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Abstract
A flip in a plane spanning tree T is the operation of removing one edge from T and adding another
edge such that the resulting structure is again a plane spanning tree. For trees on a set of points in
convex position we study two classic types of constrained flips: (1) Compatible flips are flips in which
the removed and inserted edge do not cross each other. We relevantly improve the previous upper
bound of 2n − O(

√
n) on the diameter of the compatible flip graph to 5n

3 − O(1), by this matching
the upper bound for unrestricted flips by Bjerkevik, Kleist, Ueckerdt, and Vogtenhuber [SODA 2025]
up to an additive constant of 1. We further show that no shortest compatible flip sequence removes
an edge that is already in its target position. Using this so-called happy edge property, we derive a
fixed-parameter tractable algorithm to compute the shortest compatible flip sequence between two
given trees. (2) Rotations are flips in which the removed and inserted edge share a common vertex.
Besides showing that the happy edge property does not hold for rotations, we improve the previous
upper bound of 2n − O(1) for the diameter of the rotation graph to 7n

4 − O(1).
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1 Introduction

Let S be a finite point set in the plane in general position, that is, no three points lie on a
common line. We call S a convex point set if no point in S lies in the interior of the convex
hull of S. A plane straight-line graph of S is a graph with vertex set S and whose edges are
straight line segments between pairs of points of S such that no two edges intersect, except
at a common endpoint. All graphs considered in this paper are straight-line graphs. For
brevity we will omit the term straight-line. A plane spanning tree is a plane connected graph
with n− 1 edges. In a convex point set, edges appear in two forms. Convex hull edges are
edges that lie on the boundary of the convex hull of the point set. Edges that are not convex
hull edges are diagonals.

Flip Graphs of Plane Spanning Trees. A flip between two plane spanning trees of S is the
operation that removes an edge from a tree and adds another edge such that the resulting
structure is again a plane spanning tree. We also denote this operation as an unrestricted flip.
A constrained version of flips are so-called compatible flips, for which the removed edge and
the added edge are not allowed to cross. Rotations are a restricted subclass of compatible flips
for which we additionally require the removed edge and the added edge to share a common
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5:2 Constrained Flips in Plane Spanning Trees

vertex. The most restricted and local operation is a so called slide. A slide is an operation
in which the added edge (u, v) and the removed edge (v, w) are again required to share a
common vertex, additionally, the triangle ∆(u, v, w) must not contain any other vertex and
the edge (u, w) has to be contained in the current tree. This can visually be interpreted as
sliding the edge (u, v) along the edge (u, w) into the edge (v, w). The (compatible) flip graph
of plane spanning trees of S has as its vertex set all such trees. Two vertices T1, T2 of this
flip graph are connected with an edge if and only if T1 can be transformed into T2 by a single
(compatible) flip. See Figure 1 for an example of flips in plane spanning trees.

(1)

(2) (3)

(4)

Figure 1 Four flips in a plane spanning tree. (1) unrestricted flip, (2) compatible flip, (3) rotation,
(4) slide.

Given an initial tree Tin and a target tree Ttar, a (compatible) flip sequence from Tin
to Ttar is a path from Tin to Ttar in the (compatible) flip graph. The (compatible) flip distance
between Tin and Ttar is the length of a shortest path between Tin and Ttar in the flip graph.
Any (compatible) flip sequence of this length is called a shortest (compatible) flip sequence.
Similarly, we define the rotation graph, rotation sequences and the rotation distance. See
Figure 2 for an illustration of the concepts.

For graph reconfiguration problems three natural questions arise: (1) Is the flip graph
connected? (2) What is the diameter of the flip graph? (3) What is the complexity of
computing shortest flip sequences between two specific configurations?

Connectedness and Diameter. For any n-point set S, the flip graph of plane spanning
trees on S is known to be connected and has radius exactly n− 2. The same holds for the
compatible flip graph and the rotation graph; see [5, 6]. Hence, the diameter always lies
between n−2 and 2n−4. Since a lower bound for the diameter of

⌊ 3
2 n

⌋
−5 for convex n-point

sets was shown in [12], the flip graph of plane spanning trees on convex point sets has received
considerable attention. However, despite a prevailing conjecture that the diameter is at most
3
2 n + O(1) [10, 14], even improving the upper bound to 2n− o(n) took surprisingly long. In
the last few years, the upper bound for its diameter was improved to 2n− Ω(log(n)) in [1]
and soon after to 2n−Ω(

√
n) in [10]. The upper bound from [10] is constructive and, though

not stated explicitly, only uses compatible flips. Hence it also provides an upper bound for
the diameter of the according compatible flip graph. In [8], the diameter was bounded from
above by cn with c = 1

12
(
22 +

√
2
)
≈ 1.95, which marked the first linear improvement over

the initial bound from [5]. Very recently, a lower bound of 14
9 n−O(1) and an upper bound

of 5
3 n− 3 on the diameter were achieved in [6], where the upper bound in general requires
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Figure 2 Flip graph of plane spanning trees on four vertices in convex position. Dashed edges
denote flips that are part of the flip graph, but not the compatible flip graph. The dotted lines are
compatible flips, but not rotations and the dash dotted lines are rotations but not slides. One pair of
two plane spanning trees is marked in orange. Their shortest flip sequence of length one is marked in
red (thicker dashed). A shortest compatible flip sequence of length two is marked in blue (thicker).

non-compatible flips. It is also known that any plane spanning tree can be transformed into
any other using Θ(n2) many slides [4]. For a survey on further flip operations in trees with
multiple flips in parallel as well as flips with labeled edges, we refer to [18].

