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—— Abstract

Metaphorical maps or contact representations are visual representations of vertex-weighted graphs
that rely on the geographic map metaphor. The vertices are represented by countries, the weights by
the areas of the countries, and the edges by contacts/boundaries among them. The accuracy with
which the weights are mapped to areas and the simplicity of the polygons representing the countries
are the two classical optimization goals for metaphorical maps. Mchedlidze & Schnorr [17] presented
a force-based algorithm that creates metaphorical maps that balance between these two optimization
goals. Their maps look visually simple, but the accuracy of the maps is far from optimal — the
countries’ areas can vary up to 30% compared to required. In this paper, we provide a multi-fold
extension of the algorithm in [17]. More specifically:
1. Towards improving accuracy: We introduce the notion of region stiffness and suggest a technique
for varying the stiffness based on the current pressure of map regions.
2. Towards maintaining simplicity: We introduce a weight coefficient to the pressure force exerted
on each polygon point based on whether the corresponding point appears along a narrow passage.
3. Towards generality: We cover, in contrast to [17], non-triangulated graphs. This is done by
either generating points where more than three regions meet or by introducing holes in the
metaphorical map.
We perform an extended experimental evaluation that, among other results, reveals that our algorithm
is able to construct metaphorical maps with nearly perfect area accuracy with a little sacrifice in
their simplicity.
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1 Introduction

Metaphorical maps or map-like graph visualization is an alternative way to the popular
node-link diagrams [23] and matrix representations [27] for representing graphs. In these
visualizations vertices are represented by polygonal regions and edges by contacts among
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Figure 1 An internally triangulated plane graph with vertex weights and its corresponding
metaphorical map.

them; see Fig. 1. Metaphorical maps have their individual advantage: they rely on the human
familiarity with geographic maps and therefore instantly spark curiosity in the viewers by
looking fairly familiar. It has been experimentally confirmed that map-like visualizations of
graphs are more enjoyable than node-link diagrams [20]. They also outperform treemaps in
the tasks that require recognition of hierarchy [6]. Another important advantage of these
visualizations is that they can naturally display the weights associated with the graph’s
vertices, by the mean of resizing the map’s regions. Such visualizations are also known
as area-proportional contact representations [1] and are closely related to cartograms [25,
18], visualizations created by deforming geographic maps with a goal to represent values
of a variable (e.g. population, number of votes) by the sizes of the deformed countries.
Hogréfer, Heitzler, and Schulz [13] presented a unifying framework, showing that map-like
representations of graphs and cartograms lie on two opposite sides of a single spectrum of
map-like visual representations.

Map-like visual representations have been studied for more than 50 years [25] and a few
excellent surveys have been devoted to this topic [13, 18, 25]. Generally, the construction of
map-like representations is guided by the following criteria. Statistical accuracy refers to how
well the modified areas represent the corresponding statistic shown; with the cartographic error
measuring by how much the actual area of a region is away from the desired. Geographical
accuracy refers to how much the modified shapes and locations of the regions resemble those
in the original map. Preserving geographical accuracy is a goal in many algorithms generating
cartograms. However, for metaphorical maps, the geographical accuracy is not relevant as
there is no given geography to preserve. Finally, topological accuracy refers to how well the
topology of the cartogram matches the topology of the original map. In case of map-like
representations of planar graphs topological accuracy must be fully preserved — all edges of
the given planar graph must be represented as regions’ contacts and each region contact
must correspond to an edge.

A criterion that is less explicitly mentioned in the map-like representation literature is
the complexity of the outlines of map’s regions. In general, keeping the region outlines simple
is desired, since one of the tasks the users of these visualizations face, is the comparison of
the region areas. The user performance in this task differs even when circles are compared
to rectangles [10]. Motivated by this, a few works concentrated on generating map-like
representations with simple regions. For instance, the Dorling cartogams [12] use circles as
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regions, and Demers cartograms [7] use square regions. Also, mosaic cartograms [9] tend to
have simpler looking outlines of regions, since they are constituted by segments having a
limited amount of slopes. Contrary to that, the approaches where no care is taken of the
complexity of the regions, tend to produce regions with very complex outlines, refer to [18].

