
BH-tsNET, FIt-tsNET, L-tsNET:
Fast tsNET Algorithms for Large Graph Drawing
Amyra Meidiana #

The University of Sydney, Australia

Seok-Hee Hong #

The University of Sydney, Australia

Kwan-Liu Ma #

University of California at Davis, CA, USA

Abstract
The tsNET algorithm adapts the popular dimensional reduction method t-SNE for graph drawing
to compute high-quality drawings, preserving the neighborhood and clustering structure. However,
its O(nm) runtime results in poor scalability for large graphs. In this poster, we present three
fast algorithms for reducing the time complexity of tsNET to O(n log n) time and O(n) time,
by integrating new fast methods for computation of high-dimensional probabilities and entropy
computation with fast t-SNE algorithms for computation of KL divergence gradient. Specifically, we
present two O(n log n)-time algorithms BH-tsNET and FIt-tsNET, incorporating partial BFS-based
high-dimensional probability computation and a new quadtree-based entropy computation with fast
t-SNE algorithms, and O(n)-time algorithm L-tsNET, introducing a new fast interpolation-based
entropy computation. Extensive experiments using benchmark data sets confirm that BH-tsNET,
FIt-tsNET, and L-tsNET outperform tsNET, achieving 93.5%, 96%, and 98.6% faster runtime,
respectively, while computing similar quality drawings in terms of quality metrics (neighborhood
preservation, stress, shape-based metrics, and edge crossing) and visual comparison.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases tsNET, t-SNE, Large Graph Drawing

Digital Object Identifier 10.4230/LIPIcs.GD.2025.54

Category Poster Abstract

1 Introduction

The tsNET [3] algorithm for graph drawing utilizes the popular dimension reduction method
t-SNE (t-Stochastic Neighborhood Embedding) [11], which aims to preserve the neighborhood
of data points in a low-dimensional projection.

t-SNE models the distances of data points in the high- and low-dimensional spaces as
probability distributions. A low-dimensional projection is then computed by minimizing
the KL (Kullback-Leibler) divergence [4] between the two probability distributions, typically
using gradient descent, by moving the points in the projection according to the gradient
of the KL divergence. The runtime of t-SNE is O(n2), due to the computation of pairwise
distances between all pairs of data points.

tsNET uses the graph theoretic distance (i.e., shortest path) between vertices in a graph
G = (V, E) as the high-dimensional distance, which takes O(nm) time, where n = |V | and
m = |E|. Specifically, tsNET adds the following two more terms to the cost function, on
top of the KL divergence term used by t-SNE: an O(n)-time compression term to accelerate
untangling the drawing, and an O(n2)-time entropy term for reducing clutter.

tsNET computes high-quality graph drawings which preserve the clustering and neigh-
borhood structure of vertices. However, it is not scalable to large graphs due to the O(nm)
runtime for all-pair shortest path computation and O(n2) runtime for the cost function.

© Amyra Meidiana, Seok-Hee Hong, and Kwan-Liu Ma;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Graph Drawing and Network Visualization (GD 2025).
Editors: Vida Dujmović and Fabrizio Montecchiani; Article No. 54; pp. 54:1–54:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amyra.meidiana@sydney.edu.au
https://orcid.org/0000-0002-7196-2309
mailto:seokhee.hong@sydney.edu.au
https://orcid.org/0000-0003-1698-3868
mailto:ma@cs.ucdavis.edu
https://orcid.org/0000-0001-8086-0366
https://doi.org/10.4230/LIPIcs.GD.2025.54
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

54:2 BH-tsNET, FIt-tsNET, L-tsNET: Fast tsNET Algorithms for Large Graph Drawing

Recently, fast t-SNE algorithms have been introduced. For example, BH-SNE (Barnes-Hut
SNE) [10] utilizes kNN (k-Nearest Neighbors) and quadtree to reduce the computation
of high-dimensional probabilities and KL divergence gradient to O(n log n) time. More
recently, FIt-SNE (FFT-accelerated Interpolation-based t-SNE) [5] utilizes O(n log n)-time
approximate kNN to compute the high-dimensional probabilities, and a FFT (Fast Fourier
Transform) [8]-accelerated interpolation to further improve the runtime of the KL divergence
gradient computation to O(n) time.