Happy Edges and Complexity. For any graph reconfiguration problem, happy edges are
edges that lie in both the initial and the target graph. A flip graph fulfills the happy edge
property if there exists a shortest flip sequence between any two graphs that never flips happy
edges. The happy edge property often is a good indication for the complexity of a graph
reconfiguration problem. For example, for triangulations of simple polygons [3] and general
point sets [16, 19], finding shortest flip sequences is computationally hard. The hardness
proofs use counterexamples to the happy edge property as a key ingredient. Conversely, the
happy edge property is known to hold for triangulations of convex polygons [20]. Though
the complexity of finding shortest flip sequences is still open, the happy edge property yields
multiple fixed-parameter tractable algorithms [7, 11, 15, 17]. Moreover, the happy edge
property holds for plane perfect matchings of convex point sets and shortest flip sequences
can be found in polynomial time [13]. For plane spanning trees in convex position the happy
edge property was conjectured to hold [1, 14] for different types of flips. Up to now, it has
only been disproved for slides [1].

Contribution and Outline. We will start by improving upper bounds on the flip graph for
restricted flip types in convex point sets. In Section 2 we improve the upper bound on the
diameter of the compatible flip graph from 2n−

√
n in [10] to 5

3 (n−1). Section 3 is dedicated
to improving the upper bound on the rotation graph from 2n−O(1) in [5] to 7

4 (n− 1).
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5:4 Constrained Flips in Plane Spanning Trees

Afterwards we deal with the happy edge property. In Section 4 we provide a more refined
framework for happy edge properties and in Section 5 we prove the happy edge property
for compatible flips in convex point sets and provide a counterexample to the happy edge
property for rotations.

Finally, in Section 6 we use variants of the happy edge property to show fixed-parameter
tractability of the flip distance for both unrestricted and compatible flips.

Due to space restrictions, full technical details and proofs for statements marked with (⋆)
are given in the arXiv Version of our paper [2].

2 Bounding the Diameter of the Compatible Flip Graph

This section is devoted to improving the upper bound on the diameter of the compatible flip
graph. All the currently known improvements to the upper bound of the length of shortest
flip sequences for unrestricted flips are based on two different ways to handle edges: They
either invest two flips to flip an edge from Tin \ Ttar to a convex hull edge and later flip that
convex hull edge to an edge of Ttar \ Tin, or perform a single perfect flip, that is, a flip from
an edge of Tin \ Ttar to an edge of Ttar \ Tin. Upper bounding the length of a flip sequence
is then achieved by lower bounding the number of perfect flips. Note that any such flip
sequence induces a pairing of the edges of Tin \ Ttar with edges of Ttar \ Tin.

To obtain our improved bound for the diameter of the compatible flip graph, we build on
strategies for bounding the diameter of the flip graph with unrestricted flips from [6]. We
give an overview of their proof and highlight the parts where we provide adjustments to
make the flip sequence compatible.

The pairing of edges in [6] is obtained as follows: The authors consider the linear
representation of a tree T on a convex point set as illustrated in Figure 3. The linear
representation is obtained by cutting the convex point set between two consecutive vertices
on the convex hull and unfolding the tree T such that its vertices are on a straight line.

v10

v9

v10
v8

v7

v6v5

v4

v3

v2

v1

v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 3 A tree T on a convex point set (left) and a linear representation of T (right).

The linear representation induces a linear order v1, . . . , vn of the vertices of T . With this
linear order, the length of an edge e = (vi, vj), where i < j, is defined as j − i. Further, the
edge e covers all vertices {vi, . . . , vj} as well as any edge (vk, vℓ) with k, ℓ ∈ {i, . . . , j}.

A gap {vi, vi+1} is an edge between two consecutive vertices in the linear order (which
might or might not be present in the tree T ). Next, the authors define a bijection (Lemma 3.1
in [6]) between gaps and edges of T , where each gap is in bijection with the shortest edge
of T that covers that gap. The edges are then partitioned into categories based on how many
vertices they share with their corresponding gap (vi, vi+1); see Figure 4 for an illustration.
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Concretely, an edge (u, v) is a . . .
short edge if {u, v} = {vi, vi+1}
near edge if |{u, v} ∩ {vi, vi+1}| = 1
wide edge if |{u, v} ∩ {vi, vi+1}| = 0

e1

e2

e3

e4

e5
g1 g2 g3 g4 g5

Figure 4 Edges e1, e3 and e5 are short edges for gaps g1, g3 and g5 respectively, e4 is a near edge
for g4, and e2 is a wide edge for g2.

