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—— Abstract

Edge bundling is a technique commonly used to reduce visual clutter and improve the comprehension
of the drawings of large graphs. Here, we model edge bundling as a multi-objective optimization prob-
lem and employ clustering strategies, metaheuristic and Pareto analysis to identify non-dominated
solutions for some classical graphs from the literature.
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1 Introduction

A large variety of methods exist that realize edge bundling, see e.g. [3, 7, 4]. A formalization
of some explicit edge bundling optimization problems has been proposed in [1]. Among
those problems, the General-Based Edge Bundling (GBEB) Problem was introduced that
aims at minimizing the number of bundles and at maximizing a given set of compatibility
measures. The authors investigated in [1] a specific version of the GBEB, which consists of
maximizing a weighted sum of two objective components: 1) the reciprocal of the number
of bundles; and 2) the sum of the compatibility value for every bundle, calculated using
the product of distinct compatibility measures for each pair of edges grouped together and
a threshold to regulated the signal of the component. An evolutionary algorithm for the
problem was designed and achieved good results. In a further work presented in [6], the
authors treated the GBEB as a clustering problem and employed a combination of clustering
and clustering-ensemble methods to solve it. The new approach led to better solutions than
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when using the evolutionary algorithm. However, both studies adopted an objective function
that combines distinct objectives in a fixed way, thus limiting the space of possibly desirable
solutions.

This paper investigates the GBEB problem as a multi-objective optimization problem, by
searching for the Pareto frontier considering all objectives independently, instead of combining
them in a single objective function. The multi-objective version of GBEB (abbreviated
here as MEB) is still treated as a clustering problem, as done in [6], but we go beyond
the previous methodological approaches: a step-by-step method is adopted that combines
bundling strategies with a meta-heuristic to extensively explore the solution space and find
good compromise solutions.

2 The Multi-objective Approach

We aim at finding clustering solutions that maximize seven distinct aspects: 1) the reciprocal
of the number of edge bundles (number of edge clusters), 2)-5) four compatibility measures
proposed by Holten in [3] (angle, scale, position and visibility compatibilities), 6) the distance
compatibility presented in [1], and 7) a new topological compatibility measure, which is
defined as the distance between edge embeddings obtained with the node2vec method [2].
Note that only aspects 2) to 7) are compatibility measures. Here, the measurements in every
quality aspect are normalized with maximum value =1.0.

The well known concept of dominance is used for comparing clustering solutions. A
set of solutions can be divided into a hierarchical sequence of dominance classes by the
following recursive procedure: solutions not dominated by any other solution in the set
comprises the first class (called the non-dominated class); then, these solutions are removed
from the set and the process repeats for the remaining set. While a class contains only
equivalent solutions, any class is considered better than the subsequent classes. The first class
constitutes the Pareto frontier. Our optimization method inputs a given graph G = (V, E)
and a straight-line drawing D of G, and performs the following three steps, where the first
two are similar to what was done in [6]:

Step 1 — Creating edge representations: Given G and D, an edge-to-edge compati-
bility matrix (dimension |E| x |E|) is created for every compatibility measure. The i-th
line of the j-th matrix, with 1 < ¢ < |E| and 1 < j < 6, is the feature representation of
edge ¢ according to the compatibility measure j.
Step 2 — Producing first solutions via clustering algorithms: Four standard
clustering algorithms (Agglomerative Hierarchical, K-Means, K-Means with Mini Batch,
and Spectral Clustering) with various parameter configurations are employed to cluster
the graph edges for each compatibility measure individually, using their related edge
feature representation. A normalized quality vector (with seven values, representing
the measurement for seven previously mentioned quality aspects) is computed for every
solution. Finally, the 1000 solutions with the quality vector closest to [1,1,1,1,1,1,1] are
taken to the next step.

Step 3 — Improving solutions via multi-objective consensus: This step runs

an Asynchronous Team (A-Team) of autonomous agents [5] to improve the clustering

solutions generated in Step 2, as an evolving group of dominance classes. The A-Team
architecture consists of a shared memory with a predefined number N, of clustering
solutions, and eighteen agents, which were formed by three clustering consensus algorithms
with different setup parameters. Each agent reads up to k solutions randomly chosen
from the memory (k is also predefined), runs a clustering consensus strategy, and writes
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its resultant solution to the shared memory. Every new solution produced may cause
the dominance classes to be recalculated and an earlier solution (preferably from the
latest dominance classes) to be removed. The A-Team runs until a pre-specified stop
condition is reached, when the non-dominated class of solutions (the final Pareto frontier)
is outputted.

The solutions in the Pareto frontier can be graphically rendered by using the adapted
force-directed edge bundling method described in [1]. It takes the graph, the position of its
vertices and a list of sets of edges (clusters) and produces an edge-bundling graph drawing.

