BH-tsNET, FIt-tsNET, L-tsNET: Fast tsNET Algorithms for Large Graph Drawing

Amyra Meidiana ⊠®

The University of Sydney, Australia

Seok-Hee Hong

□

□

The University of Sydney, Australia

Kwan-Liu Ma ⊠ [®]

University of California at Davis, CA, USA

— Abstract

The tsNET algorithm adapts the popular dimensional reduction method t-SNE for graph drawing to compute high-quality drawings, preserving the neighborhood and clustering structure. However, its O(nm) runtime results in poor scalability for large graphs. In this poster, we present three fast algorithms for reducing the time complexity of tsNET to $O(n\log n)$ time and O(n) time, by integrating new fast methods for computation of high-dimensional probabilities and entropy computation with fast t-SNE algorithms for computation of KL divergence gradient. Specifically, we present two $O(n\log n)$ -time algorithms BH-tsNET and FIt-tsNET, incorporating partial BFS-based high-dimensional probability computation and a new quadtree-based entropy computation with fast t-SNE algorithms, and O(n)-time algorithm L-tsNET, introducing a new fast interpolation-based entropy computation. Extensive experiments using benchmark data sets confirm that BH-tsNET, FIt-tsNET, and L-tsNET outperform tsNET, achieving 93.5%, 96%, and 98.6% faster runtime, respectively, while computing similar quality drawings in terms of quality metrics (neighborhood preservation, stress, shape-based metrics, and edge crossing) and visual comparison.

2012 ACM Subject Classification Mathematics of computing \rightarrow Graph algorithms

Keywords and phrases tsNET, t-SNE, Large Graph Drawing

Digital Object Identifier 10.4230/LIPIcs.GD.2025.54

Category Poster Abstract

1 Introduction

The tsNET [3] algorithm for graph drawing utilizes the popular dimension reduction method t-SNE (t-Stochastic Neighborhood Embedding) [11], which aims to preserve the neighborhood of data points in a low-dimensional projection.

t-SNE models the distances of data points in the high- and low-dimensional spaces as probability distributions. A low-dimensional projection is then computed by minimizing the KL (Kullback-Leibler) divergence [4] between the two probability distributions, typically using gradient descent, by moving the points in the projection according to the gradient of the KL divergence. The runtime of t-SNE is $O(n^2)$, due to the computation of pairwise distances between all pairs of data points.

tsNET uses the graph theoretic distance (i.e., shortest path) between vertices in a graph G = (V, E) as the high-dimensional distance, which takes O(nm) time, where n = |V| and m = |E|. Specifically, tsNET adds the following two more terms to the cost function, on top of the KL divergence term used by t-SNE: an O(n)-time compression term to accelerate untangling the drawing, and an $O(n^2)$ -time entropy term for reducing clutter.

tsNET computes high-quality graph drawings which preserve the clustering and neighborhood structure of vertices. However, it is not scalable to large graphs due to the O(nm) runtime for all-pair shortest path computation and $O(n^2)$ runtime for the cost function.

Recently, fast t-SNE algorithms have been introduced. For example, BH-SNE (Barnes-Hut SNE) [10] utilizes kNN (k-Nearest Neighbors) and quadtree to reduce the computation of high-dimensional probabilities and KL divergence gradient to $O(n \log n)$ time. More recently, FIt-SNE (FFT-accelerated Interpolation-based t-SNE) [5] utilizes $O(n \log n)$ -time approximate kNN to compute the high-dimensional probabilities, and a FFT (Fast Fourier Transform) [8]-accelerated interpolation to further improve the runtime of the KL divergence gradient computation to O(n) time.

However, algorithms reducing the overall runtime of tsNET have not been investigated yet. To reduce the runtime of tsNET, there are three $O(n^2)$ -time components that need to be reduced: computation of all pair shortest paths, computation of KL divergence gradient, and entropy computation. While it was mentioned as a possible future work to use fast t-SNE algorithms to improve the runtime of the KL divergence term [3], methods to reduce the runtime of the entropy term were not considered yet.

In this poster, we present three new fast tsNET algorithms for drawing large graphs, integrating new fast methods for all-pair shortest path computation and entropy computation, with fast t-SNE algorithms. Specifically, our fast algorithms use a new O(n)-time partial BFS method for all-pair shortest path computation.

- 1. The first $O(n \log n)$ -time BH-tsNET algorithm uses a new $O(n \log n)$ -time quadtree-based entropy computation, integrated with $O(n \log n)$ -time quadtree-based KL divergence computation of BH-SNE.
- 2. Faster $O(n \log n)$ -time FIt-tsNET algorithm integrates the $O(n \log n)$ -time quadtree-based entropy computation with O(n)-time interpolation-based KL divergence computation of FIt-SNE.
- 3. The fastest O(n)-time L-tsNET algorithm uses a new O(n)-time FFT-accelerated interpolation-based entropy computation, integrating O(n)-time interpolation-based KL divergence computation of FIt-SNE.

