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—— Abstract
We present a novel approach to graph drawing based on reinforcement learning for minimizing the
global and the local crossing number, that is, the total number of edge crossings and the maximum
number of crossings on any edge, respectively. An agent learns how to move a vertex based on a
given observation vector. The agent receives feedback in the form of local reward signals tied to
crossing reduction. To generate an initial layout, we use a stress-based graph-drawing algorithm. We
compare our method against force- and stress-based baseline algorithms as well as three established
algorithms for global crossing minimization on a suite of benchmark graphs. The experiments show
mixed results: our current algorithm is mainly competitive for the local crossing number.
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1 Introduction

In reinforcement learning (RL), an agent receives a description of its environment, based
on which it chooses an action changing the environment The agent receives a reward, which
is positive for a “good” change or negative otherwise. The agent tries to maximize its
reward. RL programs like Alpha(Go)Zero [8, 9] were able to master games like Go, chess,
and Shogi by just being taught the rules and objectives of the game. They were not given
any strategy. We investigate the following question: Can we use reinforcement learning to
optimize graph drawings with respect to a given graph drawing aesthetics measure? We present
an RL framework for graph drawings to optimize local and global crossings.! We perform a
quantitative analysis on two graph data sets comparing our models against other methods.

L With local crossings we refer to the maximum number of crossings an edge has in a straight-line graph
drawing. With global crossings we refer to the total number of crossings in a straight-line graph drawing.
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2 Description of the Approach

To obtain a size-invariant algorithm, we follow an idea of Safarli, Zhou, and Wang [7], who let
an agent “sit” on a vertex and use as possible actions moving the vertex one step octagonally.
We provide the agent an observation vector describing the local neighborhood of a vertex v
with respect to the eight octants defined by the eight octagonal rays around v. The first
eight entries in the observation vector of v count the number of neighboring vertices in each
octant, then eight entries count the total number of vertices. The next eight entries describe
the distance to the closest neighbor, while the next eight entries describe the distance to the
closest vertex. Finally, eight entries describe the amount of crossings that occur on edges
incident to v in the respective octants and eight entries their local crossing number.

In each step, the agent has eight actions to choose from, which correspond to moving the
vertex in one of the 16 main direction 22.5 degrees apart. The reward function is, for the
global crossing number, the number of removed crossings. For the local crossing number, it
is a combination of local and global crossing number. The choice of the vertex for the next
step depends on a probability distribution weighted by crossings and vertex degree.

3 Experimental Evaluation

We compare our approach on the rome graphs [1] (relatively sparse; 10-100 vertices, 9-158
edges) and extended Barabdsi-Albert (BA) graphs [3] (random graphs; 50-150 vertices).
An initial drawing used as input to the algorithms is obtained with the Kamada-Kawai
algorithm [4]. We use 6,602 rome (1,000 BA) graphs for training and 1,650 (500) for testing.
We record the global and local crossing number and the running time and use a time limit of
900s; see Figure 1. The experiments ran on a server with a single CPU. The code is written
in Python 3.12. The custom environment is implemented on top of the Gymnasium library,
and we train an (artificial neural network) PPO agent using the stable-baselines3 library.
We compare our RL method trained for the global (RL(GC)) and local crossing number
(RL(LC)) with a range of different methods: the stress-minimization approach Kamada-Kawai
(KK) and the spring embedder Fruchterman-Reingold (FR), implemented in networkx, which do
not directly optimize for (local) crossing number but generally achieve good results. We also
compare with the machine-learning model SmartGD [10]; the authors released a model trained
to minimize the crossing number, which we use. Regarding previous heuristic solutions,
we compare to the stochastic gradient descent method (SGD)? [2], to two geometric local-
optimization approaches presented by Radermacher et al. [6], namely, Vertex Movement (VM)
and Edge Insertion (El), and to the probabilistic hill-climbing method Tubingen-Bus (TB).
Note that while the latter approach was originally designed for minimizing the number of
crossings in upward drawings, we could easily adjust it to drop the upward constraint [5].

4 Conclusion and Future Work

We have presented a post-processing procedure to optimize quantifiable objectives like the
global and local crossing number. For the global crossing number, some state-of-the-art
approaches achieve better results. This may depend on our current RL implementation. We
made some ad-hoc design choices for the observation vector and the action space based on
octants; also we chose a specific vertex-selection procedure and reward function. For the
local crossing number, our algorithm is among the best-performing methods. Note, however,
that we are among the first to explicitly optimize the local crossing number. In the future,
we will try to apply more and better-suited RL approaches to graph drawing problems.
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Figure 1 Boxplots for global (left) and local (middle) crossing number on the rome graphs (top)
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e choose measurable quality metric of a graph drawing
like number of crossings or stress

start with some initial drawing; quality is a number
give the agent a state derived from the current drawing
give the agent a set of possible actions

for size-invariance, we follow ideas of Safarli, Zhou, and Wang (2020)

measurable quality metric: maximum number of crossings in which any edge is involved
start with a random graph drawing

iterate through the vertices

o give the agent the view of current vertex v:
o for each choice of an action, update the graph drawing — state space: view of the 8 octants between the octagonal lines; for each octant
and re-compute the quality number of neighbors, closest neighbor, closest non-neighbor, number of crossings
o give the gain/loss of quality as reward to the agent of incident edges (all values normalized)

— possible actions: move v along one of the 16 hexadecagonal lines

N — reward: decrease of the local crossing number plus (weighted less) decrease of
Expe”mental setup the global crossing number; small negative reward if no progress is made
implemented in Python with the Gymnasium library
PPO agent trained using stable-baselines3

Trained on 6,602 rome and 1,000 Barabasi-Albert
graphs, degree-1 vertices and planar graphs removed
tested on one CPU with a time limit of 900 seconds
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Discussion Conclusion and future work
e Global crossing number: RL not among the best-performing approaches. e New post-processing procedure for graph drawing problems opti-
This might be due to the design choices in our current RL implementation. mizing quantifiable objectives like global & local crossing number.
e Local crossing number: RL is among the best-performing methods. e Initial hope: plug in crossing minimization problem to some out-
But, local crossing number has been hardly investigated and optimized. of-the-box RL solution. Turns out: not so obvious how, modeling
The other methods are generic or optimizing the global crossing number. seems to be crucial for learning success.
e Running time: large difference between algorithms and how they scale. e Tune design of this RL approach. Apply more/different RL me-
RL is mid-table and can still handle the little larger BA graphs. thods & frameworks to this and other graph drawing problems.
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