solve more than 95% of the non-planar
instances from the well-known North and Rome graphs with up to 50 vertices. Notably, the median
running time for solved instances is well below 4 seconds.
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1 Introduction

It has been established early on in the history of Graph Drawing that the number of crossings
has a major influence on the readability of drawings [37, 38, 39]. This reinforces the continued
interest in the extensively studied crossing minimization problem, which asks for the minimum
number of crossings over all drawings of a given graph. It was shown as early as 1983 that
the problem is NP-complete [20]. Due to its foundational nature, it has fueled a large number
of results that address combinatorial and algorithmic aspects of crossing numbers. We refer
to the survey of Schaefer for an overview of this extensive field [44]. Due to the practical
importance of the problem, these developments have early on been paralleled by more applied
works that are concerned with solving the crossing minimization problem in practice. Today,
there is a large amount of literature that deals with computing the crossing number either
exactly in exponential time, based on formulations as integer linear programs [8, 13, 33],
or heuristically in polynomial time [11, 12, 22]. Heuristics often work by efficiently and
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4:2 Heuristics for Exact 1-Planarity Testing

optimally inserting vertices or edges into a drawing, allowing to introduce crossings only
between pairs of edges where at least one of the edges is currently being inserted; a strategy
that has also proved to be successful for straight-line drawings [6, 40, 41, 42].

A more recent development is based on the hypothesis that in addition to the number of
crossings, a major influence on the readability of drawings comes from the distribution of
the crossings within the drawing. This has lead to the definition of so-called beyond-planar
graphs that admit drawings whose crossings avoid certain patterns that are considered
to impede readability. Prominent examples of beyond-planarity concepts are k-planarity,
k-quasi-planarity, fan-planarity, gap-planarity, RAC-planarity, min-k-planarity as well as
corresponding outer and upward variants; we refer to [26] for a survey. One of the most
widely known beyond-planarity concepts is 1-planarity, where a graph is called 1-planar
if it can be drawn in the plane such that each edge has at most one crossing. Despite
the apparent simplicity, 1-planar graphs form a rich class that has spurred a substantial
amount of research. From a combinatorial perspective, questions about density, coloring and
structural decompositions have been deeply investigated; we refer to [27, 45] for surveys.

From an algorithmic perspective, it is well known that testing 1-planarity is NP-
complete [21, 28], even for graphs of bounded bandwidth, pathwidth or treewidth [4],
as well as for graphs that can be made planar by the removal of a single edge [9] or graphs
with a fixed rotation system [3]. Polynomial-time recognition algorithms are only known for
restricted subclasses such as outer 1-planar graphs [2, 25], maximal 1-planar graphs with a
fixed rotation system [19], 1-planar maximal graphs of pathwidth w [31], and optimal 1-planar
graphs [7]. Recent years have seen a plethora of fixed-parameter tractability (FPT) results
on testing 1-planarity. In particular, Bannister, Cabello and Eppstein [4] showed that the
problem is FPT with respect to the vertex cover number, the tree-depth, and the cyclomatic
number. Various recent results, see e.g. [16, 23, 24, 32], imply that 1-planarity is FPT
with respect to the 1-planar crossing number, i.e., the minimum number of crossings over
all 1-planar drawings of a graph. The mentioned results are however only of theoretical
interest as they rely on deep theoretical results such as Courcelle’s Theorem [15] or testing
embeddability of graphs in 2-complexes [17].

A key motivation that initiated the study of beyond-planarity was the observation that
while many real world-graphs are non-planar, they are usually sparse and close to planarity
in the sense described above, namely that they have drawings whose crossings are well-
scattered [26]. Correspondingly, the problem of recognizing beyond-planar graphs and in
particular testing 1-planarity has a strong practical motivation. Despite this and in stark
contrast to the problem of crossing optimization, where the theoretical developments have
been accompanied by corresponding practical results, there is a distinct scarcity of practical
algorithms in the area of beyond-planarity. In fact, we are only aware of two attempts.

Angelini, Bekos, Kaufmann and Schneck [1] present an algorithm that is based on
enumerating all topological drawings of a graph incrementally by iteratively inserting the
edges. This is useful, e.g., to devise small counterexamples or to confirm conjectures on small
graphs with less than 15 vertices, but it is hardly useful for practical applications. Binucci,
Didimo and Montecchiani [5] present an easy-to-implement algorithm, called 1PlanarTester,
for recognizing 1-planar graphs that is based on backtracking and is quite effective for small
graphs. As a graph is 1-planar if and only if all its biconnected components are 1-planar,
they process the biconnected components independently. For each biconnected component,
they fix a global ordering σ on the set of all pairs of non-adjacent edges, consider each
such crossing candidate pair {e, f} in the order of σ and branch on the binary decision of
whether e and f should cross. This is repeated until a 1-planar drawing is found or the
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whole search tree has been explored and the instance is rejected. Branches that cannot lead
to a solution, e.g., when an edge receives more than one crossing, or there is a non-planar
subgraph whose edges may not receive further crossings, are excluded from the backtracking.
The authors extend this basic algorithm by combining it with several filter criteria that
exclude additional branches, e.g., based on the addition of “kite” edges around crossings and
density bounds for planar and 1-planar graphs. The algorithm can handle graphs with up
to 30 vertices in a reasonable amount of time. However, on graphs with up to 50 vertices
the algorithm often either gives a positive answer in less than 0.2 seconds or does not give
an answer within a three-hour time limit. This emphasizes the crucial role of the order σ;
either a lucky guess of helpful crossings early on paves the ways towards a solution, or the
algorithm more or less explores the entire search tree.