In theory research, the complexity of regions was formalized as the maximum number
of sides per region. A series of works was devoted to reducing this metric for rectilinear
area-proportional contact representation from the initial 40 [11] to the final 8 [2]. Other
relevant series of work on area-universal planar drawings, starts with a planar drawing and an
assignment of weights to its faces. The requirement is to modify the drawing, by preserving its
planar embedding and realize the desired face areas. Thomassen [24] showed that every plane
cubic graph is area-universal (perfect cartographic accuracy is achievable) and additionally
in the resulting map the faces are bounded by triangles. Kleist [16] showed that 1-subdivision
of any plane graph is area-universal. However, all the theoretical approaches that guarantee
a few sides per region and perfect cartographic accuracy [2, 16, 24] are not guaranteed from
having very narrow pointed areas in the regions and therefore the diagrams do not really
look simple; refer for instance to Fig. 12.(b,f) .

Motivated by this challenge, Mchedlidze and Schnorr [17] used a more sophisticated com-
plexity measure introduced in [8] to evaluate the quality of the polygons in their metaphorical
maps, that is able to capture the intuitive perception of a polygon’s complexity. They
presented a force-based algorithm that creates metaphorical maps that balance between the
two optimization goals: cartographic error and polygon complexity. Their maps look visually
simple, but the cartographic error can be up to 30%.

Our contribution. The known techniques either build complex metaphorical maps with
perfect cartographic accuracy [2, 16, 24] or simple-looking metaphorical maps with carto-
graphic error up to 30% [17]. In this work, we address this gap and aim towards producing
simple metaphorical maps with near zero cartographical error.
We present a multi-fold extension of the algorithm in [17]. More specifically:
Towards improving accuracy: We introduce the notion of region stiffness and suggest
a technique for varying the stiffness based on the current pressure of map regions.
Towards maintaining simplicity: We introduce a weight coefficient to the pressure
force exerted on each polygon point based on whether the corresponding point appears
along a narrow passage.
Towards generality: We cover, in contrast to [17], non-triangulated graphs. This is
done by either generating points where more than three regions meet or by introducing
holes in the metaphorical map.

We perform an extended experimental evaluation which aims to:
Compare our algorithm to the algorithm of Mchedlidze and Schnorr [17] with respect
to cartographic accuracy and complexity.
Examine the cartographic accuracy vs the regions’ complexity trade-off.
Evaluate the extension to non-triangulated graphs.

Evaluate the influence of the initial layouts on the quality of the maps, by comparing
the initial layout as suggested in [17] to the cartographically accurate initial layout
given by the theoretical approach in [3].

Our experiments among other facts indicate that the suggested algorithm achieves almost

perfect cartographic accuracy with only a small increase in polygon complexity compared
to [17].
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Paper organization. In Section 2, we present our notation, the quality metrics employed in
evaluating cartographic maps as well as the basic ingredients of the algorithm of Mchedlidze
and Schnorr [17]. In Section 3, we present our algorithm which (a) introduces the notion of
region stiffness, (b) applies corrective weight coefficients on pressure forces, and (c) handles
non-triangulated plane graphs. Our experimental evaluation is presented in Section 4. Finally,
we conclude in Section 5 with directions for future work.

A demo application for generating metaphorical maps has been implemented in JavaScript
using yFiles [28] and is available as a web application at http://aarg.math.ntua.gr/demos/
metaphoric_maps/. All experiments were executed using a Java implementation. To allow
replicability, we make the implementation and the whole graph benchmark publicly available
at https://github.com/ekatsanou/metaphorical-maps.

2 Preliminaries

In this section, we introduce the notation used throughout the paper and we present the
quality metrics of cartographic accuracy and polygon complexity that are employed in our
experimental evaluation. Given that the algorithm presented in this paper is an extension of
the algorithm of Mchedlidze and Schnorr [17] (shortly MS-algorithm), we also present its
brief description.

Let G = (V, E,w) be a vertex-weighted graph where w : V' — R™T is its weight function.
In a metaphorical map M = pu(G) of G, vertex v € V is depicted as polygonal region (country)
w(v) so that adjacent vertices share a non-trivial contact (boundary). Our optimization goal
is to build metaphorical maps such that the area of the region p(v), denoted by A(u(v)), is
roughly equal to w(v).

