
Using Reinforcement Learning to Optimize the
Global and Local Crossing Number
Timo Brand #

Technical University of Munich, Germany

Henry Förster #

Technical University of Munich, Germany

Stephen Kobourov #

Technical University of Munich, Germany

Robin Schukrafft #

Technical University of Munich, Germany

Markus Wallinger #

Technical University of Munich, Germany

Johannes Zink #

Technical University of Munich, Germany

Abstract
We present a novel approach to graph drawing based on reinforcement learning for minimizing the
global and the local crossing number, that is, the total number of edge crossings and the maximum
number of crossings on any edge, respectively. An agent learns how to move a vertex based on a
given observation vector. The agent receives feedback in the form of local reward signals tied to
crossing reduction. To generate an initial layout, we use a stress-based graph-drawing algorithm. We
compare our method against force- and stress-based baseline algorithms as well as three established
algorithms for global crossing minimization on a suite of benchmark graphs. The experiments show
mixed results: our current algorithm is mainly competitive for the local crossing number.

2012 ACM Subject Classification Theory of computation → Reinforcement learning; Theory of
computation → Computational geometry

Keywords and phrases Reinforcement Learning, Crossing Minimization, Local Crossing Number

Digital Object Identifier 10.4230/LIPIcs.GD.2025.56

Category Poster Abstract

Related Version Full Version: https://arxiv.org/abs/2509.06108

1 Introduction

In reinforcement learning (RL), an agent receives a description of its environment, based
on which it chooses an action changing the environment The agent receives a reward, which
is positive for a “good” change or negative otherwise. The agent tries to maximize its
reward. RL programs like Alpha(Go)Zero [8, 9] were able to master games like Go, chess,
and Shogi by just being taught the rules and objectives of the game. They were not given
any strategy. We investigate the following question: Can we use reinforcement learning to
optimize graph drawings with respect to a given graph drawing aesthetics measure? We present
an RL framework for graph drawings to optimize local and global crossings.1 We perform a
quantitative analysis on two graph data sets comparing our models against other methods.

1 With local crossings we refer to the maximum number of crossings an edge has in a straight-line graph
drawing. With global crossings we refer to the total number of crossings in a straight-line graph drawing.

© Timo Brand, Henry Förster, Stephen Kobourov, Robin Schukrafft, Markus Wallinger, and Johannes
Zink;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Graph Drawing and Network Visualization (GD 2025).
Editors: Vida Dujmović and Fabrizio Montecchiani; Article No. 56; pp. 56:1–56:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:timo.brand@tum.de
https://orcid.org/0009-0004-3111-2045
mailto:henry.foerster@tum.de
https://orcid.org/0000-0002-1441-4189
mailto:stephen.kobourov@tum.de
https://orcid.org/0000-0002-0477-2724
mailto:robin.schukrafft@tum.de
mailto:markus.wallinger@tum.de
https://orcid.org/0000-0002-2191-4413
mailto:johannes.zink@tum.de
https://orcid.org/0000-0002-7398-718X
https://doi.org/10.4230/LIPIcs.GD.2025.56
https://arxiv.org/abs/2509.06108
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


56:2 Using Reinforcement Learning to Optimize the Global and Local Crossing Number

2 Description of the Approach

To obtain a size-invariant algorithm, we follow an idea of Safarli, Zhou, and Wang [7], who let
an agent “sit” on a vertex and use as possible actions moving the vertex one step octagonally.

We provide the agent an observation vector describing the local neighborhood of a vertex v

with respect to the eight octants defined by the eight octagonal rays around v. The first
eight entries in the observation vector of v count the number of neighboring vertices in each
octant, then eight entries count the total number of vertices. The next eight entries describe
the distance to the closest neighbor, while the next eight entries describe the distance to the
closest vertex. Finally, eight entries describe the amount of crossings that occur on edges
incident to v in the respective octants and eight entries their local crossing number.

In each step, the agent has eight actions to choose from, which correspond to moving the
vertex in one of the 16 main direction 22.5 degrees apart. The reward function is, for the
global crossing number, the number of removed crossings. For the local crossing number, it
is a combination of local and global crossing number. The choice of the vertex for the next
step depends on a probability distribution weighted by crossings and vertex degree.

3 Experimental Evaluation

We compare our approach on the rome graphs [1] (relatively sparse; 10–100 vertices, 9–158
edges) and extended Barabási-Albert (BA) graphs [3] (random graphs; 50–150 vertices).
An initial drawing used as input to the algorithms is obtained with the Kamada-Kawai
algorithm [4]. We use 6,602 rome (1,000 BA) graphs for training and 1,650 (500) for testing.
We record the global and local crossing number and the running time and use a time limit of
900 s; see Figure 1. The experiments ran on a server with a single CPU. The code is written
in Python 3.12. The custom environment is implemented on top of the Gymnasium library,
and we train an (artificial neural network) PPO agent using the stable-baselines3 library.

