
Winning the GD Challenge for the 4th Time:
Our Approach
Julien Bianchetti #

Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France

Laurent Moalic #

Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France

Abstract
We present the approach we designed to tackle and win the 2025 Graph Drawing Challenge on
minimizing the k-planarity of graphs. Our method employs a multi-stage heuristic centered around
two Simulated Annealing (SA) algorithms: the first aims to reduce the total number of crossings,
while the second improves the k-value. To obtain a good initial solution, we first applied tools from
the OGDF library, which helped reduce crossings. The challenge consisted of nine instances to
optimize. Our approach achieved the best results on eight out of nine instances - sharing the top
score twice with other teams and ranking first alone in six cases.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Human-centered computing → Graph drawings; Mathematics of computing → Combinatorial
optimization

Keywords and phrases Graph Drawing Contest, simulated annealing, k-planarity

Digital Object Identifier 10.4230/LIPIcs.GD.2025.43

Category Graph Drawing Contest Abstract

1 Introduction

The 2025 Graph Drawing Contest live challenge addresses the problem of minimizing the
parameter k in k-planar straight-line drawings of graphs. Given an input graph, the task is
to compute a drawing in the plane where each edge is crossed by at most k other edges, and
the objective is to minimize this maximum crossing number.

The algorithm we developed, named SAkGD, is based on two distinct Simulated Annealing
(SA) phases, each with a specific fitness function. SA is a powerful metaheuristic for
combinatorial optimization [7, 1] and has been successfully applied to aesthetic graph
drawing in the past [3]. A key feature of our approach is that while each SA phase has
its own parameters, they are not instance-dependent; we applied the same algorithm and
parameters to every instance of the challenge.

2 General presentation of SAkGD: the SA based algorithm for
k-planarity

The proposed algorithm is based on three main steps summarized as fallows:
1. Generation of a «not so bad» starting solution with OGDF
2. Improve the starting solution by removing as many crossing edges as possible
3. Optimize the improved solution in terms of k-value

2.1 Step 1: Generating a Not-So-Bad Starting Solution
For this step, our goal was to quickly generate a high-quality initial layout. We utilized the
powerful Open Graph Drawing Framework (OGDF) [2], which provides robust implementa-
tions of several layout algorithms. We specifically used Stress Minimization [4] and the Fast
Multipole Multilevel Method (FMMM) [6, 5].

© Julien Bianchetti and Laurent Moalic;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Graph Drawing and Network Visualization (GD 2025).
Editors: Vida Dujmović and Fabrizio Montecchiani; Article No. 43; pp. 43:1–43:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:julien.bianchetti@uha.fr
https://orcid.org/0009-0000-4809-6388
mailto:laurent.moalic@uha.fr
https://orcid.org/0000-0003-3749-3227
https://doi.org/10.4230/LIPIcs.GD.2025.43
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


43:2 Winning the GD Challenge for the 4th Time: Our Approach

Stress Minimization is applied only once, since it is deterministic – that is, two runs
produce exactly the same result. Then, we apply FMMM as many times as possible within
the first minute. Because FMMM is stochastic, two runs yield different solutions.

At the end of the first minute, or after the time required for Stress Minimization (SM)
and FMMM, we consider the best solution obtained so far among the initial solution (directly
from the data file), the one from SM, and all the FMMM runs. Here, the best solution is
defined as the one with the smallest k-value.

2.2 Step 2: A 10-Minute SA for Crossing Reduction
The 2023 and 2024 contest topics focused on minimizing the total number of edge crossings
in a graph. Another difference was that nodes could only be placed at predefined positions
(locations). It is quite clear that reducing the number of crossing edges is relevant in terms
of k-planarity. Indeed, even though decreasing the number of crossings is not necessarily
synonymous with decreasing the k-value, it generally provides significant improvement in
most cases.

Algorithm 1 describes the key steps for reducing the total number of edge crossings.

Algorithm 1 SA-based approach for removing edge crossings

Input: initTemp the starting temperature, decreaseTemp the decreasing temperature after
each step, decreaseTempWave the decreasing temperature after each wave, tempLimit

temperature limit before stopping, s0 the initial solution
Output: s∗ the best solution found so far

1: s∗ ← s0
2: k ← the starting k value from s0
3: crossing ← the total number of crossings from s0
4: kBest← k , crossingBest← crossing

5: startingTemp← initTemp

6: while k > 0 and startingTemp>tempLimit do
7: currentTemp← startingTemp

8: while k > 0 and currentTemp > tempLimit do
9: node← selectNode()

10: newPlace← selectPlace()
11: if acceptMove(node, newPlace)==true then
12: move(node, newPlace) {update crossing and k}
13: if k < kbest or k == kbest and crossings < crossingsBest then
14: kBest← k , crossingBest← crossing , s∗ ← currentSol

15: end if
16: end if
17: end while
18: startingTemp← startingTemp ∗ decreaseTemp

19: currentSol← s∗
20: end while
21: return s∗



J. Bianchetti and L. Moalic 43:3

selectNode() and selectP lace() play a significant role. selectNode() is important because
not all nodes have the same impact on the current k-value. If all edges originating from
a given node have few crossings, moving that node will yield only a small improvement
compared to moving a node connected to edges with many crossings. For this reason, nodes
belonging to edges with many crossings are given a higher probability of being selected for
movement.

selectP lace() is also important. If the new position selected for a node is far from its
previous location, there is a risk of creating many new crossings. For this reason, we decided
to give a higher probability of selection to positions close to the node’s previous location.