Contribution and Outline. We build on the ideas of Binucci et al. [5] and systematically
explore different design choices within a backtracking framework. To this end we propose
new branching strategies aimed at limiting the size of the tree that has to be explored
and novel filter criteria that enable the earlier rejection of branches in the search tree. We
conduct an extensive experimental evaluation that examines the efficiency and effectiveness
of these techniques. Given a time limit of three hours per instance, our best configuration
significantly outperforms the 1PlanarTester and is able to solve more than 95% of the
non-planar instances from the well-known North and Rome graphs with up to 50 vertices. On
the whole data set, our best configuration solves 88% of all non-planar North graphs and
61% of all non-planar Rome graphs, which contain instances with up to 110 vertices.

We give basic definitions in Section 2. In Section 3 we describe our underlying backtracking
strategy and the corresponding search tree followed by a description of our traversal strategy.
Section 4 is then devoted to the presentation of different branching strategies and in Section 5
we describe multiple filter criteria. In Section 6 we present the results of our experimental
evaluation. We conclude with a brief summary in Section 7.

We remark that Pupyrev simultaneously and independently designed and implemented
an algorithm for testing 1-planarity based on a reduction to a SAT-instance [36].

2 Preliminaries

We assume familiarity with basic graph terminology. Throughout this paper, all graphs are
simple, i.e., they have neither parallel edges nor loops. We use Kn to denote the complete
graph on n vertices and Kn,m to denote the complete bipartite graph whose bipartition
contains n and m vertices, respectively.

A drawing Γ of a graph G = (V, E) maps every vertex v ∈ V to a point Γ(v) in the plane
and every edge uv ∈ E to a Jordan arc with endpoints Γ(u), Γ(v) that does not pass through
any Γ(w) for w ∈ V \ {u, v}. For simplicity, we identify vertices and edges with their images
in a drawing. A crossing is a common interior point of two edges. A drawing Γ of a graph G

is 1-planar, if every edge is crossed at most once in Γ. The planarization of a drawing Γ is the
graph we obtain from Γ by replacing every crossing in Γ with a dummy vertex. A drawing
subdivides the plane into connected regions called faces, one of which is unbounded and is
called outer face. An embedding of a graph G is the equivalence class of those drawings of G

that share the same face structure and cyclic order of the incident edges around each vertex.
A 1-planar embedding is an embedding induced by a 1-planar drawing and a 1-plane graph
is a graph together with a fixed 1-planar embedding. A kite is a 1-plane graph isomorphic
to K4 whose outer face is bounded by a cycle of four vertices and four uncrossed edges, called
kite edges, while the remaining two edges cross each other; see Figure 1.
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4:4 Heuristics for Exact 1-Planarity Testing

Figure 1 A kite with kite edges in bold.

It is well known that a 1-planar graph on n vertices has at most 4n − 8 edges [35]. We
call a graph with more than 4n − 8 edges trivially non-1-planar. A graph is biconnected, if it
is connected and remains connected after the removal of any vertex. Recall that a graph is
non-planar if and only if it contains a subgraph that is isomorphic to a subdivision of K3,3
or K5 as a subgraph [29]. We call such a subgraph a Kuratowski-subdivision.

3 The Backtracking Procedure

In this section we formalize the backtracking strategy we use in the rest of this paper. It is
based on a search tree similar to the one of Binucci et al. [5] described in the introduction,
whose nodes correspond to partial solutions. Recall that the algorithm of Binucci et al.
constructs the search tree based on a global order σ of the crossing candidates. Thus, in
their setting, a partial solution corresponds to a bitstring that describes the choices made
on a prefix of the order σ. As mentioned in the introduction, the performance seems to
crucially depend on σ. We conjecture that, rather than fixing a global order σ on the crossing
candidates, it may be beneficial to choose the next crossing candidate to branch on according
to criteria that take into account the current partial solution and thus allow different subtrees
to explore the same crossing candidate at different depths of the search tree. This may
enable the search to focus on critical parts of a partial solution and has the potential to reject
infeasible partial solutions more quickly. For this reason, we choose a different representation
of partial solutions that encodes the current state more explicitly.

As a graph is 1-planar if and only if each of its biconnected components is 1-planar, we
assume in the following that our input graph G = (V, E) is biconnected. Before we describe
our backtracking strategy, we introduce some useful notation. For a crossing candidate {e, f}
with e = uv, f = wy let G{e,f} denote the graph we obtain by inserting a dummy vertex x

subdividing e and f , i.e., G{e,f} = (V ∪ {x}, (E \ {e, f}) ∪ {ux, vx, wx, yx}). We say that the
edges ux, vx and wx, yx stem from e and f , respectively. For a set C of crossing candidates
such that each edge in E is contained in at most one pair of C, we denote by GC the graph
we obtain from G by inserting a dummy vertex as described above for every pair in C.