Table 1 summarizes the time complexity analysis of our fast algorithms. For the technical details, see the full version of this poster [7].

Table 1 Time complexity analysis of fast tsNET algorithms.

Algorithm	Shortest Path	KL Divergence	Entropy	Overall
tsNET	O(nm)	$O(n^2)$	$O(n^2)$	O(nm)
BH-tsNET	O(n)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
FIt-tsNET	O(n)	O(n)	$O(n \log n)$	$O(n \log n)$
L-tsNET	O(n)	O(n)	O(n)	O(n)

2 Comparison Experiments

We implement BH-tsNET, FIt-tsNET, and L-tsNET in Python using the t-SNE from the scikit-learn library [9], and in C++ based on BH-SNE [10] and FIt-SNE [5]. We use benchmark graphs used in the tsNET evaluation [3] as well as standard test suites commonly used in graph drawing studies: real-world scale-free graphs, biological networks, and mesh graphs. For the details, see the full version of this poster [7].

Extensive evaluation demonstrates that BH-tsNET, FIt-tsNET, and L-tsNET obtain significant runtime improvements over tsNET, on average 93.5%, 96%, and 98.6% respectively. See Figure 1(a).

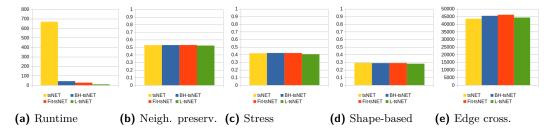


Figure 1 Average runtime and quality metrics: BH-tsNET, FIt-tsNET, and L-tsNET all run significantly faster than tsNET, with highly similar quality metrics.

Table 2 BH-tsNET, FIt-tsNET and L-tsNET compute the same quality drawings as tsNET.

tsNET	BH-tsNET	FIt-tsNET	L-tsNET				
	3elt						
	ofl	ights					
	GI	ON_7					

Surprisingly, our algorithms compute almost the same quality drawings as tsNET, in terms of quality metrics (neighborhood preservation [3], stress [1], edge crossings, shape-based metrics [2]), see Figures 1(b)-(e). Visual comparisons also confirm that our algorithms produce almost the same drawings as tsNET, see Table 2.

Moreover, we compare our algorithms to DRGraph, another linear-time t-SNE-based graph drawing algorithm with a different optimization function. Experiments show that our algorithms perform especially well over DRGraph in visualizing graphs with a regular structure, such as mesh graphs. For the details, see the full version of this poster [7].

Recently, we also presented fast GUMAP algorithms, designed explicitly for graph drawing based on UMAP, which reduce the time complexity from O(nm) to $O(n^2 \log n)$ and O(n), utilizing spectral sparsification and edge sampling. For the details, see [6].

References

- 1 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis. *Graph drawing: algorithms for the visualization of graphs*. Pearson, 1998.
- Peter Eades, Seok-Hee Hong, An Nguyen, and Karsten Klein. Shape-based quality metrics for large graph visualization. *JGAA*, 21(1):29-53, 2017. doi:10.7155/jgaa.00405.
- 3 Johannes F Kruiger, Paulo E Rauber, Rafael Messias Martins, Andreas Kerren, Stephen Kobourov, and Alexandru C Telea. Graph layouts by t-SNE. In *CGF*, volume 36(3), pages 283–294, 2017. doi:10.1111/cgf.13187.
- 4 Solomon Kullback. Information theory and statistics. Dover Publications Inc., 1997.
- 5 George C Linderman, Manas Rachh, Jeremy G Hoskins, Stefan Steinerberger, and Yuval Kluger. Fast interpolation-based t-SNE for improved visualization of single-cell rna-seq data. Nature methods, 16(3):243–245, 2019.
- 6 Amyra Meidiana and Seok-Hee Hong. SS-GUMAP, SL-GUMAP, SSSL-GUMAP: fast UMAP algorithms for large graph drawing. CoRR, abs/2509.19703, 2025. doi:10.48550/ARXIV.2509.19703.
- Amyra Meidiana, Seok-Hee Hong, and Kwan-Liu Ma. BH-tsNET, FIt-tsNET, L-tsNET: fast tsNET algorithms for large graph drawing. *CoRR*, abs/2509.19785, 2025. doi:10.48550/ARXIV.2509.19785.
- 8 Henri J Nussbaumer. The fast fourier transform. In Fast Fourier Transform and Convolution Algorithms, pages 80–111. Springer, 1981.
- 9 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. *JMLR*, 12:2825–2830, 2011. doi:10.5555/1953048. 2078195.
- 10 Laurens Van Der Maaten. Accelerating t-SNE using tree-based algorithms. JMLR, 15(1):3221–3245, 2014. doi:10.5555/2627435.2697068.
- 11 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. HMLR, 9(11), 2008.