However, algorithms reducing the overall runtime of tsNET have not been investigated
yet. To reduce the runtime of tsNET, there are three O(n2)-time components that need to be
reduced: computation of all pair shortest paths, computation of KL divergence gradient, and
entropy computation. While it was mentioned as a possible future work to use fast t-SNE
algorithms to improve the runtime of the KL divergence term [3], methods to reduce the
runtime of the entropy term were not considered yet.

In this poster, we present three new fast tsNET algorithms for drawing large graphs,
integrating new fast methods for all-pair shortest path computation and entropy computation,
with fast t-SNE algorithms. Specifically, our fast algorithms use a new O(n)-time partial
BFS method for all-pair shortest path computation.

1. The first O(n log n)-time BH-tsNET algorithm uses a new O(n log n)-time quadtree-based
entropy computation, integrated with O(n log n)-time quadtree-based KL divergence
computation of BH-SNE.

2. Faster O(n log n)-time FIt-tsNET algorithm integrates the O(n log n)-time quadtree-based
entropy computation with O(n)-time interpolation-based KL divergence computation of
FIt-SNE.

3. The fastest O(n)-time L-tsNET algorithm uses a new O(n)-time FFT-accelerated interpola-
tion-based entropy computation, integrating O(n)-time interpolation-based KL divergence
computation of FIt-SNE.

Table 1 summarizes the time complexity analysis of our fast algorithms. For the technical
details, see the full version of this poster [7].

Table 1 Time complexity analysis of fast tsNET algorithms.

Algorithm Shortest Path KL Divergence Entropy Overall
tsNET O(nm) O(n2) O(n2) O(nm)

BH-tsNET O(n)O(n)O(n) O(n log n) O(n log n)O(n log n)O(n log n) O(n log n)O(n log n)O(n log n)
FIt-tsNET O(n)O(n)O(n) O(n) O(n log n)O(n log n)O(n log n) O(n log n)O(n log n)O(n log n)
L-tsNET O(n)O(n)O(n) O(n) O(n)O(n)O(n) O(n)O(n)O(n)

2 Comparison Experiments

We implement BH-tsNET, FIt-tsNET, and L-tsNET in Python using the t-SNE from the
scikit-learn library [9], and in C++ based on BH-SNE [10] and FIt-SNE [5]. We use benchmark
graphs used in the tsNET evaluation [3] as well as standard test suites commonly used in
graph drawing studies: real-world scale-free graphs, biological networks, and mesh graphs.
For the details, see the full version of this poster [7].

Extensive evaluation demonstrates that BH-tsNET, FIt-tsNET, and L-tsNET obtain sig-
nificant runtime improvements over tsNET, on average 93.5%, 96%, and 98.6% respectively.
See Figure 1(a).

A. Meidiana, S.-H. Hong, and K.-L. Ma 54:3

(a) Runtime (b) Neigh. preserv. (c) Stress (d) Shape-based (e) Edge cross.

Figure 1 Average runtime and quality metrics: BH-tsNET, FIt-tsNET, and L-tsNET all run
significantly faster than tsNET, with highly similar quality metrics.

Table 2 BH-tsNET, FIt-tsNET and L-tsNET compute the same quality drawings as tsNET.

tsNET BH-tsNET FIt-tsNET L-tsNET
3elt

oflights

GION_7

Surprisingly, our algorithms compute almost the same quality drawings as tsNET, in terms
of quality metrics (neighborhood preservation [3], stress [1], edge crossings, shape-based
metrics [2]), see Figures 1(b)-(e). Visual comparisons also confirm that our algorithms
produce almost the same drawings as tsNET, see Table 2.

Moreover, we compare our algorithms to DRGraph, another linear-time t-SNE-based
graph drawing algorithm with a different optimization function. Experiments show that
our algorithms perform especially well over DRGraph in visualizing graphs with a regular
structure, such as mesh graphs. For the details, see the full version of this poster [7].

Recently, we also presented fast GUMAP algorithms, designed explicitly for graph drawing
based on UMAP, which reduce the time complexity from O(nm) to O(n2 log n) and O(n),
utilizing spectral sparsification and edge sampling. For the details, see [6].