Let Ē ⊆
(

E
2
)

be the set containing all crossing candidates {e, f} consisting of non-adjacent
edges e and f . We encode a partial solution for G as a pair (C, P ) with C, P ⊆ Ē. The
intended meaning is that we have chosen the crossing candidates in C and we may still choose
among the crossing candidates in P . Since each edge may receive at most one crossing, we
require that for each edge e ∈ E that appears in a pair {e, f} ∈ C, the pair {e, f} is the only
pair in P ∪ C that contains it. We call an edge of GC free if it is contained in a pair in P

and we call it saturated otherwise. Observe that G is 1-planar if and only if there exists a
partial solution (C, P ) where GC is planar. A partial solution (C, P ) is extendible if there
exists a subset C ′ ⊆ P such that GC∪C′ is planar.

The backtracking procedure incrementally constructs a search tree T starting from the
partial solution (∅, Ē). We process a node of T representing a partial solution (C, P ) as
follows. First, if GC is planar, we return the corresponding 1-planar embedding of G. Second,
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Figure 2 The dotted degree-2-paths can always be redrawn without any crossing.

if GC is not planar but P = ∅, we backtrack, since (C, P ) does not extend to a 1-planar
drawing. If neither of these applies, we use a branching strategy to compute a finite set C of
child partial solutions (C ′, P ′) with C ⊆ C ′ ⊆ C ∪ P and P ′ ⊊ P . The chosen set C has to
be exhaustive in the sense that the partial solution (C, P ) is extendible if and only if the
same holds for at least one child partial solution in C.

We note that this basic framework leaves several degrees of freedom. First, the choice of
the branching strategy can have a significant impact on the size of the search tree. Second,
in addition to that, the order in which the nodes of T are processed can have a major impact
on the time it takes to find a solution. We discuss different options in Section 4.

Third, a major issue stems from the fact that for no-instances the entire tree T needs
to be traversed. If we identify that a certain partial solution (C, P ) is not extendible, its
subtree contains no solution and we can immediately backtrack. Hence, a necessary criterion
for extendibility of (C, P ) can be used to prune the search tree whenever the criterion is not
satisfied. We call such a criterion a filter. An example of such filter is excluding nodes (C, P )
where GC is trivially non-1-planar. We propose additional filters in Section 5.

Another optimization already described by Binucci et al. [5] exploits the fact that kite
edges can always be redrawn such that they do not cross any other edge. In particular,
when adding a new crossing {e, f} to the currently considered partial solution, they insert
all edges connecting an endpoint of e to an endpoint of f that are not already present in G

and make all these kite edges uncrossable, which in our setting corresponds to removing
from P all pairs that contain such a kite edge. We note that this can be slightly strengthened
by making all edges uncrossable that are contained in a path from an endpoint of e to an
endpoint of f whose internal vertices are all of degree 2, as such paths can also always be
redrawn arbitrarily closely along e and f without any crossings; see Figure 2. The described
optimizations help in keeping the search tree small as the number of crossings that have
to be considered decreases, and violations of necessary conditions on the extendability to a
1-planar embedding are found earlier during the execution. We thus include them in each of
our algorithms.

4 Branching and Traversal Strategies

In this section, we propose different branching strategies for choosing the children of a partial
solution (C, P ) and discuss different options for the traversal of the resulting search tree. We
discuss branching strategies in Section 4.1 and traversal strategies in Section 4.2.

4.1 Branching Strategies

Let (C, P ) be a partial solution and assume that GC is non-planar and P ̸= ∅.

GD 2025



4:6 Heuristics for Exact 1-Planarity Testing

Binary Branching. A basic branching strategy consists of choosing a crossing candidate
x ∈ P and creating children (C, P \ {x}) and (C ∪ {x}, P ′), where P ′ is obtained from P by
removing all crossing candidates that contain an edge from x. We refer to such a strategy as
binary branching and we consider three variants of it. The first is the one also employed by
1PlanarTester of Binucci et al. [5], where we initially choose a (random) global order σ of
the crossing candidates and x is always chosen as the smallest element of P with respect
to this order. We refer to this strategy as Sequential Branching. For Random Branching,
we choose x uniformly at random from P and for KuratowskiFrequency-k Branching, we
extract k Kuratowski subdivisions from the non-planar graph GC and choose x such that the
corresponding pair of edges is together contained in a maximum number of these Kuratowski
subdivisions. We remark that this can be done in linear time using an algorithm by Chimani,
Mutzel and Schmidt [14].

Exhaustive Set Branching. The other major branching strategy we explore is exhaustive
set branching, where we use an ordered set P ′ ⊆ P of edge pairs with the property that
every 1-planar embedding of G containing the crossings in C also contains at least one
crossing from P ′. Given such a set P ′ = {p1, . . . , pk}, we produce k children (Ci, Pi),
where Ci = C ∪ {pi} and Pi is obtained from P \ {p1, . . . , pi} by removing all crossing
candidates that contain an edge of pi. That is, in the ith child, the crossing candidate pi is
chosen and the crossing candidates p1, . . . , pi−1 are rejected.

Our choices of P ′ and its ordering described below are guided by which edge pairs are
more likely to correspond to “helpful” crossings and thus should be tried with higher priority.
In all cases, we use Kuratowski subdivisions of GC to guide us towards the set P ′ as, for any
Kuratowski subdivision H of GC , at least one pair of non-adjacent edges that do not belong
to the same subdivision path need to be crossed. We call this set P (H).