A move is always accepted from acceptMove() if it reduces or maintains the total number
of crossings. A move that increases the crossings by ∆C is accepted with a probability of
exp(−∆C/Tcurrent).

In this phase, we focus on optimizing the total number of crossings. However, it should
be noted that each new wave starts from the best k-solution found so far. This is done to
prepare for the final and main step of the proposed algorithm.

2.3 Step 3: Remaining Time for k-Value Optimization

With the remaining time (at most 49 minutes), we switch to a second SA algorithm that
directly optimizes the k-value. This phase uses the same structure as Algorithm 1 but
employs a more sophisticated fitness function for the acceptMove() criterion:
1. Primary Objective: Local k-value Improvement. A move is evaluated based on the change

in the maximum number of crossings on any edge involved in the move (i.e., edges incident
to the moved node and edges that cross them). This local computation is much faster
than re-evaluating the global k-value.

2. Secondary Objective: Total Crossing Number. If a move does not change the local
maximum k-value, the decision is based on the change in the total number of crossings,
as in the previous phase.

A move is accepted if it improves the solution according to this objective. Worsening moves
are still accepted based on the same probabilistic formula, using the fitness change as ∆E.
This dual-objective approach allows the search to fine-tune the placement of nodes that are
bottlenecks for the k-value, while still encouraging a general reduction in crossings.

3 Application, parameters and results on the 2025 GA contest dataset

Table 1 presents the parameters used during the contest. These were not tuned per-instance,
demonstrating the robustness of the approach. It could be interesting to tune them, especially
based on instances characteristics.

Table 1 SA parameters for minimizing the total crossings number and the k-value

initT emp decreaseT emp decreaseT empW ave tempLimit

min cross 50.0 0.999 0.99 0.01
min k 1.0 0.9999 0.99 0.01

Our method performed exceptionally well, securing the top score on 8 of the 9 contest
instances. Table 2 summarizes these results.

GD 2025



43:4 Winning the GD Challenge for the 4th Time: Our Approach

Table 2 Performance on the 2025 Graph Drawing Contest dataset.

Instance Our k-value Best k-value 2nd Best k-value 3rd Best k-value Our Rank
graph 1 9 9 9 9 1st (Shared)
graph 2 3 3 3 3 1st (Shared)
graph 3 34 34 40 43 1st
graph 4 6 6 7 8 1st
graph 5 76 76 81 85 1st
graph 6 568 560 568 1081 2nd
graph 7 31 31 32 40 1st
graph 8 15 15 20 29 1st
graph 9 12 12 16 21 1st

4 Conclusion

We presented SAkGD, the multi-stage heuristic that won the 2025 Graph Drawing Challenge.
Its success stems from a three-step process: a fast generation of a good initial layout using
OGDF, followed by two specialized Simulated Annealing phases. The first phase effectively
reduces the total crossing number, creating a promising search space, while the second
phase aggressively targets the primary objective of minimizing the k-value using a fitness
function. The use of instance-independent parameters highlights the general applicability of
our method. Future work could explore adaptive parameter tuning based on graph properties
or hybridizing the SA with other local search techniques.

References
1 Dimitris Bertsimas and John Tsitsiklis. Simulated Annealing. Statistical Science, 8(1):10–15,

1993. doi:10.1214/ss/1177011077.
2 Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau, Karsten Klein, and

Petra Mutzel. The open graph drawing framework (ogdf). Chapter 17 in: R. Tamassia (ed.),
Handbook of Graph Drawing and Visualization, CRC Press., 2014.

3 Ron Davidson and David Harel. Drawing graphs nicely using simulated annealing. ACM
Trans. Graph., 15(4):301–331, October 1996. doi:10.1145/234535.234538.

4 Emden Gansner, Yehuda Koren, and Stephen North. Graph drawing by stress majoriza-
tion. In Graph Drawing, volume 3383, pages 239–250, September 2004. doi:10.1007/
978-3-540-31843-9_25.

5 Martin Gronemann. Engineering the Fast-Multipole-Multilevel method for Multicore and
SIMD architectures. Master’s thesis, Technische Universität Dortmund, Dortmund, Germany,
2009.

6 Stefan Hachul and Michael Jünger. Drawing large graphs with a potential-field-based multilevel
algorithm. In Graph Drawing, volume 3383, pages 294–305, September 2004. doi:10.1007/
978-3-540-31843-9_29.

7 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983. doi:10.1126/science.220.4598.671.

https://doi.org/10.1214/ss/1177011077
https://doi.org/10.1145/234535.234538
https://doi.org/10.1007/978-3-540-31843-9_25
https://doi.org/10.1007/978-3-540-31843-9_25
https://doi.org/10.1007/978-3-540-31843-9_29
https://doi.org/10.1007/978-3-540-31843-9_29
https://doi.org/10.1126/science.220.4598.671

	1 Introduction
	2 General presentation of SAkGD: the SA based algorithm for k-planarity
	2.1 Step 1: Generating a Not-So-Bad Starting Solution
	2.2 Step 2: A 10-Minute SA for Crossing Reduction
	2.3 Step 3: Remaining Time for k-Value Optimization

	3 Application, parameters and results on the 2025 GA contest dataset
	4 Conclusion

