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Abstract
We define a graph tile to be a unit square (or more generally, a polygon) on which a piece of a graph
has been drawn/embedded; in particular, it may have vertices in its interior, edges connecting those
vertices, or half-edges that extend to the boundary of the tile. In a graph tiling problem, we are
given as input a set of graph tiles, with multiplicities, and the output is an arrangement of those
tiles forming a graph of larger area. We focus on a simple tile set: unit square tiles with a central
vertex and either a half-edge or no half-edge on each side. Up to symmetry this gives us six different
types. We characterize which multiplicities are compatible for sets of at most three different tiles.
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1 Introduction

Motivation from material engineering. Irregular architected materials have outstanding
mechanical properties, like high stiffness-to-weight ratios and energy absorption, but their
rational design is still an open challenge. The recent development of computer-aided virtual
growth algorithms (VGAs) has emerged as a new promising venue that allows the generation
of architected materials with tailorable mechanical properties [3]. VGAs rely on a specific
set of simplified tiles that are assembled on a predefined grid, following a precise set of
connectivity rules. Depending on the relative concentration of different tiles, different
materials architectures and patterns can be generated, leading in turn to completely different
mechanical (and functional) material properties [2, 4].
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Figure 1 A graph tiling problem and possible solution.

The graph tiling problem. Underlying this engineering challenge lies a mathematical
problem. We define a graph tile to be a unit square (or more generally, a polygon) on which a
piece of a graph has been drawn/embedded; in particular, it may have vertices in its interior,
edges connecting those vertices, or half-edges that extend to the boundary of the tile. In
a graph tiling problem, we are given as input a set of graph tiles, with multiplicities, and
the output is an arrangement of those tiles into a larger area. Figure 1 shows an example.
We can then ask for the output graph to satisfy certain properties, or to optimize over
certain criteria, e.g. connectedness, shortest paths, stretch factor, tortuosity, etc. In order to
effectively inform VGAs, it is necessary to understand the relation between tile sets and the
achievable graph properties in a resulting graph tiling.

Contribution. In this work, we initiate the fundamental study into this area by considering
one of the simplest possible sets of tiles: square tiles, with a single vertex in the center, and
which do or do not have a half-edge extending to each of the four sides. Taking symmetries
into account, this gives us six distinct tiles, see Figure 2. These tiles have been previously
identified as the simplest set which is rich enough to encode meaningful material design [4].

Type I Type II Type III Type IV Type V Type VI

Figure 2 The six different types of tiles considered in this work.

An instance can then be characterized by six integers, the multiplicities of each tile, and
a desired output region. Already determining whether the tiles can be arranged with their
sides matching is a non-trivial problem, and is related to well-studied topics such as Wang
tiles [5], tile self-assembly [1], and more. However, those problems typically do not specify
multiplicities of the available tiles, and understanding which multiplicities are compatible is
a necessary first step towards solving graph tiling problems. In this work, we characterize
which multiplicities are compatible for all sets of at most three different tiles. We restrict
our attention to instances in which the total number of tiles is a square number n2, that
need to be assembled into an n × n grid, and assume input integers are encoded in binary.
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Table 1 Results for all sets of at most three distinct tiles. The class with the value “?” contains
problems that are compatible and those that are not compatible and we conjecture that there exists
a polynomial-time algorithm to distinguish them, but this is still open.

⟨I, II, III⟩=̂⟨III, V, VI⟩ YES
⟨I, II⟩=̂⟨V, VI⟩ YES ⟨I, II, IV⟩=̂⟨IV, V, VI⟩ YES
⟨I, III⟩=̂⟨III, VI⟩ P ⟨I, II, V⟩=̂⟨II, V, VI⟩ YES
⟨I, IV⟩=̂⟨IV, VI⟩ YES ⟨I, II, VI⟩=̂⟨I, V, VI⟩ ?

⟨I⟩=̂⟨VI⟩ YES ⟨I, V⟩=̂⟨II, VI⟩ P ⟨I, III, IV⟩=̂⟨III, IV, VI⟩ YES
⟨II⟩=̂⟨V⟩ YES ⟨I, VI⟩ NO ⟨I, III, V⟩=̂⟨II, III, VI⟩ P
⟨III⟩ YES ⟨II, III⟩=̂⟨III, V⟩ YES ⟨I, III, VI⟩ P
⟨IV⟩ YES ⟨II, IV⟩=̂⟨IV, V⟩ YES ⟨I, IV, V⟩=̂⟨II, IV, VI⟩ YES

⟨II, V⟩ YES ⟨I, IV, VI⟩ P
⟨III, IV⟩ YES ⟨II, III, IV⟩=̂⟨III, IV, V⟩ YES

⟨II, III, V⟩ YES
⟨II, IV, V⟩ YES

Type I Type II Type III Type IV Type V Type VIType I Type II Type III Type IV Type V Type VI

Figure 3 Example tilings for classes ⟨I, V⟩, ⟨II, III, IV⟩, and ⟨I, III, VI⟩.

2 Results

We consider the setting where we need to fill an n × n grid with pre-specified numbers of
tiles of each type. We will use the notation I, II, . . . , VI to refer to the tiles in Figure 2. Note
that, apart from rotational symmetry, the tiles also have another type of symmetry: if we
replace all sides with half-edges by sides without half-edges and vice versa, we arrive at an
equivalent dual problem (for the purpose of testing compatibility). We will write I=̂VI, II=̂V,
III=̂III, and IV=̂IV to denote this duality.