In its simplest form, called KuratowksiSingle Branching, we extract from GC a single
Kuratowski subdivision H and branch on the set P (H) ∩ P with an arbitrary order. Kur-
atowski subdivisions that are small or have few free edges produce fewer children, which
can significantly narrow the search space. Strategy KuratowskiMulti-k Branching exploits
this by extracting a set H of k Kuratowski subdivisions and choosing the subdivision H ∈ H
that minimizes P (H) ∩ P to branch on. To increase the likelihood of trying helpful crossings
early, we further order the crossing candidates in P (H) ∩ P by the number of Kuratowski
subdivisions in H that contain them.

4.2 Traversal Strategies
The choice of a branching strategy determines the search tree T . However, there are still
different options for traversing T . The algorithm 1PlanarTester of Binucci et al. [5] employs
a depth-first search (DFS) to traverse the search tree. This has the effect that a few poor
initial choices may necessitate the exploration of a large subtree that does not contain a
solution. Especially for larger instances, the algorithm may not recover from this in a timely
manner as it has to explore the entire subtree.

An obvious alternative to this is the use of a breadth-first search (BFS), which prioritizes
partial solutions with few crossings and may thus even allow to find a 1-planar embedding
with the minimum number of crossings. However, due to the large size of T , the corresponding
memory requirement is prohibitive as essentially the entire tree needs to be kept in memory.

We thus propose a hybrid approach. We maintain a queue Q with up to k distinct threads
that correspond to independent parallel depth-first searches. In each step we extract the next
thread t from the queue and execute one step of the corresponding DFS. When processing a
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node (C, T ), while Q contains fewer than k threads, instead of moving to a child, we rather
insert a new thread into Q that starts a depth-first search at this child. When Q reaches
the maximum of k threads, the remaining unvisited children are pushed to the stack of the
depth-first search corresponding to t.

In comparison to traversing T by a single DFS, in case of a yes-instance, this may prevent
us from fully exploring a very deep unhelpful branch and may allow to find potential solutions
earlier during the execution. We note that, for no-instances the whole tree needs to be
explored and the choice of the traversal strategy thus does not affect the running time.

5 Filter Criteria

In this section, we describe several filters to determine that a partial solution (C, P ) is not
extendible and, therefore, allows us to ignore its entire subtree. This has significant potential
to speed up the solution speed for both 1-planar and non-1-planar instances.

We first describe the filters that were already used by Binucci et al. [5] and that we employ
in all our strategies. We phrase each of them as a necessary condition, whose violation allows
to cut the corresponding subtree. The first, called Planar Structure, requires that the
subgraph of GC induced by the saturated edges is planar. To strengthen this, we also include
the kite edges and the extended kite edges as described at the end of Section 3. The filter
Edge Density rejects instances where GC is trivially non-1-planar after adding potentially
missing kite edges. We propose three further types of filters.

Partial Planarity. Let (C, P ) be a node and let H be the subgraph of GC that consists of
the saturated edges. Partial planarity filters are based on the fact that if (C, P ) is extendible,
then GC admits a drawing where H is crossing-free (but all other edges may cross arbitrarily).
The corresponding decision problem is known as Partial Planarity. Da Lozzo and
Rutter [30] gave a linear-time algorithm, which is however very involved. Therefore, we
instead implement the slower but simpler Hanani-Tutte style algorithm of Schaefer [43].
Due to the high running time of O(n6), we initially run cheaper tests of weaker necessary
properties as described below. For each variant, we assume that all previous variants are
used as well.

PP1: A necessary condition for partial planarity is that for each free edge e, the graph H+e

is planar. We thus test this for each edge and reject if this is not the case.
PP2: Let {e, f} be a pair of free edges in G. Assuming PP1 has not rejected, we know
that H + e and H + f are planar. If H + {e, f} is non-planar, we know that e must
cross f . In this case, if {e, f} ∈ P , we can include this crossing in C and otherwise we
can reject the partial solution. We check for each pair of free edges in G whether it is
forced in this way.
PP3: Let B be a connected component of GC − H together with all edges that connect
it to H (along with their endpoints in H). We call such a subgraph a bridge of GC . Now
in a potential 1-planar embedding of G with all crossings from C, each bridge must lie
entirely within one face of H. In other words, for the extendability of the partial solution,
it is necessary that the graph consisting of H and the bridge B, where B is contracted
into a single vertex, is planar.
PP4: Finally, if none of the cheaper tests rejects the partial solution, we run the O(n6)
partial planarity algorithm by Schaefer [43].
Due to the high running time of PP4, we also propose a variant PP4Cp, where we only
run the test with probability 1

p . In that case, if we detect that GC is not partially planar,
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x y
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F

Figure 3 If e = uv crosses f = xy, then in any 1-planar drawing, all pairwise edge-disjoint paths
between x, y in F (dashed) cross the path p between u and v (bold).

we also run the test on ancestors in the search tree that have not been tested previously
in order to find the highest ancestor x whose corresponding planarization is also not
partially planar. We can then prune the entire subtree rooted at x. In this way, a single
invocation of the test can prune multiple nodes from the search tree.