The authors show that the number of short edges in any tree T is always larger than the
number of wide edges. In a next step, they construct an edge-edge-bijection between the edges
in Tin and Ttar by concatenating the edge-gap-bijection for Tin with the gap-edge-bijection of
Ttar. An edge e ∈ Tin and its image from the edge-edge-bijection e′ ∈ Ttar form a pair. If
an edge e is in both Tin and Ttar, and e is in bijection to itself, then e is not flipped at all.
Note that any edge can be flipped to its assigned gap by a single (compatible) flip. The
authors use this and the relation between the numbers of short and wide edges in each tree
to show that all pairs of edges containing at least one short or wide edge can be flipped
using an average of 3

2 flips per pair. This is done by flipping every edge in such a pair to its
corresponding gap and later from its gap to its target edge, which takes two flips minus the
number of short edges in the pair.

The remaining pairs then only consist of near edges. These pairs can further be partitioned
into three sets as illustrated in Figure 5.

above pairs, where e and e′ share a vertex and e is longer than e′.
below pairs, where e and e′ share a vertex and e is shorter than e′.
crossing pairs, where e and e′ cross, or equivalently, e and e′ share a different vertex with
their gap.

g

g g

g g

g

Above Below Crossing

Figure 5 Illustration of above, below and crossing pairs of edges. Edges of Tin are drawn above
the vertices, while edges of Ttar are drawn below the vertices. The respective gap is denoted by g.
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5:6 Constrained Flips in Plane Spanning Trees

The sets of above, below and crossing pairs are then denoted by A, B, and C, respectively.
The authors provide a flip sequence that flips all pairs in A (resp. B, C) directly [6, Lemma 3.2].
Since a direct flip of an above or below pair is compatible, this implies the following lemma.

▶ Lemma 1. Assume that in the linear representation, the trees Tin and Ttar consist only of
short edges and pairs of edges in A (resp. B). Then there is a compatible flip sequence from
Tin to Ttar of length |A| (resp. |B|).

In contrast, no direct flip between two edges of a pair in C is compatible, since any such
pair is crossing. In the arXiv version of our paper [2] we develop an approach to flip these
edges such that the resulting flip sequence is compatible while using only one additional flip.

▶ Lemma 2 (⋆). Assume that in the linear representation, the trees Tin and Ttar consist
only of short edges and pairs of edges in C. Then there is a compatible flip sequence from
Tin to Ttar of length |C|+ 1.

To obtain their upper bound on the flip distance between two trees Tin, Ttar, the authors
cut the original instances Tin, Ttar along happy diagonals, handle each of the resulting
subinstances separately, and then add up the flips needed in each of the subinstances. Let b

denote the number of happy convex hull edges, c the number of happy diagonals, and d the
cardinality of Tin \ Ttar. Using that b + c + d = n− 1, their resulting bound [6, Theorem 4.1]
is 5

3 d + 2
3 b− 4

3 ≤
5
3 (n− 1)− 4

3 . With similar calculations, we show the following theorem for
compatible flips in the arXiv version of our paper [2].

▶ Theorem 3 (⋆). Let Tin and Ttar be two plane spanning trees in convex point sets with n

vertices. Then, there exists a compatible flip sequence from Tin to Ttar of length at most
5
3 d + 2

3 b + c− 1
3 ≤

5
3 (n− 1)− 1

3 , where d = |Tin \ Ttar| = |Tin∆Ttar|
2 and where b and c denote

the number of happy convex hull edges and happy non-convex-hull edges, respectively.

We remark that our bound with respect to the parameters d, b, and c can be relevantly
higher than the one in [6, Theorem 4.1] if the two trees share many happy diagonals. This
behaviour was not unexpected due to the following result: In [9, Theorem 1.6], the authors
provide examples of pairs of plane spanning trees with (unrestricted) flip distance d and
compatible flip distance 2d. The according tree pairs have c ≈ n

2 happy diagonals. However,
any pair of trees that could reach the upper bounds in [6, Theorem 4.1] and Theorem 3 must
have c = 0. So while for certain instances the flip distance and the compatible flip distance
may differ strongly, extremal examples that determine the diameter are not affected.

3 Bounding the Diameter of the Rotation Graph

Next, we show that for the even more constrained rotation as flip operation, the diameter of
the resulting flip graph is linear with leading coefficient less than two.

For this purpose we again construct a pairing of edges such that a perfect flip can
be performed for many of them. The challenge that arises, compared to unrestricted or
compatible flips, is that rotations require the removed and the added edge to share a vertex.
This rules out the gap based pairing from the last section, since in crossing pairs, edges do
not share vertices and the same holds for most pairs that contain a wide edge.

▶ Lemma 4. For a plane spanning tree T on a point set S and a vertex v ∈ S there exists a
bijection ρT,v between vertices in S \ {v} and edges in T such that ρT,v(w) is incident to w

for every vertex w ∈ S \ {v}.
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Proof. We root the tree T at v and orient every edge away from v such that v forms the
unique source of the oriented graph; see Figure 6 for an illustration. Now map each vertex in
S \ {v} to its incoming edge. ◀

▶ Corollary 5. Let T1 and T2 be two plane spanning trees on a point set S and let v be a
vertex in S. Then there exists a pairing of edges from T1 with edges in T2 such that:

Two edges that are paired together share a vertex.
Different pairs of edges share a different vertex.
No pair of edges has v as its shared vertex.