3 Experiments and Results

In order to validate the new multi-objective optimization approach, experiments were
performed with five sparse graphs from the literature, with sizes ranging from 20 to 160
vertices, and from 28 to 161 edges. We also set N = 1000 and k£ = 10 in Step 3, and ran the
A-Team algorithm for one hour (this was sufficient for producing good quality solutions).
As the main result, the A-Team algorithm was capable of improving the set of solutions
by finding new non-dominated ones. It also reduced the size of the non-dominated class for
all graphs, demonstrating that many solutions generated in Step 2 could be replaced by a few
better ones. Another important contribution of the general approach is the diversification of
compromise solutions, with regard to the distinct quality aspects, which becomes ready for
human evaluation, as illustrated in Figure 1 (blue lines indicate the largest bundle).

(b) Zachary Karate Club graph

Figure 1 Examples of compromise solutions in the Pareto frontier for two of the five graphs.
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Experiments and Results

Edge bundling is a technique commonly
used to reduce visual clutter by grouping
edges in bundles.

General-Based Edge-Bundling (GBEB)
Consists of an explicit edge bundling op
timization problem that aims to minimize
the number of bundles, and to maximize a

Clustering ~ Ensemble-Based  Edge
Bundling Approach

Treats GBEB as a clustering problem,
performing edge bundling through edge-

set of compatibility measures. Solved us
ing an evolutionary algorithm [1]

clustering strategies followed by a cluster-

ing ensemble [2]
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Multi-objective Edge Bundling (MEB)

MEB is a variant of GBEB defined as:

let G = (V,E) be a simple graph and D a straight-line drawing of G. Let
Ci(p, ), Co(p. q)s . Culp. q) be m compatibility measures defined for every pair of
edges p,q € E based on D. The multi-objective explicit edge bundling problem in
decentralized bundles (MEB) consists of determining a decomposition of E into dis
joint subsets By, B, ..., By, with E = U, B, and B; N E; # 0 for 1 < i,j < |E| and
i # j, that maximizes the objective vector F = [F, Gy, Cs, ..., Cys, where Fg = L and
Cr =Y Crp fork = m, with Cj. g, a version of Cf, that uses only the k-th
compatibility measure.

Additional explanation:

* The goal is to find a decomposition of E into disjoint subsets (clusters or bundles)
that maximizes the values of F.

+ The number n of subsets of E is variable, with 1 < n < |E]|

= Maximizing the vector F involves:

1. Minimizing the number of bundles (n); and

2. Maximizing m predefined compatibility measures.

* For the current study, m = 6 and the compatibility measures are angle, scale,
position, visibility, distance, and topological

Clustering Ensemble for Multi-objective Edge Bundling

To solve the multi-objective edge bundling problem, we present an approach that uses
the edge-clustering strategies adopted in (2], but extend it to support Pareto Analysis
and to include an Asynchronous Team (A-Team) algorithm

The approach consists of the following steps:

STEP 1 STEP 2
5
N
i
%-Q? o % Parameter
6D —> Configuration
edgei
=

Edge Compatbilty Matrces >

for composing
Edge Feature Representations First set of
Edge Clustering

Solutions.

STEP 3
Clustering Clustering
Consensus Consensus
1
[I— Shared memory
Earso onten)
Final Pareto frontier

Class0__ Class 1 Class X

Deslroyevl AcTeam

Experiments were performed with five graphs, named G1 to G5. For the A-Team, we
set N = 1000 as its memory size, and k = 10 as the maximum number of solutions for
selection by any consensus agent. The A-Team ran for 3600 seconds for each graph

Table 1 presents information about the graphs and the number of solutions in the Pareto
frontier at Step 3. The evolution of the number of solutions on the Pareto frontier during
the experiments can be observed in Figure 1. Figure 2 shows bundling solutions from
the final Pareto frontier.

Pareto Frontier No. of New Solutions in

Graph I 1| foar—Far terations _Pareto Frontier
GI - Synthetic 20 28 325 35 _ 72698 2
G2~ Zachary Karate Club__34 78 828262 1908 18
G3 ~ Planar Graph GD2015_66 101 882451 1260 20
G4~ Dolphin Social Network 62 159 958 903 198 65
G5~ Movielens 160 161 /58683198 18

Graph attributes and the number of solutions in the Pareto frontier in Step 3 of the approach.

<
N
~

(b) G2 - Zachary Karate Club
Figure 2. Examples of compromise solutions in the Pareto frontier for G1 and G2.
Main Results:
* A-Team was capable of improving the set of solutions by finding new non-dominated

ones;

* The size of the non-dominated class for all graphs largely reduced over time, showing
that many solutions generated in Step 2 could be replaced by better ones;

* The overall approach produces a set of compromise edge bundling solutions, with
regard to the distinct quality aspects, thus supporting further human evaluation
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