In a metaphorical map M(G), we refer to the points that define its polygonal regions also
as vertices. Given two vertices u, v of the metaphorical map, we denote by uv the vector
from u to v.

2.1 Quality measures for Metaphorical Maps

As mentioned in the introduction, we measure the quality of a metaphorical map by its
cartographic accuracy — for this, similarly to the previous work, e.g. [2, 4, 17], we employ the
metric normalized cartographic error. The simplicity of the map is measured by the metric
polygon complezity, introduced in [8] and applied for the evaluation of metaphorical maps
in [17].

Normalized cartographic error. Consider a vertex v € V of a vertex-weighted graph
G = (V,E,w) and its corresponding region p(v) in its metaphorical map p(G). The
normalized area of region pu(v), denoted by A’(u(v)), is defined as:

> w(w)
A (u(v)) = A(u(v)) - %

ueV

Then, the normalized cartographic error E,. of region u(v) is defined as:

| A'(p(v) = w(v)

B |
Ene(p(v)) = max{ A’ (1(v)), w(v)}
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Polygon Complexity. Brinkhoff, Kriegel, Schneider, and Braun [8] defined the complexity
of a polygon P as a function of three quantities (see also [15] for details), that can be
intuitively understood based on an example of a star-shape: (a) the frequency of P’s
vibration, denoted by freq(P), which specifies how many tips a star-shape has, (b) the
amplitude of P’s vibration, denoted by ampl(P), which specifies how long the tips of a
star-shape are and (c) P’s convezity, denoted by conv(P), the fraction of the area that is
not covered within the smallest enclosing circle. The polygon complexity is then defined as
compl(P) = 0.8 - ampl(P) - freq(P) + 0.2 - conv(P), which maps P to values in [0, 1], with
low values meaning low complexity.

In our experiments, we quantify the quality of a map by both the average and the
maximum value of normalized cartographic error and polygon complexity over the regions of
the map.

2.2 The MS-algorithm

The MS-algorithm [17] is a typical force-directed algorithm that employs several antagonistic
forces applied to the vertices of the metaphorical map, that, hopefully, at equilibrium
produce a layout with good characteristics, i.e., low normalized cartographic error and low
polygon complexity. The algorithm employs three forces (vertex-vertex repulsion, vertex-
edge repulsion, and angular-resolution) targeted towards producing metaphorical maps of
low polygon complexity and one force (air-pressure) which works towards reducing the
cartographic error of the metaphorical map. Here, we only describe the air-pressure force,
since our proposed algorithm modifies how this force is applied. The exact definition of the
other forces can be found in [15] and in [17].

The normalized air pressure in region g, P(g), exerts a force on each bounding edge e
based on the pressure’s magnitude and the edge’s length £(e) in relation to the length of the
entire polygonal region boundary circ(g); see [15]for a formal definition of P(g). Thus, the
air-pressure force on edge e of region g was defined as F(e, g) = 3P(g) Cﬁ&e&])
unit vector perpendicular to e directed towards outside of g. Force F(e, g) was applied to
both endpoints of edge e.

The force-directed algorithm is run for iter number of steps, the value of this parameter

T, where T is a

is determined experimentally. Notice that the resultant of the forces applied to a vertex of
the map, may force it to cross over an edge, and thus, the displacement of each vertex must
be limited to prevent this from happening. To achieve that, the MS-algorithm adopted the
rules of ImPrEd [22] that ensure the preservation of the planar embedding of the map. It
should be also noted that the constant factors employed in each of the described forces have
been determined experimentally.

A final note regarding the number of vertices defining each polygonal region. This
number fluctuates during the execution of the algorithm in order to allow each region to
obtain a more elaborate (or simpler) shape. Let ¢ denote the average edge length over
all edges in the metaphorical map. Provided that no edge crossings are introduced, the
MS-algorithm eliminates vertices of degree 2 that become closer than %E to their neighbor
and it splits in half the edges that get longer than 2¢.