Proof. The pairing {(ρT1,v(w), ρT2,v(w) | w ∈ S \ {v}} induced by the bijection in Lemma 4
has all the desired properties. ◀

v

Figure 6 Illustration of the bijection from Lemma 4. All edges are oriented away from the root v.
Each vertex in S \ {v} is in bijection with its unique incoming edge.

For any two given plane spanning trees Tin and Ttar, we apply the bijection from Corollary 5
with v := vn to obtain a pairing of the edges of the two trees with all the mentioned properties.
For an edge e that is in bijection with a vertex vi we say that e is attached to vi. Note that
each vertex vi with i ∈ {1, . . . , n− 1} has an attached edge from each of Tin and Ttar, while
vn has no attached vertices.

From this point on we consider the two trees presented in their linear representation,
see Figure 3, such that vn is the rightmost vertex. The pairs of edges (ein = (vi, vj), etar =
(vi, vk)), where vi is the vertex where edges ein and etar are attached to, can now be subdivided
into multiple classes. We say that a pair of edges is . . .

right-attached above if j ≤ k < i

left-attached above if i < k ≤ j

right-attached below if k ≤ j < i

left-attached below i < j ≤ k

diving if j < i < k

jumping if k < i < j

We denote the respective sets of pairs in that order by RA, LA, RB LB, D and J .
Additionally, we set L = LA ∪ LB and R = RA ∪ RB. See Figure 7 for an illustration of
the six types of edge pairs, as well as the two groups L and R. We remark that happy
edges that are left-attached fulfill both, the definition for left-attached above and the one
left-attached below. This does not pose any problem, since in the parts of the proof where
this is relevant, we will only consider the whole set L. By symmetry, the same can be
said about right-attached happy edges. Another noteworthy observation is that we do not
handle convex hull edges any differently than diagonals. There might even be happy convex
hull edges that belong to different pairs. This will lead to cases in which we rotate happy
(convex-hull) edges. We allow this on purpose, since we will see in Section 5 that the happy
edge property does not hold for rotations.

GD 2025



5:8 Constrained Flips in Plane Spanning Trees

RA

RB

LA

LB

D

J

R L

Figure 7 Illustration of pairs of edges in the sets RA, RB, R, LA, LB, L, D and J. Edges of Tin

are drawn above the vertices, while edges of Ttar are drawn below the vertices. Each edge points to
the vertex which it is attached to.

The new upper bound on the diameter of the rotation graph is described by the following
Theorem.

▶ Theorem 6. There exists a rotation sequence from Tin to Ttar of length at most
2(n− 1)−max

{
|L|, |R|, |J |, |D|

}
≤ 7

4 (n− 1)

We will use Lemma 7 below to get the edges from three of the sets L, R, J , and D “out of
the way”. Then we will show that all edges from the remaining set can be perfectly flipped.

We pair the edges and vertices of T via the bijection ρT,vn . Further, for an arbitrary
j ∈ {1, . . . , n − 1}, we assign a gap to every vertex except vn by the following function
(indices taken modulo n).

δj : vk 7→

{
(vk, vk+1) if k > j

(vk−1, vk) if k ≤ j

In other words, we choose one particular gap (vj , vj+1) that is not assigned to any vertex
and the other gaps are assigned such that they contain their assigned vertex.

In the following lemma, j is an arbitrary index, I is a subset of the convex hull edges in T

that behave “nicely” with respect to δj , and K are all edges of T that are incident to vn. I∗

and K∗ are according subsets that are required to be present in the resulting tree T ∗.

▶ Lemma 7. For any j ∈ {1, . . . , n− 1}, let I = {k ∈ {1, . . . , n− 1} | ρT,vn
(vk) = δj(vk)}

and K = {k ∈ {1, . . . , n − 1} | ρT,vn
(vk) = (vn, vk)}. Further, let I∗, K∗ be a partition of

{1, ..., n− 1}, that is, I∗ ∩K∗ = ∅ and I∗ ∪K∗ = {1, . . . , n− 1}. Then there exists a rotation
sequence from T to T ∗ of length at most n− 1− |I ∩ I∗| − |K ∩K∗| that does not flip edges
in ρT,vn({vk | k ∈ (I ∩ I∗) ∪ (K ∩K∗)}) and T ∗ has the following properties:

For all k ∈ I∗, the tree T ∗ contains the convex hull edges δj(vk). That is, the convex hull
edges attached to vk directed away from vn with respect to the order of vertices along the
path on the convex hull from vn to (vj , vj+1)1.
The tree T ∗ contains the edges (vn, vk) for all k ∈ K∗. That is, all vertices that are
attached to vk are connected directly to vn via edges that form a fan at vn.

1 We remark that this direction in general differs from the orientation induced by the tree that is used in
the proof of Lemma 4.
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We refer to Figure 8 for an illustration of Lemma 7 applied to the tree from Figure 6.