Separating Cycles (SC). Let (C, P ) be a configuration in the search tree T and let e =
uv, f = xy be two edges in G that cross each other in the corresponding partial solution;
i.e, {e, f} ∈ C. Let p be a uv-path in G − {e, f} that contains the minimum number of free
edges. Let further F be a maximum set of pairwise edge-disjoint paths between x and y such
that no path in F shares a vertex with p; see Figure 3 for an illustration. Since e and f cross,
the endpoints x and y of f lie on different sides of the cycle K formed by p and e. Thus
each path in F needs to cross K. It is thus necessary that each path of F contains an edge
that still admits a crossing with an edge of K and that K contains at least |F | free edges.

In our implementation, if the test succeeds for a path p we temporarily remove it from the
graph and repeat the test until there is no longer a path that connects x to y. We execute
this test for all pairs {e, f} ∈ C.

6 Experimental Evaluation

In this section, we experimentally evaluate our backtracking procedure. A concrete instance
of our backtracking procedure, called a configuration is obtained by choosing a branching
strategy and a traversal strategy from Section 4 along with a subset of the filters from Section 5.
As some of the strategies have additional parameters, this yields a relatively large number
of possible configurations. To address this, we first perform preliminary experiments on a
smaller test set and with a short time limit to assess the impact of the individual strategies
and filter criteria and to ultimately determine the configuration with the best performance.
Afterwards, we compare the performance of this winning configuration with that of the
algorithm 1PlanarTester of Binucci et al. [5] by running it on an extensive test set in a
way that closely mimics their experimental setup. As an additional reference point, we also
implemented a simple ILP-based algorithm that builds on the ILP formulation of Buchheim
et al. [8] for the Exact Crossing Number Problem.

In the following, we first describe the ILP formulation followed by a description of our
test data and the experimental setup. Finally we report the results of our evaluation.
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Figure 4 The distribution of instance sizes for the data set Bicomps-NR-Small.

6.1 ILP Formulation
In this section we describe our ILP-based algorithm which builds on the ILP formulation of
Buchheim et al. [8] for the Exact Crossing Number Problem. Given the input graph G, for
each candidate crossing {e, f} of edges of G, we introduce a binary variable that indicates
whether e and f cross in a solution and add constraints that ensure that every edge is
contained in at most one crossing. We then repeat the following steps.
1. If the model is infeasible, reject G as not 1-planar.
2. Otherwise, consider an arbitrary solution of the model and let G′ denote the graph

obtained by replacing each edge pair that is crossed in the solution with a crossing vertex.
a. If G′ is planar, then report G as 1-planar.
b. Otherwise, consider a Kuratowski-subdivision K of G′. Add a constraint to the model

that prohibits K, i.e., ensure that (1) an edge pair is crossed such that K is removed
or (2) a crossed edge pair whose crossing vertex is contained in K is “uncrossed”. Then
continue with Step 1.

Note that our strategies and filters from the preceding sections cannot easily be applied to
the ILP-formulation.

6.2 Test Data
To make our results comparable to the results by Binucci et al. [5], we also work with
the North and Rome graphs [34], two well-established test sets of graphs that stem from
real-world applications. Since planar graphs are trivially 1-planar, we restrict ourselves to
the non-planar instances. We let NR denote the test set consisting of all non-planar North
and Rome graphs.

Since a graph is 1-planar if and only if each of its biconnected components is 1-planar,
we believe that benchmarks including the input size are more representative if one considers
each biconnected component individually. Therefore, we further decompose the graphs
from NR into their non-planar biconnected components for most of our tests. For our initial
evaluation of the different configurations of our backtracking procedure, we use a smaller
data set Bicomps-NR-Small that consists of 100 randomly chosen non-planar biconnected
components from the North graphs and 100 randomly chosen non-planar biconnected com-
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Figure 5 The number of solved instances over time on the 200 graphs of Bicomps-NR-Small
for each branching strategy from Section 4.1. The suffix -x for KuratowskiMulti and
KuratowskiFrequency denotes the number of extracted Kuratowski subdivisions.

ponents from the Rome graphs. Figure 4 shows the distribution of the instances in this data
set. To eventually evaluate the best configuration, we also use the data sets Bicomps-N
and Bicomps-R containing all non-planar biconnected components from the North and Rome
graphs, respectively.

6.3 Experimental Setup
Our implementation is written in C++ and uses the Open Graph Drawing Framework
(OGDF) [10] for graph representation and algorithms. The code was compiled using GCC
version 12.2.0 and optimization -O3. Each experiment was run on a single core of an Intel
Xeon E5-2690v2 CPU (3.0 GHz) with a memory limit of 10 GiB and running Linux Kernel
version 6.1.0-37. We use Gurobi version 12.0.2 as a solver for our reference ILP.

6.4 Evaluation of Backtracking Strategies
In this section, we run preliminary experiments on the data set Bicomps-NR-Small with a
time limit of ten minutes to determine the best configuration for our backtracking procedure.
Each configuration includes kite edges and the basic filters for edge density and non-planarity
of the saturated subgraph, as these optimizations are cheap in terms of running time.