Each force-directed algorithm requires for its execution an initial layout. Given a plane
vertex-weighted graph G, the MS-algorithm constructs an initial metaphorical map by
considering the dual of a planar drawing of G. The algorithm is designed for internally
triangulated graphs. The dual vertices of the inner faces are placed in the barycenters of the
triangles representing those faces. The dual edges are drawn as polylines consisting of two
segments meeting at a bend-point, which lies in the middle of the corresponding primal edge.
Details can be found in [17] and in [15].
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3  Our Metaphorical Map Generation Algorithm

In this section, we describe our extension of the MS-algorithm. More specifically, we describe
how to revise the air-pressure force utilized in the MS-algorithm by (a) incorporating a
stiffness coefficient and (b) by applying a corrective weight coefficient that aims to eliminate
narrow passages in the metaphorical map. The constants involved in the calculations of our
algorithm are determined experimentally. Finally, we show how the algorithm is adapted in
order to accommodate non-triangulated graphs.

The Stiffness of each Map Region. After examining the output of the MS-algorithm, we
observed that some regions had noticeably higher cartographic error than others, leading to
the conclusion that some attributes of a region made it less responding to air pressure and,
thus, resulted in high cartographic errors. Therefore, for every region we introduce a variable,
which we refer to it as stiffness coefficient, that accounts for its stiffness. Let g be an internal
region and let P;(g) be its pressure at the i-th iteration of the force-directed algorithm. If
at iteration 7 region g is over-pressured (i.e., P;(g) > 1) we increase the region’s stiffness
coefficient by a small amount step; if it is under-pressured (i.e., P;(g) < 1) we decrease it

by step, otherwise, it remains unchanged. In addition, we restrict the stiffness coefficient
1

in the range [Sjow, Shigh] Where spign, > 1 and sjo, = -

An appropriate value for sp;g, is
determined experimentally.
Given a region g, we define the stiffness coefficient of g at the i-th iteration of the

algorithm, denoted by s;(g), as:

80(9) 1
$i(9) = min(Spigh, Mmax(Siow, si—1(g) + o - step)), 1>0

-1, Pi(g) <1
where a =<0, P_i(g9)=1
1, Pifl(g) >1
Then, the revised air-pressure force of region g on its boundary edge e during the i-th
iteration of the algorithm, ¢ > 1, denoted by Fi(e, g) is defined as

Fi(e,9) = si(g9) - Fi(e, 9) (2)

where Fj(e, g) is the air-pressure force computed at the i-th iteration of the MS-algorithm.
Note that the “stiffness” attribute is different for each region and demonstrates an adaptive
behaviour over time. Employing such adaptive coefficients in force/energy-directed drawing
algorithms appears to be uncommon, mainly due to performance issues. However, we note
that a similar scheme has been employed in the work of Hu [14] (referred to as adaptive
cooling scheme).

We performed a few experiments (see [15] for details) with 20-node graphs in order to
determine the parameters of the algorithm, that resulted in the following values: step = 0.02,
iter = 1.000 and sp;q, = 8. To also account for the size of the input graph, assuming that
larger graphs take a longer time to converge to a good metaphorical map, we decided to
set the number of iterations to iter = 800 + 10n, the value consistent with iter = 1.000 for
n = 20.

Improving the Visual Complexity. When we applied the stiffness coefficients to the regions,
we observed that they tended to create long, narrow passages, thereby reducing the visual
complexity of the metaphorical map. To mitigate this effect, we introduce a new corrective
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weight coeflicient for the pressure forces exerted on each region’s vertices, while keeping the
total pressure of the region constant. These weight coefficients redistribute pressure so that
vertices in narrow passages receive a larger share of the force, whereas vertices in wider parts
of the region receive less. Before defining the weight coefficient, we introduce some auxiliary
notation:

Let M be a metaphorical map, and let p(M) = ( > A(g)) /7 denote the radius of a
geEM

circle whose area equals the total area of M. We refer to p(M) as the ideal radius of M.
Let g be a region of M, let u be one of its vertices and let e be an edge of g that is not
adjacent to u. Further, let x be the point of e that is closest to u. The Euclidean distance
of u to e, denoted by dg(u,e), is simply the Euclidean distance from u to point . We
also define the polygonal distance of vertex u to edge e, denoted by dp(u,e), as the length
of the shortest path when moving from u to z on the boundary of g.