Proof. We set E0 = ρT,vn({vk | k ∈ (I ∩ I∗) ∪ (K ∩K∗)}) and T0 = T \ E0. Now consider
the forest T0,vis of edges that are visible from vn in T0. These are all edges for which no
straight-line segment from vn to the edge is intersected by any other edge. Further, let vk

be a vertex of degree one in T0,vis. Then the only edge incident to vk in T0,vis is ρT,vn
(vk).

In particular, if k ∈ I∗ then δj(vk) does not contain any edge and is visible from vn, and if
k ∈ K∗ then the straight-line segment between vn and vk is uncrossed.

We can execute a flip that exchanges the edge ρT,vn(vk) with the edge δj(vk) (if k ∈ I∗)
or (vn, vk) if k ∈ K∗ to get a valid tree. We replace E0 ← E0 ∪ {δj(vk)} (resp. E0 ←
E0 ∪ {(vn, vk)}) and T0 ← T0 \ {δj(vk)} (resp. T0 ← T0 \ {(vn, vk)}) and repeat the process.
We repeat until E0 = T . This takes at most n− 1− |I ∩ I∗| − |K ∩K∗| rotations, since the
cardinality of E0 increases by one in every iteration. ◀

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 8 Illustration of Lemma 7. Left: The tree from Figure 6 with n = 8. Middle: Target
structure of Lemma 7 with K∗ = ∅ and chosen index j = 3. The edges in ρT,vn (I ∩ I∗) =
{(v8, v1), (v1, v2), (v7, v6)} that do not get rotated when rotating from the left to the middle tree are
marked in red. Right: Target structure of Lemma 7 with K∗ = {2, 5} and the same index j = 3 as
before. The edges in ρT,vn (I ∩ I∗) = {(v8, v1), (v7, v6)} that do not get rotated when rotating from
the left to the right tree are marked in red.

A gap (vi, vi+1) in a tree T is called empty if the edge (vi, vi+1) is not part of T . Note
that in the target tree T ∗ from Lemma 7, the gap (vj , vj+1) is empty. Moreover, by setting
K∗ = ∅, a flip sequence as in Lemma 7 can be used to rotate all edges to the convex hull
such that all convex hull edges that point away from vn do not have to be rotated.

3.1 The Sets L and R

▶ Proposition 8. There exists a flip sequence from Tin to Ttar that uses 2(n − 1) −
max

{
|L|, |R|} rotations.

Without loss of generality, let |R| > |L|. For the sets R, we will (1) rotate all edges except
the ones in R to the convex hull such that every edge in R has an empty gap to the left of its
attachment point, (2) rotate all edges in pairs in R to their target position, and (3) obtain
the final tree. Steps (1) and (3) are described in Lemma 9, Step (2) happens in Lemma 10.
An illustration of the strategy can be seen in Figure 9.

▶ Lemma 9 (⋆). There exists a rotation sequence of length at most n− 1− |R| that rotates
all edges except the ones in R to the convex hull such that each edge is rotated into the gap
in the convex hull that is left of its assigned vertex. In particular, for an edge e = (vi, vr)
with i < r that belongs to a pair in R, the gap (vr−1, vr) in the convex hull is empty. A
symmetric argument holds for pairs in L.

GD 2025



5:10 Constrained Flips in Plane Spanning Trees

Lemma 9

Lemma 10

Lemma 9

Figure 9 Steps of the proof of Proposition 8. First, rotate all edges except the ones in R (marked
in red) to the convex hull, then rotate the pairs in R. At last, rotate all remaining edges from the
convex hull back in.

Lemma 9 is an iterative application of Lemma 7. We apply the lemma with K∗ = ∅ to
every subtree that results from cutting the tree along edges in R (resp. L). Let T1 and T2 be
the trees obtained from applying Lemma 9 to Tin and Ttar.

▶ Lemma 10 (⋆). There exists a rotation sequence from T1 to T2 of length at most |R|
(resp. |L|).

The proof of Lemma 10 reduces to the notion of conflict graphs from [6]. In Section 2,
left-attached and right attached pairs have been combined to above and below pairs, but we
also get an acyclic conflict graph, if we pair them according to whether they are right-attached
of left-attached.

3.2 The Sets D and J

▶ Proposition 11. There exists a flip sequence from Tin to Ttar that uses 2(n − 1) −
max

{
|D|, |J |} rotations.

As the first rotation of the rotation sequence we rotate ρTin,vn
(v1) into the edge (v1, vn).

From now on, we say that a gap is visible from above if the gap is empty and shares a face
in the tree (more specifically a face of the drawing of Tin combined with the convex hull)
with (v1, vn). The concept is illustrated in Figure 10. Note that there is always a unique gap
that is visible from above and that it has an edge eℓ that is attached to its left vertex and
(maybe) an edge er that is attached to its right vertex. er may not exist if g is the rightmost
gap. Further, we show that eℓ and er share a face with (v1, vn).

▶ Lemma 12. eℓ and er share a face with (v1, vn).

Proof. Assume v1 and vn share a face with k additional vertices. Then it also has to share a
face with k further edges in order for T to be a tree. Those k edges are exactly the edges
that are attached to the k vertices and, thus, include eℓ and er. ◀
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visible from above

eℓ er

Figure 10 Gap that is visible from above.