We will use the notation ⟨x1, x2, . . . , xk⟩ for the problem class of determining whether
a nonzero number of tiles of each type x1, x2, to xk (for 1 ≤ k ≤ 6) can be assembled into
an n × n square grid. Each problem class may have value YES (if all problems in the class
are compatible), NO (if none of the problems in the class are compatible), P (if compatible
and incompatible problems both exist in the class, but it is possible to distinguish them in
polynomial time), or NP (if it is NP-hard to distinguish them). Our results are summarized
in Table 1. Some interesting cases can be seen in Figure 3.

3 Future Work

We have characterized which multiplicities of at most three tile types are compatible. The
clear next step is to extend this classification to classes with up to six different tile types.

Once this is understood, we can begin to investigate graph properties that may be
achieved for specific instances, such as obtaining a connected graph, or a tree, or minimizing
the area of the largest face / maximizing the area of the smallest face, etc.

GD 2025
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Graph Tiles

The Problem

This research was made possible by
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Type classes. A class consists of a subset of the
six tile types, e.g. I-II-III. An instance of a class
is given by a specific multiplicity for each tile
type in the class. An instance is compatible if it
can tile the square.
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Duality. Note that for any
tile set there is also a dual
tile set: if we replace all
half-edges by
non-half-edges and vice
versa, we achieve another
instance that is compatible
if and only if the original
one is. Therefore, we only
need to consider roughly
half of all classes.

The Results
Problem statement. Given a set of distinct
graph tiles and an integer multiplicity for each
tile, is it possible to arrange all tiles into a
square grid such that all tile sides match?

Motivation. This problem arises in material
engineering, where tilings underlie
computer-aided algorithms for generating
architected materials with tunable properties.

By varying the multiplicities of tile types,
structural properties can be changed gradually.

Our set of six tile types has been identified as
the simplest set that is suitable for this purpose.

Classification. We classify almost all tile sets
with up to 3 different types, giving closed-form
formulas to decide the compatibility of any
instance, except for one (I-II-VI), which is left
for future work.

Note that the classes with 3 types that include
neither I nor II are not listed; these are all dual
to a type that is listed.

Tile types. In this work, we focus on a simple
tile set: unit square tiles with a single vertex in
the center, and either a half-edge or no
half-edge to each of the four sides. Up to
symmetry this gives us six different possibilities.

Outlook. Next steps are to extend our results
to all classes with up to six different tiles. One
main question is whether all variants are in P, or
if testing compatibility already becomes
NP-hard.

Once this is understood, we can investigate
properties of the resulting embedded graphs;
for instance, testing whether we can make the
graph connected, control the sizes of its faces,
and more. These properties are crucial in the
material engineering application.

One challenge is that we lose duality when we
consider graph properties: the dual of a
connected graph is not necessarily connected.

Case highlight: I-V. Perhaps the most
interesting class with two tile types is I-V (and
its dual II-VI). Given a tiles of type I and b tiles
of type V, it is possible to tile an n× n square if
and only if b = n or b ≥ 2n− 1.

The main idea is that as soon as there is one tile
of type V, we must have at least n of them, as
we need to fill at least one row or column. A
single row is possible when we place it along
the edge of the grid. Otherwise, between n
and 2n, the only option is to fill two adjacent
edges. As soon as we have two full rows of
type V tiles, we can place them in a “ladder”
configuration, and then we can selectively add
more as needed.

Case highlight: I-III-V. Another interesting
class is I-III-V (which is dual to II-III-VI).
Given a tiles of type I, b = kn+ r (for r < n) tiles
of type III, and c tiles of type V, it is possible to
tile an n× n square if and only if X = 1, where

X =



1, if b+ c ≡ 0 mod n,
0, else if b+ c < n,
1, else if c = 1 and r < n− k,
0, else if c = 1,
0, else if b < n and c < 2(n− b),
1, otherwise.

The idea here is that the cases b+ c < n and
b+ c > 2n are not too hard, and for the rest,
solutions must follow a very specific structure,
with a single full column and limited
possibilities in two of the corners.

Case highlight: I-IV-VI. One interesting class
with three tile types is I-IV-VI (which is dual to
itself). Given a tiles of type I , b tiles of type IV,
and c tiles of type VI, it is possible to tile an
n× n square if and only if c ≥ n or a ≤ b(b−1)

2 or

c ≤ b(b−1)
2 .

The main observation here is that tiles of type I
and VI can never be directly adjacent, so they
must be separated by a layer of type IV tiles.
This separating layer must be at least one tile
“thick”. If there are enough tiles of type IV, we
can separate two regions of any area (if there
are too many, we need to take some care how
to place the remaining type IV tiles, but this is
always possible). If there are not enough, we
can only separate a small triangular region from
the remainder.

Case highlight: I-II-VI. The only class with
three tile types for which we have not fully
classified exactly when it is possible to tile an
n× n square is I-II-VI (and its dual I-V-VI). We
conjecture that a polynomial-time algorithm
exists to decide, for any given instance,
whether a tiling is possible.
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