Intuitively, an edge e is sufficiently “opposite” to a vertex u if it is close to it and, at the
same time, it belongs to the opposite side of a narrow passage. For each vertex u of region g,
we want to identify the edge e of g that is the closest out of those opposite to it. In order to
avoid selecting edges that are collinear with u, we consider only edges for which it holds that
dp(u,e) < 0.9dp(u, e) and, out of those, we select the edge e of smallest Euclidean distance
to u. We refer to this edge e as the pairing edge of u and we denote it by pair(u). Further,
we denote the Euclidean distance from u to pair(u) by d(u, g).

Consider the metaphorical map M. We introduce a scale factor based on the ideal radius
p(M). We regard 0.05p(M) as the minimum “acceptable” passage width and, hence, we
define the quantity 0(u,g) = %
close to its pairing edge pair(u).

We now define the corrective coefficient 3(u, g) that will be applied to the air-pressure
forces at each vertex u of region g of the metaphorical map as:

which assumes values greater than 1 when u is very

Bu,g) =1 +Sign(5(u,g) — 1) ln(l + |5(u,g) - 1|)

Hence:

If §(u, g) = 1, i.e., u marginally does not participate in a narrow passage, then 8(u, g) = 1.

If 5(u,g) > 1, then S(u,g) = 1 + In(d(u, g)), which grows logarithmically once d(u, g)
exceeds 1.

If 0 < 6(u,g) <1, then B(u,g) =1 —In(2 — 6(u, g)), which remains below 1 but varies
smoothly as §(u, g) decreases.

Let u; and w;1+1 be the endpoints of edge e; of region g and let T be a unit vector
perpendicular to e; directed towards the exterior of g. Recall that, the air-pressure force
on e; is defined as F(e;,g9) = 3P(g)s(g) Cfr(f("g))?, where s(g) is the stiffness coefficient in the
current iteration. Since the air-pressure force is exerted on both endpoints of e;, the total
air-pressure force on e; is 2 x 3P(g)s(g) Cfr(ce(iz)? and the total air-pressure force of region g is
2 x3P(g)s(g).

The new air-pressure force, employing the above introduced corrective coefficient 3(-, g),

on edge e; = (u;,u;q1) is now defined as F(e;, g) =

28(us, g)l(e;) 26 (ui+1,9)¢(ei) +
> ej)(Bluy, 9) + Bluj+1, 9)) >0 Ues)(Bug, 9) + Bujtr,9))

Force applied on u; Force applied exerted on w;41

3P(g)s(g) T+3P(g)s(9)
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Therefore, the total air-pressure force applied to region g equals to ). F(e;, g). So, we have
that:

N 6P(9)s(9) w. Ve, " o
Zi:F(e“g) o), Ue)(B(uy, 9) + Bluji, 9)) Z(ﬁ( 0 9)es) + Bluctr, 9)es))

=2 x 3P(g)s(g), and thus, the total air-pressure force on region g remains unchanged.

i

3.1 Dealing with non-Triangulated Graphs

In this section, we discuss how to create metaphorical maps for biconnected, non-triangulated
plane graphs. Mchedlidze and Shnorr [17] focused on the case of internally triangulated
graphs. However, their algorithm was, in principle, able to also deal with non-triangulated
graphs provided that, in the initial layout of the given graph, the barycenter visibility property
is satisfied, that is, the barycenter of each non-triangulated face is located within that face
and all vertices of the face are visible from the barycenter, that is, the open segment that
connects the barycenter and any vertex of the face does not cross the boundary of the face.

We proceed to establish the barycenter visibility property as follows. We internally
triangulate the graph by creating a new auziliary vertex for each non-triangulated inner
face and connecting it to every vertex of the face. The use of auxiliary vertices for mesh
generation, often called Steiner points, is a common technique to transform general grids
into high-quality triangulations (see [5, 19]). Let G’ = (V U Vaus, E'U Eqys) be the resulting
internally triangulated graph where V,,, and E,,, are the sets of auxiliary vertices and
the extra edges used in the triangulation, respectively. We apply on G’ Tutte’s barycentric
embedding algorithm [26] that fixes the outerface on a circle and places every inner vertex
on the barycenter of its neighbors, resulting in a planar straight line layout 'y, (G’); refer
to Fig. 2.(a-b) We finish by removing the auxiliary vertices and their adjacent edges from
Tpar (G'); refer to Fig. 2.(c). It is trivial to see that the derived layout satisfies the barycenter
visibility property. Indeed, the auxiliary vertex of each non-triangulated face f is placed
at the barycenter of its neighbors, that is, the vertices of f. Therefore, in the constructed
planar drawing, face f has its barycenter lying inside it. Moreover, the fact that the auxiliary
edges inside f do not cross the boundary of f, ensures the visibility between the barycenter
of f and all of f’s vertices.

