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Abstract
A linear layout of a graph defines a total order of the vertices and partitions the edges into either
stacks or queues, i.e., crossing-free and non-nested sets of edges along the order, respectively. In this
work, we study defective linear layouts that allow forbidden patterns among edges of the same set.
Our focus is on k-defective stack layouts and k-defective queue layouts, in which the conflict graph
representing the forbidden patterns among the edges of each stack or queue has maximum degree at
most k.
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1 Introduction

Stack [3] and queue [5] layouts are key concepts in topological graph theory, where vertices
are ordered and edges are partitioned into non-crossing (stacks) or non-nested (queues) sets.
The goal is to minimize the number of stacks/queues – known as the stack/queue number.
We introduce k-defective linear layouts, a generalization of stack/queue layouts that allows
some forbidden patterns (edge crossings or nestings), controlled by a conflict graph with
maximum degree k. Classical layouts correspond to the case k = 0. Our contributions include:
(i) characterizations of k-defective layouts; (ii) bounds on edge density; and (iii) bounds or
exact values of k-defective numbers for specific graph families.

2 Queue Layouts

We first bound the density of graphs admitting k-defective h-queue layouts. Let v0 ≺ · · · ≺
vn−1 be a vertex ordering of a graph G. Partition the edges into n − 1 classes, where edges
(vi1 , vj1) and (vi2 , vj2) belong to the same class if

⌊
i1+j1

2
⌋

=
⌊

i2+j2
2

⌋
. We denote by Ci the

class whose maximum number of edges is i (i = 1, . . . , n − 1). Note that if Ci has i edges,
it induces a path.

▶ Lemma 1. Let L be a k-defective h-queue layout of a graph G. Every defective queue of L
contains at most k + 2 edges of each class.
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▶ Theorem 2. Any n-vertex graph that admits a k-defective h-queue layout has at most
h(k + 2)

(
n − h(k+2)+1

2

)
edges, for n ≥ h(k + 2) + 1.

Sketch. Let L be a k-defective h-queue layout of a graph G with n vertices and m edges.
Classes with at most h(k + 2) edges are small, otherwise are large. Let nl be the number of
large classes, and ms the number of edges in small classes. We claim m ≤ nlh(k + 2) + ms.
Suppose, for contradiction, that m > nlh(k + 2) + ms. Then some large class must have more
than h(k+2) edges, implying a queue with more than k+2 edges from that class, contradicting
Lemma 1. Since each class has at most i edges, we have nl = n − 1 − h(k + 2), and ms ≤∑h(k+2)

i=1 i = h(k+2)(h(k+2)+1)
2 . Therefore, m ≤ (n − 1 − h(k + 2))h(k + 2) + h(k+2)(h(k+2)+1)

2 =
h(k + 2)

(
n − h(k+2)+1

2

)
. Finally, h(k + 2)

(
n − h(k+2)+1

2

)
≤ n(n−1)

2 for n ≥ h(k + 2) + 1. ◀

We next consider defectiveness and queue number. In this content, outerplanar graphs have
queue number 2 [7], but not all admit 1-queue layouts with bounded defectiveness. Outer
1-planar graphs have queue number at most 42 [2]; we show that their 1-defective queue
number is 2, so their queue number is at most 3.
For general planar graphs, we can prove an upper bound of 33 on their 1-defective queue
number by adapting a well-known technique by Dujmovic et al. [4].
We next establish bounds on the k-defective queue number of Kn that are tight for k = 1.

▶ Theorem 3. The k-defective queue number of Kn is at least
⌈

n−1
k+2

⌉
and at most

⌈
n−1

l

⌉
,

where l=
⌊

3+
√

8k+1
2

⌋
.

Sketch. For the lower bound, consider a k-defective queue layout L of Kn. The edges can be
partitioned into classes C1, . . . , Cn−1. Since Cn−1 has n−1 edges and at most k +2 edges can
share a defective queue (Lemma 1), at least

⌈
n−1
k+2

⌉
queues are needed. We prove the upper

bound via an explicit construction. For h to be specified, assign to each defective queue qa

(for 0 ≤ a ≤ h) all edges with hop-size al + i for 1 ≤ i ≤ l. The edges with the most nestings
are the (al + l)-hop edges, each nesting 1

2 (l −2)(l −1) edges, ensuring the layout is k-defective.
To cover all n(n−1)

2 edges of Kn, note that each qa contains
∑l

i=1(n − (al + i)) edges. For
h =

⌈
n−1

l

⌉
, the total edges assigned satisfy

∑h−1
a=0

∑l
i=1(n − (al + i)) ≥ n(n−1)

2 . ◀

We give bounds on the k-defective queue number of Kn,n, considering both the general case
and the separated setting, where one part precedes the other [1].

▶ Corollary 4. The 1-defective queue number of Kn,n in the separated setting is
⌈ 2n−1

3
⌉
.

For k > 1, it ranges between
⌈

2n−1
k+2

⌉
and

⌈ 2n−1
l

⌉
in the separated setting, while in the

non-separated setting it ranges between
⌈

n−1
k+2

⌉
and

⌈ 2n−1
l

⌉
, where l =

⌊
3+

√
8k+1
2

⌋
.

3 Stack Layouts

A graph admits a k-defective h-stack layout if and only if its edges can be partitioned into
h defective stacks, each forming an outer k-planar subgraph. This yields the following
characterization.