BH-tsNET, FIt-tsNET, L-tsNET: Fast tsNET Algorithms for Large Graph Drawing

Amyra Meidiana, Seok-Hee Hong, Kwan-Liu Ma The University of Sydney and UC Davis

ISNET adapts the popular DR method i-SNE for graph drawing to compute high-quality drawings, preserving the neighborhood and clustering, however, O(nm) runtime results in poor scalability for large graphs.

Management three first ISNET adoptitions, but introducing new fact methods high dimensional probabilities computation, and entropy computation with fact it SNE for KL disagrapse computation.

- We present three fast tsNET algorithms, by introducing new fast methods high-dimensional probabilities computation and entropy computation with fast t-SNE for KL divergence computation

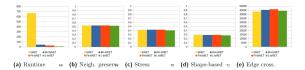
 O(nlogn)-time BH-tsNET: integrates a new partial BFS for all-pair shortest path computation, new quadtree-based entropy computation with fast BH t-SNE
- O(nlogn)-time Fit-tsNET: integrates a new partial BFS for all-pair shortest path computation, new quadtree-based entropy computation with fast Fit t-SNE
- O(n)-time L-tsNET: integrates a new partial BFS for all-pair shortest path computation, a new fast interpolation-based entropy computation with fast Fit t-SNE

Table 1 Time complexity analysis of fast tsNET algorithms

Algorithm	Shortest Path	KL Divergence	Entropy	Overall
tsNET	O(nm)	$O(n^2)$	$O(n^2)$	O(nm)
BH-tsNET	O(n)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
FIt-tsNET	O(n)	O(n)	$O(n \log n)$	$O(n \log n)$
L-tsNET	O(n)	O(n)	O(n)	O(n)

Extensive experiments using benchmark data sets confirm that

- BH-tsNET, Fit-tsNET, and L-tsNET outperform tsNET
 (93.5%, 96%, and 98.6% faster runtime, respectively)
- preserving similar quality drawings in terms of quality metrics
- (neighborhood preservation, stress, shape-based metrics, and edge crossing)
- computing similar quality drawings by visual comparison



■ Figure 1 Average runtime and quality metrics: BH-tsNET, FIt-tsNET, and L-tsNET all run significantly faster than tsNET, with very similar quality metrics.

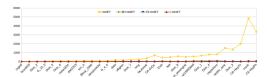


Fig. 2: Runtime (in seconds): On average, all of BH-tsNET, FIt-tsNET, and L-tsNET run 93%, 96%, and 98.6% faster than tsNET respectively

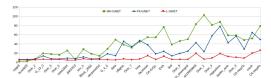


Fig. 3: Runtime comparison (in seconds) with taket redacted. L-taket run on average 78.6% and 66.3% faster than BH-taket and FIt-taket

■ Table 2 BH-tsNET, FIt-tsNET and L-tsNET compute the same quality drawings as tsNET.

tsNET	BH-tsNET	FIt-tsNET	L-tsNET				
3elt							
E. (1)		5.00	E. B				
	of	lights					
	GI	ON_7					
53			\$3				

aoio	٠.	Dutto	0010	101	onq	00111111	21110	
		(a) B	enches	rk gn	iphs			

graph	I V	I E	1 6		densi	W	
G 13 0	1647	6487	30		3,94		
soc_h	2000	16097	40	0	8.05		
Block_2000	2000	9912	4	0	4.96		
G_4_0	2075	4769	10	0	2.30		
oflights	2905	15645	30	0	5.39		
tvcg	3213	10140	10	0	3.16		
facebook	4039	88234	119	00	21.8		
CA-GrQc	4158	13422	4		3.23		
EVA	4475	4652	60		1.04		
us_powergrid	4941	6594	4	0	1.33		
as19990606	5188	9930	129	00	1.91		
migrations	6025	9378	- 60		1.57		
lastfm_asia	7624	27906			3.65		
CA-HepTh	8638	24827	10		2.87		
CA-HepPh	11204	117649	50	0	10.5		
(b) GION graphs							
graph	V	E	и		ensity		
GION_2	1159	6424	40		5.54		

GION_2	1159		6424	40	5.54		
GION_5	1748		3957	100	7.98		
GION_6	1785	- 2	20459	100	11.5		
GION_7	3010	- 4	1757	100	13.9		
GION_8	4924		52502	100	10.7		
GION_1	5452		18404	200	21.7		
GION_4	5953	1	86279	200	31.3		
GION_3	7885		27406	500	54.2		
(c) Mesn graphs							
graph	V		E	и	density		
cage8	101		4994	40	4.92		
besstk09	108		8677	40	8.01		
nasa1824	182		18692		10.2		
plat1919	191			40	7.94		
sierpinski3d				40	3.00		
3elt 4720			13722		2.91		
erack	1024	Ю	30380	40	2.97		

Figure 2 GD 2025 Poster.