After ensuring that the barycenter of every inner face lies within its boundary, we are in
a position to obtain an initial metaphorical map by using the transformation deployed in the
MS-algorithm; refer to Section 2.2 and Fig. 2.(d). Note that this transformation leads to
points in the metaphorical maps where more than three regions meet. Recall that in our
definition of the metaphorical map, only the non-degenerate contacts represent adjacencies,
therefore the maps constructed this way still represent exactly the adjacencies present in the
given graph.

Metaphorical maps with holes. By visually inspecting the maps created with the above
method, we noticed that the large faces (in the initial graph) which result in multiple
point contacts (in the map) appear to be quite cluttered; refer to Fig. 2.(d) and Fig. 3.(a).
Therefore, we propose an alternative method that treats large faces as holes; Refer to Fig. 2.(e).
Practically, obtaining such maps is very simple — we can just consider the graph G’ obtained
after the introduction of the auxiliary vertices, transform it to a map, as suggested in the
MS-algorithm , and treat regions corresponding to the auxiliary vertices as holes. When
applying forces to the map vertices, we can treat holes in exactly the same way we treat other
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(d) (e) (f) (8)

Figure 2 Construction of the initial layout for non-triangulated graphs. (a) A graph G with
a large non-triangulated face. (b) The auxiliary graph G’ — red vertices are added, drawn with
the Tutte’s algorithm. (c¢) The auxiliary vertices are removed. (d) Transformation of the drawing
in Fig. 2.(c) based on the graph’s dual (as employed in the MS-algorithm). (e) Transformation of

the drawing in Fig. 2.(c) based on the graph’s dual and by treating the auxiliary vertices as holes.

(f-g) Forces are applied to Fig. 2.(d) and Fig. 2.(e), respectively; holes are weighted according to
the proposed function.

regions. However, since the holes do not have a target weight, we have the flexibility to assign
those weights with the goal to improve the appearance of the overall map. Our intuition is
that the more regions are adjacent to a hole, and the heavier those regions are, the bigger
the hole needs to be. After some experimentation, we found that the following function for
assigning weights to holes produces reasonably good results, however, with further testing
better functions may arise:

. 1 !
holeWeight(h;) = Tdea(h) ( hge:E(G) w(vy) (3)
Vg

Note that, we do not prioritize minimizing the normalized cartographic error within holes,
as they do not represent regions. However, it is important that holes remain visually simple
to preserve the clarity of adjacencies. To allow adjacent regions the flexibility to expand
naturally, we do not apply stiffness coefficients to holes. Nonetheless, we do apply the
corrective weight coefficients of the pressure forces to maintain overall layout stability.

4 Experimental Evaluation

In our experimental evaluation we aim to answer the following research questions:

1. What is the performance of our algorithm compared to the performance of the
MS-algorithm based on the quality metrics of normalized cartographic error and polygon
complexity? Does the difference in performance depend on the input characteristics such
as number of vertices, nesting ratio or weight ratio (refer to Section 4 for the definitions)?

40:9
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(a) Map with high degree contact points. (b) Map with holes.

Figure 3 Two maps which correspond to the same 40-vertex graph. Non-triangulated regions are
represented in (a) with high degree contact points and in (b) with holes.

2. Is there a trade-off between cartographic error and polygon complexity? How do we
control it?

3. Does the initial metaphorical map have an effect on the quality of the final one?

=

Is the handling of non-triangulated biconnected graphs satisfactory?

5. Is the proposed algorithm practical? Does its running time scale well with the size of the
input graph?

The analysis of question 5 can be found in [15].

