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—— Abstract
Let S be a point set in the plane, and let P(S) and C(S) be the sets of all plane spanning paths
and caterpillars on S. We study reconfiguration operations on P(S) and C(S). In particular, we
prove that all of the commonly studied reconfigurations on plane spanning trees still yield connected
reconfiguration graphs for caterpillars when S is in convex position. If S is in general position, we
show that the rotation, compatible flip and flip graphs of C(S) are connected while the slide graph
is sometimes disconnected, but always has a component of size i(?)” —1). We then study sizes of
connected components in reconfiguration graphs of plane spanning paths. In this direction, we show
that no component of size at most 7 can exist in the flip graph on P(S).
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1 Introduction

Given a set of structures C, and a reconfiguration operation that transforms one object in C
to another, the reconfiguration graph is a graph with vertex set C' in which two vertices form
an edge if one can be transformed into the other using a single reconfiguration operation.
Often, in computer science, objects are solutions to a problem and reconfigurations are local
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Figure 1 a) A plane spanning tree. Replacing the dashed line with the dotted line corresponds
to: b) a flip, ¢) a compatible flip, d) a rotation, e) an empty triangle rotation and f) a slide.

changes that transform one solution into another. Then, to understand the solution space, it

is important to study the reconfiguration graph. For an introduction to the topic, see [14].
Given a point set S in the plane, a plane spanning tree on S is a spanning tree of S whose

edges are straight line segments that do not cross. Let 7(.5) be the set of all plane spanning

trees on S. We consider five reconfigurations on 7 (S) (see Figure 1). For the following, we

are given 71 = (S, E1), Ty = (S, E3) € T(S), and we say that:

1. Ty and T3 are connected by a flip if F5 = Eq \ {e} U {f} for some edges e, f.

2. Ty and T, are connected by a compatible flip if E; = Eq \ {e} U {f} for some edges e, f
which do not cross.

3. Th and T are connected by a rotation if Ex = E7 \ {e} U {f} for some edges e, f which
share an endpoint.

4. Ty and Ty are connected by an empty triangle rotation if Eo = Eq \ {e} U {f} for some
edges e, f which share an endpoint and the triangle spanned by their endpoints is empty.

5. Ty and T5 are connected by a slide if Ex = E; \ {e} U{f} for some edges e, f which are
as in 4. and if e = ab and f = ac then bc € E; N Es.

Note that every slide is an empty triangle rotation, every empty triangle rotation is a
rotation, and so on. This hierarchy will be useful when studying the structural properties of
the corresponding reconfiguration graphs.

2 Background

The reconfiguration graphs associated with the operations described above have been a topic
of interest for a long time with many results appearing through the years. These results have
concerned connectivity [1, 7, 13], lower and upper bounds on the diameter [2, 9, 10], etc.

It is known that the reconfiguration graph of plane spanning trees is connected even
in the most restrictive case when the reconfigurations are slides [1]. In the case of slides,
a tight ©(n?) bound on the diameter is shown in [4]. For the empty triangle rotations,
an upper bound of O(nlogn) on the diameter was shown in [13], while for the remaining
reconfigurations, a linear upper bound is known [7]. In [2], an upper bound of 2n — 3 is
shown for ﬂip graphs. The best known lower bound on the diameter of the reconfiguration
graphs is 9 4n — 0O(1), as per [8].

However, there has been little research on induced subgraphs of these reconfiguration
graphs. The only such subgraph that has been explored is the one induced by plane spanning
paths. For a set of n points in convex position, it is known that the flip graph is connected [5]
and that it has diameter 2n — 5 for n € {3,4} and 2n — 6 for n > 5 [11]. The flip graph of
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point sets with at most two convex layers is connected [12], as is the flip graph of generalized
double circles [3]. For point sets in general position, connectivity was first conjectured by
AKkl, Islam and Meijer [5] 18 years ago but still remains unsolved.

3  Our contribution

We further the study of induced subgraphs of reconfiguration graphs of plane spanning trees
by exploring reconfigurations of plane spanning caterpillars, and by expanding on the topic of
reconfigurations of plane spanning paths. A caterpillar is a tree in which all non-leaf vertices
form a path. We call this path the spine of the caterpillar. A plane spanning caterpillar of a
point set S is a plane spanning tree of S which is a caterpillar. For a set S, we will denote by
C(S) the set of all plane spanning caterpillars on S. We will denote the reconfiguration graphs
on C(S) by GEP(S), GE™P P (8) Giot(S), GE™PTN(S), and Gde(S). First, we focus on the
case when S is in convex position. We show that the slide graph G4 is connected, which
implies that all of the reconfiguration graphs are connected in this case. For compatible flips,
we prove a stronger bound for the diameter.

» Theorem 1. Let S be a set of n > 3 points in convex position in the plane. Then, the
graph Gglide(S) is connected with diameter at most 3n — 8.

» Theorem 2. Let S be a set of n > 3 points in convex position in the plane. Then, the
graph Géomp_ﬂw(S) is connected with diameter at most 2n — 5.

Next, we consider the case when S is a point set in general position. For a caterpillar
C € C(S), and consecutive spine vertices v;,...,v; of C, we write S; ; for the point set
consisting of the spine vertices and all of the leaves attached to them. We call C' € C(S)
with spine vy, va, ..., v, a well-separated caterpillar if for each ¢ > 1, the convex hull of S; ;
is disjoint from the rest of S. We can prove that all caterpillars in this class are mutually
connected in Gz“de(S). This large connected component is significant, as we can also show
that G%“de (S) is disconnected. On the other hand, we can prove that the rotation graph
GiY(S) is connected. We leave open the question of the connectivity of Gg"P™".

» Theorem 3. Any two well-separated caterpillars are connected in G§(S).

» Theorem 4. The graph Gg4¢(S) is connected for every set S of n points in the plane if
n < 7. If n > 8, there exists a set S of n points such that Gé“de(S) has isolated vertices.

» Proposition 5. The graph G°'(S) is connected.

Lastly, we focus on connected components of the reconfiguration graph of plane spanning
paths. Given a set of points in general position S, we will call the corresponding flip graph of
plane spanning paths Gp(S). Currently, the main open problem is deciding whether Gp(.5) is
connected. Here we find a large connected component consisting of what we call generalized
peeling paths. We note that Theorem 6 was independently discovered by Kleist, Kramer,
and Rieck [12]. We use the number of these paths to prove that there are at least %(3" -1)
well-separated caterpillars on S. Finally, we investigate the minimal size of components in

Gp(S).

» Theorem 6. Let S be a set of n points in general position. Then Gp(S) contains a
connected component of size 22,

» Theorem 7. Let S be a point set of n > 5 points in general position. Then, Gp(S) contains
no connected component of size at most 7.
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