Branching Strategies. We first evaluate the different strategies proposed in Section 4.1 for
choosing the crossing candidates to branch on in every node of the search tree with a DFS
as traversal strategy and only the basic filters; see Figure 5 for the results. Unsurprisingly,
the two binary branching strategies, which do not consider the structure of the graph in
any way (Sequential and Random) perform the worst. In comparison, the binary branching
strategy KuratowskiFrequency, which prioritizes edge pairs that appear in many Kuratowski
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Figure 6 The number of solved instances over time on the 200 graphs of Bicomps-NR-Small for
different combinations of filters from Section 5.

subdivisions, solves roughly 50% more instances than Sequential. Unlike Sequential and
Random, KuratowskiFrequency only considers edge pairs that belong to a Kuratowski
subdivision, which also improves its performance for no-instances; see Figure 5. Considering
more than 100 Kuratowski subdivisions does not make a notable difference for this strategy.

The two exhaustive set branching strategies (KuratowskiSingle and KuratowskiMulti)
clearly outperform the binary branching strategies. This is due to the fact that the search space
significantly shrinks, as the branch where no edge pair of the chosen Kuratowski subdivision
is crossed can be omitted. Interestingly, the ILP formulation also performs significantly better
than the binary branching strategies and is on par with KuratowskiSingle. It performs
better than KuratowskiSingle on yes-instances, but is only able to recognize no-instances
that are trivially non-1-planar. The clear overall winner is the strategy KuratowskiMulti,
where we consider multiple Kuratowski subdivisions and branch over the one with the lowest
number of free edge pairs, prioritizing edge pairs that occur in many Kuratowski subdivisions.
While KuratowskiMulti clearly benefits from extracting 1000 Kuratowski subdivions instead
of 100, increasing this number to 10000 makes no notable difference. This could be at
least partly due to the fact that the graphs that have such a high number of Kuratowski
subdivisions are too large to be solved within the ten minute timelimit. However, since
extracting more Kuratowski subdivisions comes at a higher cost of running time, we choose
KuratowskiMulti-1K as the winning branching strategy for the subsequent experiments.

Filter Criteria. Next, we consider the filter criteria introduced in Section 5. As a baseline,
we use the winning branching strategy KuratowskiMulti-1K from above. Figure 6 illustrates
the solved instances over time for different (combinations of) filters. Moreover, Table 1 shows
the number of solved instances and the corresponding success rate of each filter, i.e., the
number of nodes in the search tree that were rejected by the filter divided by the total
number of its invocations. The simplest partial planarity filter (PP1) alone rejects almost
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Table 1 The number of solved instances and filter success rates for different combinations of
the filters in Section 5 on the data set Bicomps-NR-Small. The left-to-right order of the columns
indicates the order in which the filters are invoked in the implementation. Note that the ratio greater
than 1 for PP4C100 stems from the pruning of ancestors; see Section 5.

Filter Combination Solved Filter Success Rate

PP1 PP2 PP3 PP4 SC
Baseline 114 - - - - -
PP1 120 0.58 - - - -
PP1+PP2 123 0.37 0.38 - - -
PP1+PP2+PP3 123 0.27 0.35 0.51 - -
PP1+PP2+PP3+PP4 103 0.2 0.27 0.41 0.26 -
PP1+PP2+PP3+PP4C100 121 0.26 0.33 0.48 1.29 -
SC 140 - - - - 0.9
PP1+SC 140 0.08 - - - 0.89
PP1+PP2+SC 140 0.08 0.14 - - 0.87
PP1+PP2+PP3+SC 140 0.08 0.14 0.2 - 0.84

60% of all nodes in the search tree it is invoked on and this already increases the number of
solved instances by roughly 5% compared to the baseline. Additionally enabling PP2 and
PP3 only slightly improves the number of solved instances. Unsurprisingly, due to the O(n6)
running time of PP4, also enabling this filter is detrimental for the algorithm due to its high
execution time. Running the filter only 1% of the time (PP1+PP2+PP3+PP4C100 in Table 1)
raises the overall success rate of the filter over 100%, since we retrospectively test ancestors
of nodes where the filter was successful and prune the search tree accordingly (see Section 5).
However, it is overall still better to not enable this filter. Instead, using the filter SC yields a
significant improvement and allows the backtracking procedure to solve roughly 23% more
instances than the baseline overall, independent from what other filters are enabled.

In order to evaluate the filter combinations in more detail, we additionally use performance
profiles [18]. For a set of algorithms and a specific performance metric (such as computing
time), a corresponding performance profile shows for each algorithm A for what percentage of
instances the performance of A lies within a certain distance of the best performance among
all algorithms. In Figure 7, we first consider the computing time as the performance metric.
Clearly, the combinations including the filter SC significantly outperform all combinations
where SC is disabled. In fact, the algorithm has the best performance if only the filter SC is
enabled: it is the fastest combination for over 50% of the solved instances and its running
time differs at most by a factor of 1.5 from the fastest combination for around 90% of the
instances that are solved by any of the algorithms. This indicates that SC dominates the
other filters, i.e., it most likely rejects many configurations in the search tree earlier than the
other filters would. This theory is supported by the fact that the success rate of the other
filters shrinks significantly if combined with SC, despite the fact that SC is invoked last; see
Table 1. Overall, SC alone rejects around 90% of all search tree nodes it is invoked on.

