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Abstract
Very recently, Chambers, Fasy, Hosseini Sereshgi and Löffler [3] showed that every Reeb caterpillar
admits a crossing-free drawing. It turns out that this does not hold for Reeb lobsters but we show
that these graphs admit drawings with at most one crossing per edge.
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1 Introduction

A layered graph (G, h) is a graph together with pairwise-distinct preassigned heights of its ver-
tices. In a drawing of a layered graph each vertex v is mapped to a unique point (x, h(v)) ∈ R2

and every edge is mapped to a continuous y-monotone curve [1, 7]. For a vertex v in a
layered graph we denote the horizontal line through v by ℓv. Let deg↓(v) denote the number
of neighbors w of v with h(w) < h(v). Similarly we let deg↑(v) denote the number of
neihgbors w of v with h(w) > h(v). A Reeb graph (G, h), introduced in [6], is a layered graph
such that for every vertex v we have deg(v) ∈ {1, 3}, deg↓(v) ≤ 2 and deg↑(v) ≤ 2. Reeb
graphs can be computed effieciently [4, 5] and capture the evolution of level sets of functions
from a topological space to the real numbers. They have many applications in topological
data analysis and visualization [8, 2].

A caterpillar is a tree C such that removing all leaves from C yields a path, called
the spine of C. A tree L such that removing all leaves yields a caterpillar is a lobster. The
spine of a lobster L is the spine of the caterpillar we obtain by removing all leaves from L.
The local crossing number lcr(G) of a (layered) graph G is the smallest integer k such that G

admits a drawing with at most k crossings per edge. A graph G is k-planar if lcr(G) ≤ k.

2 Our Results

First we show that crossings are needed to draw Reeb lobsters.

▶ Theorem 1. Not every Reeb lobster admits a crossing-free drawing.

Proof. Consider the lobster G shown in Figure 1(a). Assume that G admits a crossing-free
drawing Γ. Let G′ be the graph we obtain from G by adding two new independent vertices x, y

with h(x) > h(v) and h(y) < h(v) for every v ∈ V such that x is adjacent exactly to the
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Figure 1 (a) A Reeb lobster and (b) its extension to a K3,3-subdivision.
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Figure 2 Illustration of the proof of Theorem 2.

three vertices with greatest heights and y is adjacent exactly to the three vertices with lowest
heights; see Figure 1(b). Then it is easy to extend Γ to a crossing-free drawing of G′ but G′

is a K3,3-subdivision and thus non-planar; a contradiction. ◀

Next we show that the local crossing-number of a layered lobster may be arbitrarily large.

▶ Theorem 2. For every k ∈ N there is a layered lobster L such that lcr(L) > k.

Proof. For a fixed k ∈ N consider the lobster L sketched in Figure 2(a). We call a set F of l

edges an l-fan if all edges in F share a common endpoint c, the remaining endpoints have
degree 1 and the heights of these degree-1 endpoints lie either all above h(c) or all below h(c).
For each of the four fans in L the heights of the corresponding degree-1 vertices are chosen
such that each other vertex either lies below all of them or above all of them. Assume for
the sake of contradiction that there exists a drawing Γ of L with at most k crossings per
edge. Let u′ be a degree-1 vertex adjacent to u, whose incident edge does not cross an edge
incident to z; such a vertex exists as there are 3k + 1 degree-1 vertices adjacent to u and the
edges incident to z have at most 3k crossings. Analogously, there exists a degree-1 vertex w′

adjacent to w with h(w′) > h(w), whose incident edge does not cross an edge incident to z.
Similarly, we can find sets V ′′ and W ′′ each consisting of 2k + 1 degree-1 vertices adjacent
to v and w, respectively, that lie below w and whose incident edges do not cross an edge
incident to z. Let Γ′ denote the drawing induced by {u, u′, v, w, w′, z} ∪ V ′′ ∪ W ′′, where
we possibly reroute zu and zw so that they do not cross each other. Note that all edges
incident to z are crossing-free in Γ′. Consider the edges e = uu′ and f = ww′. Without
loss of generality assume that zu crosses ℓw left of w. Since the path uzw is crossing-free, f

crosses ℓz to the right of z and since zv is crossing-free, f crosses ℓv to the right of v. We
distinguish two cases based on whether e crosses ℓv on the left or on the right side of v.



M. Löffler, M. Münch, and I. Rutter 50:3

v0

v1

v2
v3

v4

v5

v6

Figure 3 Illustration of the construction of a 1-planar drawing of a lobster that is a Reeb graph.