The Graph Test Data. For the generation of test data, we followed the approach of [17]
(described in detail in Algorithm 5.1 of [21] with a uniform distribution). The authors of [17]
generate planar straight-line drawings based on the Delaunay triangulation of a random
point set. A fraction nest € [0,1] of the points, called nesting ratio, is placed within the
triangles of the initial Delaunay triangulation. It was experimentally verified in [17] that
the nesting ratio has an effect on the algorithm’s performance, therefore, we also included it
in our analysis. For every vertex, we generate a weight using a uniform distribution with
different weight ratios of maximum to minimum weight. The above described procedure is
augmented to generate non-triangulated plane graphs as follows. Following the generation of
an internally triangulated plane graph, we remove a number of randomly selected internal
edges in order to create non-triangulated plane graphs. We denote the ratio of removed
to initial internal edges by rem. Note that an edge is only removed if the graph remains
biconnected.

Comparison to the MS-algorithm. For the comparison of the performance of our algorithm

(NEW-algorithm) against MS-algorithm, we examined how three parameters — the nesting

ratio nest (see Fig. 4), the weight ratio w (see Fig. 5), and the total number of nodes n (see

Fig. 6)-influence both algorithms. To this end, we conducted three experiments:

1. Varying nesting ratio. For each value of nest € {0,0.1,0.2,...,1.0}, we generated 50
graphs with n = 20 nodes and weight ratio w = 5.

2. Varying weight ratio. For each w € {5,10,15,20}, we generated 50 graphs with n = 20
nodes and nesting ratio nest = 0.

3. Varying number of nodes. For each n € {15,20,25,...,80}, we generated 50 graphs with
nesting ratio nest = 0 and weight ratio w = 5 and we let the algorithms run for 800+ 10n
iterations.
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Figure b NEW-algorithm vs MS-algorithm for different values of weight ratio.

The results of every comparison follow a similar trend. Our algorithm achieves average
cartographic error close to zero at the cost of a slightly higher polygon complexity. In all
of our experiments (1450 in total), the recorded average normalized cartographic error (for
each metaphorical map created) was in the range [0.12%,0.44%)]. In comparison, the same
metric for MS-algorithm is in the range [8.8%,24.7%)]. The price we paid was a small
increase in the average polygon complexity. The highest observed increase in average polygon
complexity over all the maps was 6.9% and was observed for n = 75, where the maximum
value of average polygon complexity was 19.6%, well below the 40% value where polygons
are considered to be complex [8]. The maps in our experiment that correspond to this
maximum value of increase in the average polygon complexity are shown in Fig. 7.(a-b). We
observe that indeed our map’s regions are longer and, sometimes, narrower. However, in the
case of smaller (or “simpler”) graphs, this increase in complexity is hardly noticeable, see
e.g. Fig. 7.(c-d). Regarding the properties of the graphs, all three parameters (nesting ratio,
weight ratio, and the number of vertices) affect the polygon complexity of our produced
maps.
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(a) NEW-algorithm (b) MS-algorithm (c) NEW-algorithm (d) MS-algorithm

Figure 7 (a-b) The maps that correspond to the largest increase in average polygon complexity.
The corresponding graph has 75 vertices. (c-d) Maps for a random graph.

Cartographic error and polygon complexity trade-off. The cost we pay for achieving
average cartographic error close to zero is a small increase in the average polygon complexity.
Given that our algorithm is identical to the MS-algorithm for stiffness sp;n = 1 (without
the application of the corrective weight coefficients on the pressure forces), we evaluated
our algorithm for several values of spign € {2,4,8} (see Fig. 8). We observed that while the
average and maximum normalized cartographic error remain nearly identical for sp;g, = 4 and
Shigh = 8, the algorithm performs better at sp;g, = 8 in terms of both average and maximum
polygon complexity. Based on these observations, we set sp;gn = 8 in our algorithm. This
value achieves very small cartographic error while maintaining acceptable polygon complexity.
Moreover, increasing spign beyond 8 does not lead to meaningful improvements in either
evaluation metric.

Fig. 9 shows a “heat-map” style coloring of the regions of metaphorical maps of the same
graph for MS-algorithm (Fig. 9.(a)) and our algorithm for s, € {2,8} (Fig. 9.(b)-(c)),
demonstrating the effect of the introduction of the stiffness coefficient. These experiments
reveal a monotonic decrease in the maximum/average cartographic error and a monotonic
increase in maximum/average polygon complexity based on the value of sp;gp.