Altogether, this suggests that enabling only the filter SC is the winning configuration.
However, it should be noted that this evaluation is potentially unfair towards the more costly
filters such as PP4. Our implementation has a rather high time complexity of O(n6), which
likely prohibits the algorithm from exploring a significant number of nodes of the search tree
within the time limit. Since, theoretically, the filter PP4 could be implemented with linear
running time [30], it would be premature to reject PP4.
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Figure 7 The performance profiles [18] for different filter combinations with the computing time
as the performance metric. For each filter combination A, the plot shows the percentage of instances
where the computing time of A is at most by a factor of τ slower than the fastest time among all
combinations.
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Figure 8 The performance profiles [18] for different filter combinations with the number of pro-
cessed nodes (instead of the running time) as the performance metric. For each filter combination A,
the plot shows the percentage of instances where the number of processed nodes of A is at most by
a factor of τ larger than the lowest number of processed nodes among all combinations. Instead of a
time limit, the algorithms were given a limit of 5000 nodes in the search tree that can be processed
for each instance.
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Figure 9 The performance of different thread counts for branching strategy KuratowskiMulti-1K
with filter SC on the data set Bicomps-NR-Small. The plot shows the absolute difference in the
number of solved instances over time to the baseline using only a single thread.

To better assess the potential of the filters, independent of their associated costs in
terms of the running time of our implementation, we additionally consider performance
profiles in Figure 8, where we consider as the performance metric the number of processed
nodes instead of the running time. Instead of a time limit, the implementations are given
a limit of 5000 nodes in the search tree that can be processed. It is not surprising that, if
running time is disregarded, it is always better to use as many filters as possible. However,
Figure 8 clearly shows that, even in this case, PP4 only offers a marginal improvement over
the simpler variants PP1-PP3 and SC alone performs significantly better than all other filters.
This indicates that even a linear-time implementation of PP4 would most likely not yield a
meaningful improvement of the backtracking procedure. Moreover, Figure 8 shows that the
configuration using only the filter SC processes at most 15% more nodes in the search tree
than the other combinations. We thus exclusively use SC in our winning configuration.

Traversal Strategies. Finally, we investigate the effect of threads (see Section 4.2) on the
backtracking algorithm. Using a single thread (which corresponds to a DFS in the search
tree) leads to 140 of the 200 instances solved. As shown in Figure 9, using 10 or 100 threads
improves the performance of the algorithm, for an additional 16 instances solved for 100
threads. However, increasing the number of threads to 1000 worsens the performance. This
is because using more threads also increases the memory usage, which causes the algorithm
to exceed the 10 GiB memory limit and to consequently abort on some instances. As
expected, the number of threads makes no difference for no-instances, as threads do not
shrink the search space. However, using more than one thread is often helpful for identifying
yes-instances early.

6.5 Evaluation of the Best Configuration
Our experiments in the previous section indicate that the configuration using the branching
strategy KuratowskiMulti-1K with filter SC and 100 threads performs the best.

Running this algorithm on all non-planar biconnected components of the North and Rome
graphs with a time limit of 15 minutes shows a clear dependency between the running time
and the size of the graph. While almost all instances up to 30 vertices are solved, this rate
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Table 2 The results for the data sets Bicomps-N and Bicomps-R, consisting of the non-planar
biconnected components of the North and Rome graphs, respectively, with a time limit of 15 minutes.
Note that the medians for the number of processed nodes and the running time only take solved
instances into account. The last two columns show the proportion of the total instances that were
labeled as 1-planar and not 1-planar, respectively.

Group # Group Median Solved 1-Planar %

Density Proc. Nodes Time (s) # % Yes No
Bicomps-R 1-10 9 1.57 2 0.0 9 100.0 100.0 0.0
Bicomps-R 11-20 250 1.47 3 0.0 250 100.0 100.0 0.0
Bicomps-R 21-30 1296 1.39 93 0.02 1295 99.9 99.8 0.1
Bicomps-R 31-40 1843 1.43 9404 4.57 1753 95.1 95.1 0.1
Bicomps-R 41-50 1358 1.44 23904 21.35 908 66.9 66.9 0.0
Bicomps-R 51-60 1227 1.44 43785 60.26 401 32.7 32.7 0.0
Bicomps-R 61-70 1126 1.45 46543 80.68 79 7.0 7.0 0.0
Bicomps-R 71-80 929 1.47 48832 116.08 16 1.7 1.7 0.0
Bicomps-R 81-90 214 1.45 44744 145.36 3 1.4 1.4 0.0
Bicomps-R 91-100 1 1.42 – – 0 0.0 0.0 0.0
Bicomps-R 8253 1.44 7882 3.58 4714 57.1 57.1 0.0
Bicomps-N 1-10 56 2.05 5 0.0 56 100.0 92.9 7.1
Bicomps-N 11-20 124 2.0 52 0.01 124 100.0 60.5 39.5
Bicomps-N 21-30 94 1.9 607 0.26 93 98.9 48.9 50.0
Bicomps-N 31-40 52 1.81 192 0.25 41 78.8 50.0 28.8
Bicomps-N 41-50 30 1.48 1257 3.61 28 93.3 73.3 20.0
Bicomps-N 51-60 44 1.92 440 2.13 19 43.2 11.4 31.8
Bicomps-N 61-70 21 1.92 5216 9.5 2 9.5 4.8 4.8
Bicomps-N 71-80 2 1.58 5690 19.4 2 100.0 100.0 0.0
Bicomps-N 81-90 4 1.67 4088 12.29 2 50.0 50.0 0.0
Bicomps-N 91-100 2 1.52 47117 374.87 2 100.0 100.0 0.0
Bicomps-N 429 1.9 97 0.03 369 86.0 54.3 31.7

drops to around 60% for graphs of size 50. Overall, our algorithm solves 57% of all non-planar
biconnected components of Rome graphs and 86% of those from the North graphs. Table 2
gives a detailed overview.

