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—— Abstract

A strengthened version of Harborth’s well-known conjecture — known as Kleber’s conjecture — states
that every planar graph admits a planar straight-line drawing where every edge has integer length
and each vertex is restricted to the integer grid. Positive results for Kleber’s conjecture are known
for planar 3-regular graphs, for planar graphs that have maximum degree 4, and for planar 3-trees.
However, all but one of the existing results are existential and do not provide bounds on the required
grid size. We provide polynomial-time algorithms for computing crossing-free straight-line drawings
of trees and cactus graphs with integer edge lengths and integer vertex position on polynomial-size
integer grids. We also give an historic overview of planar straight-line graph drawing results.
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1 History of planar straight-line graph drawings

Wagner in 1936 [17], Féry in 1948 [7], and Stein in 1951 [14] proved independently that every
planar graph has a crossings-free drawing with edges drawn by straight-line segments. After
these first existential results, algorithms that do create such drawings were described by Tutte
in 1963 [16], Chiba, Yamanouchi, and Nishizeki in 1984 [5], and Read in 1986 [12]. In the
generated drawings, the ratio between longest and shortest edge can be exponential in the size
of the graph. For readability, it helps to have vertices at integer coordinates on a polynomial-
size grid. In 1990, two algorithms generating such drawings appeared. De Fraysseix, Pach
and Polack [6] use canonical orders whereas Schnyder’s algorithm [13] uses a decomposition
of the graph into three trees from which barycentric coordinates can be computed. For n
vertices, both algorithms provide a straight-line drawing on the O(n) x O(n) grid.

Can we also ensure that all edge lengths are integers? These two algorithms [6, 13] can
(and do) produce irrational edge lengths. Harborth’s conjecture [9, 10] asks whether every
planar graph has a crossings-free realization with straight-line segments of integer lengths,
referred to integral Fary embeddings [4]. A stronger version of Harborth’s conjecture, called
Kleber’s conjecture, asks whether an integral Fary embedding exists with all vertices on the
integer grid [11]. We refer to these drawings as truly integral Fdry embeddings.
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Sun [15] uses rigidity matrices to prove that all planar (2, 3)-sparse graphs admit integral
Fary embeddings. A graph G is (a, b)-sparse if every subgraph G’ of G has at most a|V (G')|—b
edges. (2, 3)-sparse graphs include series-parallel, outerplanar, and planar bipartite graphs.
In 2024, Chang and Sun [4] show this result also for all planar 4-regular graphs.

Geelen, Guo, and McKinnon [8] show that every planar max-degree-3 graph admits a
truly integral Fary embedding. Biedl [3] observes that this technique can be applied to all
planar (2, 1)-sparse graphs, which include all max-degree-4 graphs that are non-4-regular.
Independently, Benediktovich [1] shows this result for max-degree-4 graphs that are non-4-
regular and for planar 3-trees. The vertices have rational coordinates, thus, can be scaled to
integers. However, they make use of a theorem by Berry [2] to position vertices on a rational
point in an e-disk around a real point, which doesn’t provide guarantees on the distance
towards an integral point. If the drawing is scaled to provide a truly integral Fary embedding,
no bound on the area can be provided. To the best of our knowledge, the algorithm by
Biedl [3] that produces quadratic truly integral Fary embeddings for 3-regular planar graphs
is the only algorithm in the literature that provides a polynomial upper bound on the area.

2  Truly integral Fary embeddings of trees and cacti on a poly-size grid

We show that trees and cacti admit truly integral Fary embeddings on the O(n?) x O(n?)
and O(n?) x O(n?) integer grids, respectively. For binary trees, O(n?) follows from [3]; for
constant-depth trees like stars, O(n?) follows from Theorem 1. To ensure integer edge lengths
on an integer grid, we are restricted to using Pythagorean triples. Pythagorean triples are
all triples of integers a, b, ¢ which satisfy a? + b?> = c¢?. A Pythagorean triple is primitive if
a, b, and c are co-prime. The first k primitive Pythagorean triples Py can be computed in
O(k*/?) time. We denote by Pr the angle-sorted first k& primitive Pythagorean triples.

Let T = (V, E) be a (rooted) tree, which has n vertices, ¢ leaves, and depth d. Denote
the root by 7; if no root is given, pick r arbitrarily. If no rotation system is given, choose it
arbitrarily. For a vertex v € V', we denote by T, the subtree of T rooted at vertex v and
by L(T,) the number of leaves in T,. Place r at (0,0). Assign the first child v; of r the
first L(T,,) primitive Pythagorean triples from P7, assign the second child vy of r the next
L(T,,) primitive Pythagorean triples from P7, etc. Draw each child v of r at the coordinates
(x,y) where (x,y, 2) is the first primitive Pythagorean triple assigned to v. For each child v
of r, for which v is not a leaf of T', we draw the subtree T, recursively: in the recursive call,
we assume that the coordinate system is centered at the position of v and we use exactly the
primitive Pythagorean triples assigned to v; see Figure 1.
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Figure 1 Schematization of our recursive algorithm for drawing trees. Vertex r is placed at (0,0)
and its subtree is drawn inside the light-gray cone; v; is drawn at its first assigned triple.
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Correctness follows from the fact that we use distinct slopes (primitive Pythagorean
triples) in distinct subtrees that are sorted such that they fan out. The realization as a
linear-time algorithm is straight-forward, however, we add (’)((3/ 2) additional running time
for computing primitive Pythagorean triples, which needs to be done only once.

» Theorem 1. Let T = (V, E) be a (rooted) tree, which has n vertices, { leaves, and depth d.
There is a truly integral Fary embedding on a grid of size %Ed X %M C O(n?) x O(n?),
which can be found in O(n + £3/2) time.

With a special handling of cycles, in particular triangles, we can extend the algorithm
from trees to cacti and obtain the following result.

» Theorem 2. Let C' = (V| E) be a (rooted) cactus, which has n vertices, £ leaves, diameter d,
o cycles out of which § are triangles. There is a truly integral Fary embedding on a grid of size

(2;;2 (d+0)(£+20)+6-2 (% : (€+20))2>><<2§2 (d+0)(£+20)+5-2 (% : (€+20)>2)
C O(n®) x O(n®), which can be found in O(n + (£ + 20)3/?) time.
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The bistory of planar straightline grapl drawings
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Suture

e Find lower bounds on the grid size for general trees and cacti. Reduce the grid size if possible.
e Do polynomial-size grids also suffice for larger graph classes (e.g., outerplanar graphs, max-deg-3 graphs, 4-regular graphs, k-trees)?
e |s Harborth et al.’s conjecture true? Is Kleber's conjecture true?

n = number of vertices in a graph
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