▶ Theorem 5. A graph has k-defective stack number 1 if and only if it is outer k-planar.

We leverage the characterization given above to obtain bounds on the edge density of the
graphs admitting k-defective h-stack layouts.
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▶ Theorem 6 (Ábrego et al. [8], Pach et al. [6]). Any n-vertex graph that admits a k-defective
1-stack layout has at most: (i) 5

2 n−4 edges, if k = 1, (ii) 3n−5 edges, if k = 2, (iii) 13
4 n− 11

2
edges, if k = 3, (iv) O(

√
kn), otherwise. Also, the first three bounds are tight.

▶ Theorem 7. An n-vertex graph with a 1-defective h-stack layout has at most
( 3

2 h + 1
)

n−4h

edges.

In the following, we present bounds on the k-defective stack numbers of Kn and Kn,n. For
k = 1, our upper bounds are tight (up to small constants).

▶ Theorem 8. The k-defective stack number of Kn is at least
⌈

n
2k+2

⌉
and at most

⌈
n

l+2

⌉
,

where l=
⌊

−1+
√

8k+1
2

⌋
.

▶ Corollary 9. The 1-defective stack number of Kn,n in the separated setting is at least
⌈

n
2

⌉
and at most

⌈ 2n
3

⌉
, while in the non-seperated setting it is at least

⌈
n
4

⌉
and at most

⌈
n
2

⌉
.

▶ Theorem 10. The k-defective stack number of Kn,n in the separated setting is at least⌈
n

2k+2

⌉
and at most

⌈
n
l

⌉
, where l =

√
k + 1.

4 Open Problems

Our work raises several new open problems, which we list below.
Extend to other linear layouts (e.g., deques, riques) and mixed settings.
Explore defects beyond bounded conflict graph degree, such as bounding diameter.
Research questions from our results: (i) complexity of recognizing graphs with k-defective
h-queue layouts for k, h ≥ 1, (ii) improve bounds on k-defective stack and queue numbers
of Kn for k > 1, and (iii) study other graph classes.
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⌊
−1+

√
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Conflict Graph

Stack/queue number = minimum required
number of stacks/queues.

Defective layouts and colorings
∃ k-defective layout with h stacks (queues) iff
∃ ≺ s.t. the conflict graph admits an h-coloring
with monochromatic components of degree ≤ k

1-defective 2-stack layout

1-defective 2-queue layout

• Extend to other linear layouts (e.g., deques, riques) and mixed settings.
• Explore new defect types, such as bounded diameter in conflict graphs.
• Study the complexity of recognizing graphs that admit k-defective h-queue layouts.

• Nodes → edges in the same page.
• Edges → forbidden patterns.
• Degree at most k at every page → k-defects.

k-defective stack/queue number = minimum
required number of k-defective stacks/queues.

• Given a graph, order ≺ its vertices
• and partition its edges into pages s.t. each

page has a property.

In a stack the edges are
crossing-free

In a queue the edges
are non-nested
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k-defective q.n. Upper BoundLower Bound

Outer 1-planar (k = 1)

Kn

Kn,n (sep)

Kn,n (non sep)

⌈n−1
k+2 ⌉ ⌈n−1

l1
⌉

⌈ 2n−1
k+2 ⌉ ⌈ 2n−1

l1
⌉

⌈n−1
k+2 ⌉ ⌈ 2n−1

l1
⌉

P
ro

bl
em

s

Theorem ([1, 2])
Any n-vertex graph that admits a k-defective h-stack layout has at most

(3(i− 1) + 1)-hops

(3(i− 1) + 2)-hops

(3(i− 1) + 3)-hops

l3 =
√
k + 1

Planar (k = 1)

Outer 1-planar graphs have ≤ 5n
2 − 4 edges ⇒

The 1st page has so many edges, while the rest have at
most 3n

2 − 4 (as the boundary edges are in the 1st page).
Total edges: 5n

2 − 4 + (h− 1) · ( 3n2 − 4) = (3n2 h+ 1)n− 4h

Theorem

The edges of Kn can be partitioned into
n− 1 classes: C1, C2, . . . , Cn−1.
Cn−1 has n− 1 edges.

In a k-defective queue, at most k + 2 edges of
Cn−1 can be in one queue. Total:

⌈
n−1
k+2

⌉

Directly from the queue number bounds of K2n.

l1 =
⌊
3+

√
8k+1
2

⌋Lower bound for Kn,n sep. Lower bound for Kn,n non-sep.

A graph has k-defective stack
number 1 iff it is outer k-planar.

v1 u1 v2 u2 v3 u3

Upper Bound for Kn,n

v0 v1 v2 v3 u0 u1 u2 v0 v1 v2u0 u1 u2 u3

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

C1 C3 C5 C7 C9 C8 C6 C4 C2

v0 v1 v2 v3 v4 v5 v6

k = 1

2

33

2

2

span-0

span-1 u w

v1 v2

u w

u

w

v1 v2u

w

v

v

Lower bound for Kn

In any vertex order of Kn,
there exist n

2 pairwise
crossing edges.
Thus, at most k+1 of them lie
in the same defective stack.

Proof

v3u3

3. ( 134 h+ 1)n− 11
2 h, if k = 3

4. O(
√
khn), otherwise

1. ( 52h+ 1)n− 4h edges, if k = 1
2. (3h+ 1)n− 5h edges, if k = 2

u0v0

h = #queues

h = #stacks
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