Non-Triangulated Graphs. We tested our algorithm for graphs with ratio of removed edges
rem € {0,0.2,0.4,0.6} (Fig. 10 and 11). For each value of rem, we conducted experiments on
fifty graphs, each with forty nodes, a nesting ratio of zero, and a weight ratio of five. We let
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Figure 9 Metaphorical maps for the same graph for MS-algorithm and NEW-algorithm for
different values of max stiffness spign.

the algorithm run for 1200 iterations. Recall that hole region weights were assigned according
to Equation 3. Normalized cartographic error and polygon complexity were measured only
for non-hole regions.

We observed that increasing the parameter rem (i.e., the fraction of removed edges) led
to a slight increase across all four evaluation metrics (Fig. 10). This can be explained by the
fact that the increasing number of missing edges creates more complex patterns of adjacency,
i.e. holes behave as nodes of high degree.

We also observed that holes can have narrow passages; refer to Fig. 11.(c)-(d), which

possibly can also be explained by the relatively high number of regions adjacent to a hole.

We anticipate that this effect can be mitigated by using a different hole weight function and
by re-engineering the applied forces.

The effect of the initial drawing. Given that we managed to, effectively, get the average
cartographic error down to zero, we did not study the effect of the initial metaphorical
map used by our algorithm on the cartographic error. Instead, we focused on the polygon
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Figure 10 Cartographic Error and Polygon Complexity for different values of the ratio rem of
removed edges and by adopting function hole Weight() for assigning weights to the polygonal holes.
Here, n = 40, w = 5, nest = 0.

Figure 11 Example for the values of rem € {0,0.2,0.4,0.6}.

complexity and we examined the effect of having an initial map with good average cartographic
error. As such good initial maps we considered the maps produced by the algorithm in [3]
(referred to as octagonal map) which produces rectangular maps with at most 8 corners
and of average cartographic error close to zero. We observed that, when using octagonal
maps as initial layout, no consistent improvement was observed while the produced maps
appeared to have long and skinny regions. Moreover, when the number of vertices becomes
larger the metaphorical maps become harder to read due to their long, skinny, and circular
shaped regions. See Fig. 12.(a-d) and Fig. 12.(e-h) for sample metaphorical maps of 20 and
40 regions, respectively. Finally, it is noted that our algorithm also required a larger number
of iterations (about double) when initialized with such maps in order to converge to its final
metaphorical map solution.
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(a) Initial Graph (b) Octagonal map. (c) Output based on (d) Output based on

(n = 20). graph’s dual. octagonal map.
—
(e) Initial Graph (f) Octagonal map. (g) Output based on (h) Output based on
(n = 40). graph’s dual. octagonal map.

Figure 12 Metaphorical maps produced by our algorithm when the initial map is based on the
graph’s dual transformation and on an octagonal map. (a)-(d): 20 vertex graph. (e)-(h): 40 vertex
graph.

5 Conclusion

In this work we have proposed an improvement of MS-algorithm [17] that produces metaphor-
ical maps of vertex-weighted graphs and presented a detailed experimental evaluation of
the newly proposed algorithm. Our goal was to close the gap between the metaphorical
maps with perfect cartographic accuracy [2, 16, 24] that despite using a few corners per
polygonal region can look quite complex and the simple-looking metaphorical maps produced
by MS-algorithm with cartographic error up to 30%. Our experiments showed that we can
achieve cartographic error close to zero, by paying a small price for the polygon complexity.
Our algorithm achieves this improvement by using the notion of region stiffness that adapts
as the force-directed simulation runs. We have seen that the maximum value of this stiffness
determines the interplay between the cartographic error and polygon complexity.

To quantify the complexity of the maps, we applied the quality metric introduced
in [8], who presented examples of geographic maps showing that this metric corresponds
to the human intuition of map complexity. Our experiments with metaphorical maps do
not contradict this intuition. However, we believe that whether this function is indeed
appropriate for qualifying the human intuition of the metaphorical maps complexity has to
be investigated in a user study.

We conjecture that the performance of the algorithm for non-triangulated graphs can be
further improved by considering different hole weight functions and by engineering the forces
to avoid narrow passages. Finally, it is also interesting to compare the quality of the maps
for non-triangulated graphs with and without holes. We defer these investigations to the
extended version of this work.
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