▶ Lemma 13 (⋆). There exists a flip sequence of length at most n− 1 that transforms Tin
into a tree T ∗ that only contains the following three groups of edges:

(A) some convex hull edges attached to their right vertex,

(B) all target edges of jump pairs, and

(C) some edges that are attached to their left vertex and have as a second vertex a vertex of
a jump pair or the vertex vn.

Figure 11 An intermediate tree T ∗ as produced by Lemma 13. The target edges from jump pairs
are marked in red. The edges of type C, that from the set K∗ in Lemma 14 are marked in blue.

A tree T ∗ as obtained from Lemma 13 is depicted in Figure 11. The edges that are of
special interest for the further application of Lemma 14 are highlighted with colors.

▶ Lemma 14 (⋆). We can transform Ttar into T ∗ as in Lemma 13 in at most n− 1− |J |
rotations.

To obtain Lemma 14, we apply Lemma 7 to every face that results from cutting the tree
along edges in pairs in J .

Combining the rotation sequence from Lemma 13 (going from Tin to T ∗) and the reverse
rotation sequence from Lemma 14 (going from T ∗ to Ttar), we obtain a rotation sequence
between Tin and Ttar of length at most 2(n− 1)− |J |, which proves Proposition 11.
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5:12 Constrained Flips in Plane Spanning Trees

4 Relations of Happy Edge Properties

In this section, we introduce a more refined distinction of happy edge properties.

▶ Definition 15. A graph reconfiguration problem, in which flips exchange edges, fulfills the
(weak) happy edge property, if, from any initial graph Gin to any target graph Gtar, there
exists a shortest flip sequence that does not flip happy edges.
strong happy edge property, if, from any initial graph Gin to any target graph Gtar, any
shortest flip sequence does not flip happy edges.
perfect flip property if, whenever we can perform a flip f in Gin such that the resulting
graph G1 has one edge more in common with Gtar than Gin has in common with Gtar, then
there exists a shortest flip sequence from Gin to Gtar that has G1 as its first intermediate
graph (that is, the flip sequence starts with f and f is called a perfect flip).

Further, we provide a framework, that allows us to compare the different properties.

▶ Proposition 16 (⋆). Let P be a graph reconfiguration problem where flips exchange one
edge at a time.

(i) If any flip sequence in P that flips at least one happy edge can be shortened by at least
two flips, then P fulfills the perfect flip property.

(ii) If for any flip in P from G to (G \ {e1}) ∪ {e2}, e1 and e2 can never be in the same
configuration, then the reverse direction in (i) holds.

We remark that all the introduced properties may or may not hold for certain graph
reconfiguration problems. While the condition in Proposition 16(ii) is not fulfilled for trees,
it does hold for example for triangulations.

5 Happy Edges in Plane Spanning Trees on Convex Sets

In [1], the authors formulated the Weak Happy Edge Conjecture for trees on convex point
sets:

▶ Conjecture 17 (Conjecture 17 in [1]). For any two plane spanning trees Tin and Ttar
on a convex point set, there is a shortest flip sequence from Tin to Ttar that does not flip
happy edges.

Based on an example from [1] for a different context, we first observe that the perfect flip
property holds neither for unrestricted flips nor for compatible flips on trees.

In contrast, we will show in this section that the strong happy edge property does hold
for compatible flips on trees. Our first proof ingredient is the following lemma, which is an
extension of [1, Proposition 18] for compatible flips.

▶ Lemma 18 (⋆). Consider any point set S and any two plane spanning trees Tin and Ttar
on S and any shortest compatible flip sequence from Tin to Ttar. If some edge e is removed and
later added back, then some flip during that subsequence must add an edge f that crosses e.

In [1], a parking edge is defined as an edge that appears in a flip sequence and that is not
contained in Tin ∪ Ttar. A second ingredient of our proof is Lemma 20, which verifies the
compatible flip analogue of the following conjecture from [1].

▶ Conjecture 19 (Parking Edge Conjecture, Conjecture 21 in [1]). For any convex point set S

and any two plane spanning trees Tin and Ttar on S, there is a shortest flip sequence from Tin
to Ttar that only uses parking edges from the boundary of the convex hull of S.
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Tin Ttar

≥ 3 flips
≥ 4 compatible flips

Perfect
flip

Perfect
flip

Perfect
flip

Perfect
flip

Perfect
flip

Perfect
flip

T ∗

Figure 12 Counterexample to the perfect flip property based on [1, Figure 7]. The top shows the
shortest flip sequence. The bottom sequence starts with two perfect flips, but reaches a point where
no more perfect flips are possible. Since there are two edges in the tree T ∗ that both cross two edges
from the target tree, at least three additional flips or four additional compatible flips are needed.

We remark that in [1, Claim 22] it is shown that for unrestricted flips Conjecture 19
implies Conjecture 17.

▶ Lemma 20 (⋆). For any convex point set S and any two plane spanning trees Tin and Ttar
on S, there is a shortest compatible flip sequence from Tin to Ttar that only uses parking
edges from the boundary of the convex hull of S.

f
f

f

Ti1−1 Ti2+1

B

A

B

A
A

A

A

B

B
B

B

A

h

A

B

h

A

B

Figure 13 Reordering flips in Lemma 20. The top path is the part of the original flip sequence
that contains f , the bottom path is the part of the reordered flip sequence that contains h.

