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Abstract
A fixed set of vertices in the plane may have multiple planar straight-line triangulations in which the
degree of each vertex is the same. As such, the degree information does not completely determine
the triangulation. We show that even if we know, for each vertex, the number of neighbors in each of
the four cardinal directions, the triangulation is not completely determined. We show that counting
such triangulations is #P-hard via a reduction from #3-regular bipartite planar vertex cover.
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Paper Description
We consider plane straight-line (PSL) graphs: graphs whose vertices are points in the plane,
and whose edges are interior-disjoint segments connecting the vertices at their endpoints.
A PSL graph is maximal if adding any edge would result in a graph that is not a PSL
graph. Given a PSL graph G = (V, E) and v ∈ V , we write degN (v) to mean the number of
edges incident to v whose other endpoint lies above v in the y-direction (“to the north”).
The south-, east-, and west-degrees of v, written degS , degE , degW : V → N respectively, are
defined analogously, and the four are collectively called the cardinal degrees of G. We consider
only graphs with vertices at distinct x- and y-coordinates and in general position. We call
σ = (V, degN , degS , degE , degW) a cardinal signature and call G a realization of σ if and

Figure 1 Maximal PSL graphs with identical cardinal signatures. Common edges are black.
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46:2 Counting Triangulations of Fixed Cardinal Degrees

only if G is a maximal PSL graph with cardinal signature σ. Although each graph has a
unique cardinal signature, distinct graphs can have the same cardinal signature, even in the
restricted setting of maximal PSL graphs; see Figure 1.

We therefore consider the problem of counting realizations of a cardinal degree signature,
called #cardinal signature realization, and, in particular, we show this problem is #P-hard.
We do so by a reduction from #3-regular bipartite planar vertex cover. However, we first
reduce to an intermediary problem, namely, the #tiled noncrossing cycle-set problem, whose
input is a tiling: a grid of tiles, where each tile has one of the tile types as in Figure 2, and
are arranged to form a collection of red and blue cycles. A solution to this problem is a
selection of noncrossing cycles. Figure 3 illustrates the connection between #tiled noncrossing
cycle-set and #3-regular bipartite planar vertex cover.

(a) (b) (c) (d) (e) (f) (g) (h) Crossing

SER SWR NWR NER NSR EWR

SEB SWB NWB NEB NSB EWB

Blank iv

ii iii

i

Figure 2 The 17 different tile types in the #tiled noncrossing cycle-set problem. In any tiling, the
four tile types in (h) always appear together as pictured.
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Figure 3 (a) An instance of #3-regular bipartite planar independent set. (b) A corresponding set
of cycles in the plane. (c) Part of a corresponding tiling.

To connect our central problem to #tiled noncrossing cycle-set, we introduce frame graphs.
A frame graph F is a grid-like pattern of convex chains of edges, forming roughly square
faces called frame cells, corresponding to the tile structure of #tiled noncrossing cycle-set;
see the black edges of Figure 4(c). Suppose a roughly horizontal path of F lies just below
height h. This path is part of the boundary of the subgraph of F whose vertices lie below h.
The sum of south degrees of all vertices below h tells us how many edges lie entirely in this
halfspace. Using Euler’s formula, we confirm that this lower subgraph is maximal PSL, i.e.,
the edges in this path must be present in every cardinal signature of F . Using a left-to-right
argument for the nearly vertical paths tells us the realization of the cardinal signature of F is
unique. By extension, any graph made by adding edges to F has a cardinal signature whose
realizations all have the edges of F , i.e., these edges are forced. Thus, we include extra edges
to a frame graph to form gadgets, corresponding to tile types; see Figure 4.
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Figure 4 (a) Tile types for #tiled noncrossing cycle-set (up to exchanging colors). (b) Schematic
representation of the gadgets of (c). (c) Corresponding gadgets in the same relative positions for
#cardinal signature realization. Forced edges are grey and black.

We show that a frame graph triangulated by edges chosen from gadgets has a cardinal
signature whose realizations are only the ones shown. We first establish our inductive step.

▶ Lemma 1 (informal). Let F be a frame graph triangulated by edges of gadgets. Let G be a
gadget and suppose that the triangulation in F of the frame cell to the south of G is made
by choosing light (dark) colored edges. Then the same choice of light (dark) colored edges
triangulates G so that vertices on the southern boundary of G have the same cardinal degrees
as they do in F . A similar statement applies to the west of G.

Since having a fixed triangulation to the south and west of a frame cell establishes the
triangulation of the frame cell itself, and a consistent choice of light/dark leads to a consistent
choice within the cell, we induct on the row and column of a frame cell to show the following.

▶ Lemma 2 (informal). All realizations of the cardinal signature of F correspond to triangu-
lating frame cells using a subset of edges of the kind shown in Figure 4(c).

We bijectively match each solution of a noncrossing tile selection to a realization of a
cardinal signature σ; choosing (not choosing) a tile cycle corresponds to that portion of
the triangulation made using light (dark) colored edges. We conclude that the number of
cardinal signature realizations of σ is the same as the number of noncrossing tile selections
of the corresponding cycle-set.

▶ Theorem 3. #cardinal signature realization is #P-hard.

GD 2025



46:4 Counting Triangulations of Fixed Cardinal Degrees

Counting Triangulations of Fixed Cardinal Degrees
Erin Chambers

University of Notre Dame

Cardinal degree signature of a plane graph:
position of vertices, and their cardinal degrees

Cardinal degree of a vertex:
counts of degree to the north,
south, east, and west

Reduce this to counting non-crossing subsets of cy-
cles, where cycles are drawn on tiles of specific types.

Including a blue/red cycle in the set→ analogous to choosing a
triangulation using light blue/red in the corresponding places.

Not including a cycle→ triangulations that use dark blue/red.

Any non-crossing cycle subset corresponds to a triangulation.

Tile types

Gadgets

Tile types:

Why tiles and grid-like subgraphs? Why “tilted?”

• We know #edges below (left of) a horizontal line
by summing degrees. By Euler’s formula, sub-
graph below (to the left) must be convex

• Boundary of convex subgraph below/to the left
is present in every realization

⇒ Grid edges must be present in any graph with the
same cardinal degree signature.

Choosing light/dark red/blue to the south and west
forces a cell to be triangulated with the same choices.
(Otherwise cardinal degree signature changes).
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Light or dark blue edges→ different triangulations, but
every vertex keeps its cardinal degrees
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Computational question
How many realizations does a given cardinal degree
signature have?

Using gadgets to turn a tiled cycle set into a triangu-
lation, non-crossing subsets of cycles are in bijection
with triangulations with this cardinal signature!

Tim Ophelders
Utrecht University
TU Eindhoven

Counting graphs with a
given cardinal degree
signature is #P-hard.

Anna Schenfisch
KTH

Julia Sollberger
VU Amsterdam

#P-hardness We reduce from the #P-hard problem of
counting independent vertex sets in 3-regular planar
bipartite graphs.

Multiple graphs can have same cardinal signature!
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