Assume that e crosses ℓv on the left side of v; see Figure 2(b). As v lies between e and f

on ℓv and the edges incident to z are crossing-free in Γ′, each edge connecting v to V ′′

crosses e or f . Since |V ′′| = 2k + 1, e or f has more than k crossings; a contradiction.
It remains to consider the case where e crosses ℓv on the right side of v; see Figure 2(c).

Note that in this case e crosses the horizontal line ℓw to the right of w since the path wzv

is uncrossed. Since the path zuu′ starts and ends above w, crosses ℓw once to the left of w

and once to the right of w, and zu is crossing-free, all edges connecting w to W ′′ cross e.
Since |W ′′| = 2k + 1 it follows that e has more than k crossings; a contradiction. ◀

Finally we show that Reeb lobsters admit a drawing with at most one crossing per edge.

▶ Theorem 3. Every Reeb lobster is 1-planar.

Proof. Let L be a Reeb graph. We consider an extended spine of L; i.e, a path between
degree-1 vertices of L that contains the spine. Let {v0, . . . , vk} be an extended spine of L

such that for every 0 < i < k the two neighbors of vi are vi−1 and vi+1. We start by drawing
the extended spine x-monotone; see Figure 3 for an illustration. Next we insert all vertices
of L that are adjacent to the extended spine crossing-free by assigning each such vertex u

an x-coordinate close to the x-coordinate of its neighbor v on the extended spine. It remains
to add the missing leaves of L that have a neighbor that is not adjacent to a vertex on the
extended spine. Let w be such a leaf of L with neighbor u. Let vi be the neighbor of u on
the extended spine. If h(vi) does not lie between h(w) and h(u), then we can easily insert w

crossing-free by assigning it an x-coordinate close to or equal to the x-coordinate of u. This
does not result in a crossing. Hence assume that h(w) < h(vi) < h(u) or h(w) > h(vi) > h(u).
Now we assign w an x-coordinate between the x-coordinates of vi and vi−1. Then wu crosses
the edge vivi−1. Hence by construction for every such leaf w, the edge wu receives at most
one crossing. Recall that deg↓(u) ≤ 2, deg↑(u) ≤ 2. Thus every u that is neither a leaf of L

nor part of the extended spine has at most one neighbor w with h(w) < h(vi) < h(u) or
h(w) > h(vi) > h(u). Hence for every 0 < i < k also vivi−1 receives at most one crossing.
Thus the construction described above yields a 1-planar drawing of L. ◀

3 Conclusion

Our results show that the property to be a Reeb graph yields an upper bound of 1 for the
otherwise unbounded local crossing number of layered lobsters. An interesting question is
how this generalizes to more general Reeb trees.
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Theorem 3

Every Reeb lobster is 1-planar.

• Draw extended spine x-monotone

• Add caterpillar leaves crossing-free

v0
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v5
• Add lobster leaves as follows:

Let w be a lobster leaf with neighbor u and let vi be the spine-neighbor of u.

• Case 1: h(vi) = max(h(u), h(w), h(vi)) or h(vi) = min(h(u), h(w), h(vi))

• Case 2: h(u) < h(vi) < h(u) or h(u) < h(vi) < h(w)

→ add w crossing-free

→ add w s.t. wu crosses vi−1vi

deg↓(u) ≤ 2, deg↑(u) ≤ 2 ⇒ vi−1vi crossed at most once

By construction: wu crossed at most once

Theorem 2

For every k ∈ N there is a layered lobster that is not k-planar.
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Theorem 1

Not every Reeb lobster admits a planar drawing.

Example :

no planar drawing ⇐ no planar drawing

K3,3-subdivision

Layered graph with height function h : V → R s.t. for each v ∈ V

• h(v) ̸= h(w) for any w ̸= v

• deg(v) ∈ {1, 3}
• downward degree deg↓(v) ≤ 2, upward degree deg↑(v) ≤ 2

Known: Reeb caterpillars can be drawn crossing-free (Chambers, Fasy, Sereshgi, Löffler ’25 [1])

What about lobsters?

• capture evolution of level sets of functions from a
topological space to the real numbers

Question: How to draw Reeb graphs with few crossings?

• applications in topological data analysis and visualization (e.g. [2, 3])

add 2 vertices
crossing-free

(path between degree-1 vertices that contains the spine) v6

Reeb Graphs

X Rff

• Given: topological space X, function f : X → R

• for two points x, y ∈ X we have x ∼ y iff
– f(x) = f(y) = a and
– x, y are in the same path-connected component of f−1(a)

• Reeb graph Rf is the quotient space X/ ∼

First step towards efficient crossing minimization for Reeb graphs → How do our results generalize to more general Reeb trees?
Conclusion

• h(v) ̸= h(w) for any w ̸= v

GD 2025
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