Figure 13 shows the intuition behind the proof: One by one, we replace a parking edge f

that is not on the boundary of the convex hull with a parking edge h on the convex hull
boundary. To make this replacement possible, we change the order of the flips that happen
while f is part of the tree. The edge f splits the convex point set into two sides, say A and B.
Flips in either of the two sides can be executed independently from flips in the other side.
Assume f is added when flipping from the tree Ti1−1 to Ti1 and removed in the flip from Ti2

to Ti2+1. Exactly one of the sides, say side B, of Ti1−1 entirely contains a path that connects
the two endpoints of f . The flips in the other side, say side A, can be executed before f gets
added. Afterwards, we close a cycle in side A by adding the convex hull parking edge h and
execute all the flips in side B. We conclude the new subsequence of flips by removing h and
obtain the tree Ti2 .
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5:14 Constrained Flips in Plane Spanning Trees

We now show the strong happy edge property for compatible flips on trees.

▶ Theorem 21. For any convex point set S and any two plane spanning trees Tin and Ttar
on S, any compatible flip sequence from Tin to Ttar that removes (and adds) a happy edge is
at least one step longer than the shortest compatible flip sequence from Tin to Ttar.

Proof. Let Tin = T0, T1,...,Tk = Ttar be a compatible flip sequence that removes a happy
edge e in a flip from Ti to Ti+1. By Lemma 20, there exists a shortest compatible flip
sequence from Ti+1 = T ′

i+1,T ′
i+2,...,T ′

tar = Ttar that only uses parking edges from the convex
hull boundary. Since e crosses neither an edge of Tin ∩ Ttar nor one on the convex hull
boundary, e crosses no edge in the flip sequence T0,...,Ti,T ′

i+1,...,Ttar. Hence, by Lemma 18,
we can construct a shorter flip sequence that preserves e. ◀

By Proposition 16(i) and the example in Figure 12, Theorem 21 is best possible in the
sense that there are flip sequences that flip a happy edge and cannot be shortened by two
flips.

When we restrict the flip even further by only allowing edge rotations instead of all
compatible exchanges, the happy edge property no longer holds. Also for the more restricted
edge slides, the happy edge property does not hold, see [4] for the general case, and [1] for
convex point sets.

Figure 14 shows a counterexample to the happy edge property for convex point sets with
rotations. Assume the happy edge property would hold. Then the happy edge that passes
through the middle of our convex polygon would split the tree into two proper subtrees. In
each such subtree, the unhappy edge has a fixed position where it has to go. Since the initial
position and the target position of the unhappy edge do not share any vertex, we need at
least two rotations to get each unhappy edge from one position to the other. This gives us a
minimum length of four for any flip sequence that preserves happy edges.

Tin
Ttar

Figure 14 Counterexample to the happy edge property for the reconfiguration of plane spanning
trees in convex point sets using rotations.

The flip sequence in Figure 14 only uses three rotations. Therefore, the happy edge
property does not hold for the reconfiguration of plane spanning trees with rotations.

6 Fixed-Parameter Tractable Algorithms

Next, we show that the flip distance k and the compatible flip distance kc are fixed-parameter
tractable in k (resp. kc). The core ingredient for all proofs is the happy edge property for
convex hull edges, which is shown to hold for unrestricted flips in Proposition 18 in [1]. We
obtain further improvements on the runtime built on the happy edge property for all edges
and the parking edge property.

The upcoming lemma will describe a crucial step in the first two algorithms. Even if we
never flip happy convex hull edges, the number of happy edges that are on the convex hull
can still be arbitrarily large when compared to the number of unhappy edges. Therefore, we
have to reduce that number in order to obtain a reasonable instance size that is bounded by
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a function in k. We do this as follows: We mark all vertices that are incident to an unhappy
edge that is in the initial configuration or the target configuration. All non-marked vertices
are now only incident to convex hull edges. If we have a path between two marked vertices
that only travels along convex hull edges incident to only non-marked vertices (except the first
and/or last edge that start or end in a marked vertex), then we contract that path into one
single edge (if both endpoints are marked) or a single vertex (if only one endpoint is marked).
All the non-marked vertices get removed in the process. We call the new reduced instances
Tin,r and Ttar,r. The following Lemma states that in this contraction step no information
about the length of the flip sequence is lost.

v1

v2

v3

v4

v5
v6

v7

v8 v2

v3

v4

v5

v6

Contract (v2, v6)

Figure 15 An example of a tree before (left) and after (right) contracting the path from v2 to v6

along the convex hull.

▶ Lemma 22 (⋆). The (compatible) flip distance between Tin and Ttar has the same length
as the flip distance between Tin,r and Ttar,r.

Now, we are ready to obtain our first FPT-algorithm. We remark that the notation O∗

hides terms that are polynomial in n.

▶ Theorem 23. The flip distance k for unrestricted flips is fixed-parameter tractable in k

with runtime O∗((ck3)k), where c = 91.125. The constant c can be improved to 8 if the happy
edge property holds for unrestricted flips.