To compare our algorithm with the algorithm 1PlanarTester of Binucci et al. [5], we also
followed their experimental setup and ran our algorithm on all non-planar North and Rome
graphs using the same time limit of three hours. Table 3 shows the details of the outcome.
We note that, compared to the previous experiment, the correlation between running time
and instance size is less pronounced as some instances may decompose into multiple smaller
biconnected components that can be processed independently. Our implementation is able to
solve all instances with up to 30 vertices within the time limit, with the median computing
time being less than a second. While our algorithm still solves more than 95% of all instances
with up to 50 vertices, this ratio notably decreases for larger graphs, especially for the Rome
graphs. Here, we still solve around 60% of the instances with 61 to 70 vertices, but only 7%
of the instances with 91 to 100 vertices. Overall, our implementation solves 61% of the 8523
non-planar Rome graphs. In contrast, we solve almost 90% of all non-planar North graphs
– our algorithm even manages most of the instances with 71 to 100 vertices. The data in
Table 3 shows that our algorithm significantly outperforms 1PlanarTester on this dataset.
For example, while 1PlanarTester solves around 56% of all non-planar North graphs with
up to 40 vertices, we solve around 99% of them. In fact, each instance of the data set that
1PlanarTester solves within the three hour timelimit is solved in less than a second by our
algorithm.
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Table 3 Our results on the non-planar instances from the graph benchmark sets North and
Rome with a time limit of three hours. Note that the medians for the number of processed nodes
and the running time only take solved instances into account. For each group, the multicolumn
“Solved” shows the number of instances we solved (“#”), the corresponding percentage of solved
instances (“%”), and the percentage of instances the 1PlanarTester by Binucci et al. [5] solved in the
corresponding group within the same time limit (“% [5]”). For the latter, percentages in parantheses
indicate that Binucci et al. [5] only evaluated a subset of the instances in the corresponding group.
The last two columns show the proportion of the total instances that were labeled as 1-planar and
not 1-planar, respectively.

Group # Group Median Solved 1-Planar %

Density Proc. Nodes Time (s) # % % [5] Yes No
Rome 10-20 91 1.5 6 0.0 91 100.0 91.2 100.0 0.0
Rome 21-30 164 1.36 14 0.0 164 100.0 69.5 100.0 0.0
Rome 31-40 1346 1.31 289 0.08 1342 99.7 (43.8) 99.2 0.5
Rome 41-50 1349 1.33 7730 3.59 1296 96.1 (37.8) 95.2 0.9
Rome 51-60 1054 1.33 17318 12.63 865 82.1 – 82.0 0.1
Rome 61-70 1102 1.34 28692 28.68 685 62.2 – 62.1 0.1
Rome 71-80 1023 1.33 47226 68.39 378 37.0 – 37.0 0.0
Rome 81-90 744 1.35 57530 90.5 125 16.8 – 16.8 0.0
Rome 91-100 1376 1.35 47334 82.41 97 7.0 – 7.0 0.0
Rome 101-110 4 1.28 – – 0 0.0 – 0.0 0.0
Rome 8253 1.33 9279 4.58 5043 61.1 – 60.9 0.3
North 10-20 121 1.8 24 0.0 121 100.0 73.6 72.7 27.3
North 21-30 69 1.67 323 0.18 69 100.0 39.1 60.9 39.1
North 31-40 55 1.65 713 0.22 52 94.5 38.2 49.1 45.5
North 41-50 52 1.45 1058 0.64 51 98.1 (18.8) 65.4 32.7
North 51-60 48 1.89 2484 3.0 25 52.1 – 20.8 31.2
North 61-70 33 1.9 411 0.35 17 51.5 – 18.2 33.3
North 71-80 14 1.3 41 0.02 11 78.6 – 71.4 7.1
North 81-90 18 1.62 142 0.11 17 94.4 – 44.4 50.0
North 91-100 13 1.56 11557 14.15 10 76.9 – 38.5 38.5
North 423 1.73 142 0.03 373 88.2 – 54.4 33.8

7 Conclusion

We proposed a new backtracking framework for exact 1-planarity testing and investigated
the impact of different branching strategies, filter criteria, and traversal strategies on its
effectiveness. Our experiments show that some of our optimizations massively decrease the
search space for such algorithms and thus greatly enhance their performance. In particular,
using Kuratowski subdivisions to guide the search more than doubles the number of solved
instances compared to the baseline that uses binary branching and our best filter, SC, rejects
around 90% of the nodes in the search tree it is invoked on; it thus offers a significant,
exponential decrease of the search space. Our best configuration combines this with threads
that allow to search multiple parts of the search tree in parallel and altogether yields a
practical 1-planarity testing and embedding algorithm that significantly outperforms its
competitor 1PlanarTester [5] and solves most instances from our test set with up to 50
vertices within seconds.
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