GD 2025

54:4 BH-tsNET, FIt-tsNET, L-tsNET: Fast tsNET Algorithms for Large Graph Drawing

References
1 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis. Graph drawing:

algorithms for the visualization of graphs. Pearson, 1998.
2 Peter Eades, Seok-Hee Hong, An Nguyen, and Karsten Klein. Shape-based quality metrics for

large graph visualization. JGAA, 21(1):29–53, 2017. doi:10.7155/jgaa.00405.
3 Johannes F Kruiger, Paulo E Rauber, Rafael Messias Martins, Andreas Kerren, Stephen

Kobourov, and Alexandru C Telea. Graph layouts by t-SNE. In CGF, volume 36(3), pages
283–294, 2017. doi:10.1111/cgf.13187.

4 Solomon Kullback. Information theory and statistics. Dover Publications Inc., 1997.
5 George C Linderman, Manas Rachh, Jeremy G Hoskins, Stefan Steinerberger, and Yuval

Kluger. Fast interpolation-based t-SNE for improved visualization of single-cell rna-seq data.
Nature methods, 16(3):243–245, 2019.

6 Amyra Meidiana and Seok-Hee Hong. SS-GUMAP, SL-GUMAP, SSSL-GUMAP: fast UMAP
algorithms for large graph drawing. CoRR, abs/2509.19703, 2025. doi:10.48550/ARXIV.2509.
19703.

7 Amyra Meidiana, Seok-Hee Hong, and Kwan-Liu Ma. BH-tsNET, FIt-tsNET, L-tsNET: fast
tsNET algorithms for large graph drawing. CoRR, abs/2509.19785, 2025. doi:10.48550/
ARXIV.2509.19785.

8 Henri J Nussbaumer. The fast fourier transform. In Fast Fourier Transform and Convolution
Algorithms, pages 80–111. Springer, 1981.

9 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
Scikit-learn: Machine learning in python. JMLR, 12:2825–2830, 2011. doi:10.5555/1953048.
2078195.

10 Laurens Van Der Maaten. Accelerating t-SNE using tree-based algorithms. JMLR, 15(1):3221–
3245, 2014. doi:10.5555/2627435.2697068.

11 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. HMLR, 9(11),
2008.

https://doi.org/10.7155/jgaa.00405
https://doi.org/10.1111/cgf.13187
https://doi.org/10.48550/ARXIV.2509.19703
https://doi.org/10.48550/ARXIV.2509.19703
https://doi.org/10.48550/ARXIV.2509.19785
https://doi.org/10.48550/ARXIV.2509.19785
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.5555/2627435.2697068

A. Meidiana, S.-H. Hong, and K.-L. Ma 54:5

BH-tsNET, FIt-tsNET, L-tsNET:
Fast tsNET Algorithms for Large Graph Drawing

Amyra Meidiana, Seok-Hee Hong, Kwan-Liu Ma
The University of Sydney and UC Davis

tsNET adapts the popular DR method t-SNE for graph drawing to compute high-quality drawings, preserving the neighborhood and clustering, however, O(nm) runtime results in poor scalability for large graphs.

We present three fast tsNET algorithms, by introducing new fast methods high-dimensional probabilities computation and entropy computation with fast t-SNE for KL divergence computation

• O(nlogn)-time BH-tsNET: integrates a new partial BFS for all-pair shortest path computation, new quadtree-based entropy computation with fast BH t-SNE

• O(nlogn)-time FIt-tsNET : integrates a new partial BFS for all-pair shortest path computation, new quadtree-based entropy computation with fast Fit t-SNE

• O(n)-time L-tsNET: integrates a new partial BFS for all-pair shortest path computation, a new fast interpolation-based entropy computation with fast Fit t-SNE

Extensive experiments using benchmark data sets confirm that

• BH-tsNET, FIt-tsNET, and L-tsNET outperform tsNET

 (93.5%, 96%, and 98.6% faster runtime, respectively)

• preserving similar quality drawings in terms of quality metrics

 (neighborhood preservation, stress, shape-based metrics, and edge crossing)

• computing similar quality drawings by visual comparison

Figure 2 GD 2025 Poster.

GD 2025

	1 Introduction
	2 Comparison Experiments