Proof. For the unrestricted flip we define good happy edges. All happy edges on the convex
hull are good happy edges. Further, a happy edge e that does not lie on the convex hull
splits the point set into two parts. If one of the two parts contains only happy edges, then e

is a good happy edge as well.

▷ Claim 24 (⋆). No good happy edge is flipped in any shortest flip sequence.

Now consider the tree N(Tin) that is obtained from Tin from exhaustively contracting
happy leaves and paths of happy edges along the convex hull as in Lemma 22. We consider
the dual tree of N(Tin), whose vertices are the faces of N(Tin) ∪ {convex hull edges} except
the outer face and which contains edge between two vertices if and only if their corresponding
faces share an edge of N(Tin).

▷ Claim 25 (⋆). Let P be a path in the dual tree that connects two faces containing distinct
unhappy edges such that all the edges on traversed faces are happy edges. Then any shortest
flip sequence either flips all those happy edges or none of them.

Let there be a total of t unhappy edges. Then there are a total of t− 1 paths P1,...,Pt−1
that fit the form of Claim 25. Let l1,...,lt−1 denote their number of happy edges in some
order. Any flip sequence of length k gets to spend a total of at most k − t flips on all these
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5:16 Constrained Flips in Plane Spanning Trees

happy edges combined. We enumerate all 2t−1 < 2k subsets of {P1, ..., Pt−1} and if their
number of happy edges sums up to less than k−t

2 , then we consider an instance that contains
all the faces that contain unhappy edges and the faces along the paths in the subset. Then
the total remaining tree contains at most k unhappy edges from Tin and k unhappy edges
from Ttar. That gives a total of at most 2k unhappy edges and a total of at most 4k vertices.
Additionally, we have a total of less than 0.5k edges from faces with only happy edges. This
gives another 0.5k vertices. So we have at most 4.5k vertices in our reduced forest. Brute
forcing the optimal solution gives us a total of 4.5k − 1 possible edges to remove and a
total of at most

(4.5k
2

)
positions to add edges for every flip. This gives us a total runtime

of O∗
(

2k
(

4.5k
(4.5k

2
))k

)
= O∗((91.125k3)k) based on the number of flip sequences that we

have to check.

▷ Claim 26 (⋆). If Conjecture 17 is true, then the constant c in Theorem 23 improves to 8.

Tin Ttar

Figure 16 We split the initial tree Tin along its happy edges (colored in green) into three parts,
from there we flip every part individually into its corresponding counterpart in Ttar.

Figure 16 gives an intuitive idea, where the improvement comes from. We cut the point
set along all happy diagonals such that the new instances have all their happy edges on the
convex hull. ◀

Next, we prove the existence of a faster FPT-algorithm for compatible flips that is based
on the parking edge property.

▶ Theorem 27. The compatible flip distance kc is fixed-parameter tractable in kc with runtime
O∗(((2 + ϵ)k2

c )kc), for any fixed ϵ > 0.

Proof. We divide the point set into components by cutting along happy edges and then
find the shortest flip sequence for every remaining component individually, see Figure 16.
Observe that all the happy edges in these components are convex hull edges. If all edges in a
component are happy, do not flip any edge in it. By Lemma 20 there exists a shortest flip
sequence that only uses edges from Tin, Ttar or the convex hull.

Now let ϵ > 0 be fixed and t =
⌈ 1

ϵ

⌉
. Let C1,...,Cm be all components with ≤ t unhappy

edges. Determine the respective flip distances kj from T
Cj

in to T
Cj

tar via brute force and
discard all the instances. For checking whether the remaining instances have a combined
flip distance of k′ = kc − k1 − ...− km one has to check ((2 + ϵ)k′2)k′ different flip sequences.
There are k′ choices to remove an edge and every component with l ≥ n diagonals has
l + 1 ≤ l(1 + 1

t ) ≤ l(1 + ϵ) holes in the convex hull where we can add edges. ◀
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7 Conclusion

In this work, we have considered the compatible flip graph and the rotation graph, by
improving the upper bound on the respective diameter from 2n − o(n) to 5

3 (n − 1) and
to 7

4 (n− 1), respectively. The constructive upper bounds align with our findings about the
happy edge property. On the one hand, we showed that any shortest compatible flip sequence
preserves happy edges and that there is a shortest compatible flip sequence that only uses
parking edges from the convex hull. The same holds for the compatible flip sequences that
we used to obtain our upper bound. On the other hand, shortest rotation sequences may
rotate happy edges. This may also happen in our upper bound construction. We further
showed an immediate application of happy edge properties in trees, namely, that they can be
used to derive fixed-parameter tractable algorithms. Open questions that are related to our
work are:
1. Can we close the gap between upper and lower bounds for the flip distance, for each of

the flip types? Do the diameters for different flip types differ or do they coincide?
2. Does the happy edge property still hold for flipping plane spanning trees if we drop one

of the restrictions that either the point set is convex or the flips are all compatible?
3. What is the time complexity of finding shortest flip sequences for plane spanning trees?

Again, this is interesting for each of the flip types.
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