We compare our RL method trained for the global (RL(GC)) and local crossing number
(RL(LC)) with a range of different methods: the stress-minimization approach Kamada-Kawai
(KK) and the spring embedder Fruchterman-Reingold (FR), implemented in networkx, which do
not directly optimize for (local) crossing number but generally achieve good results. We also
compare with the machine-learning model SmartGD [10]; the authors released a model trained
to minimize the crossing number, which we use. Regarding previous heuristic solutions,
we compare to the stochastic gradient descent method (SGD)2 [2], to two geometric local-
optimization approaches presented by Radermacher et al. [6], namely, Vertex Movement (VM)
and Edge Insertion (EI), and to the probabilistic hill-climbing method Tübingen-Bus (TB).
Note that while the latter approach was originally designed for minimizing the number of
crossings in upward drawings, we could easily adjust it to drop the upward constraint [5].

4 Conclusion and Future Work

We have presented a post-processing procedure to optimize quantifiable objectives like the
global and local crossing number. For the global crossing number, some state-of-the-art
approaches achieve better results. This may depend on our current RL implementation. We
made some ad-hoc design choices for the observation vector and the action space based on
octants; also we chose a specific vertex-selection procedure and reward function. For the
local crossing number, our algorithm is among the best-performing methods. Note, however,
that we are among the first to explicitly optimize the local crossing number. In the future,
we will try to apply more and better-suited RL approaches to graph drawing problems.



T. Brand, H. Förster, S. Kobourov, R. Schukrafft, M. Wallinger, and J. Zink 56:3

RL(
GC) RL(

LC) (SG
D)²

Sma
rtGD EI VM TB KK FR

0

20

40

60

80

100

120

140

gl
ob
al
…
cr
os
si
ng
s

RL(
GC) RL(

LC) (SG
D)²

Sma
rtGD EI VM TB KK FR

0

2

4

6

8

10

12

lo
ca
l…

cr
os
si
ng
s

50 100 150 200
#nodes…+…#edges

10
3

10
2

10
1

10
0

10
1

10
2

ru
nt
im
e…

[s
]

Runtime…vs…graph…size

Algorithm
RL(GC)
RL(LC)
(SGD)²
SmartGD
EI
VM
TB
KK
FR

RL(
GC) RL(

LC) (SG
D)²

Sma
rtGD TB KK FR

0

1000

2000

3000

4000

5000

6000

7000

gl
ob
al
…
cr
os
si
ng
s

RL(
GC) RL(

LC) (SG
D)²

Sma
rtGD TB KK FR

0

20

40

60

80

100

120

140

160

lo
ca
l…

cr
os
si
ng
s

100 200 300 400 500 600
#nodes…+…#edges

10
3

10
2

10
1

10
0

10
1

10
2

ru
nt
im
e…

[s
]

Runtime…vs…graph…size

Algorithm
RL(GC)
RL(LC)
(SGD)²
SmartGD
EI
VM
TB
KK
FR

Figure 1 Boxplots for global (left) and local (middle) crossing number on the rome graphs (top)
and BA graphs (bottom). On the right side, there are scatter plots for the running times.

References
1 Rome graphs. URL: http://graphdrawing.org/data.html.
2 Reyan Ahmed, Felice De Luca, Sabin Devkota, Stephen Kobourov, and Mingwei-

ahmed2022multicriteria Li. Multicriteria scalable graph drawing via stochastic gradi-
ent descent, (SGD)2. IEEE Trans. Vis. Comput. Graph., 28(6):2388–2399, 2022. doi:
10.1109/TVCG.2022.3155564.

3 Réka Albert and Albert-László Barabási. Topology of evolving networks: local events and
universality. Physical review letters, 85(24):5234, 2000. doi:10.1103/physrevlett.85.5234.

4 Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31(1):7–15, 1989. doi:10.1016/0020-0190(89)90102-6.

5 Maximilian Pfister. Personal communication, 2025.
6 Marcel Radermacher, Klara Reichard, Ignaz Rutter, and Dorothea Wagner. Geometric

heuristics for rectilinear crossing minimization. J. Exp. Algorithmics, 24:1–21, 2019. doi:
10.1145/3325861.

7 Ilkin Safarli, Youjia Zhou, and Bei Wang. Interpreting graph drawing with multi-agent
reinforcement learning. CoRR, abs/2011.00748, 2020. arXiv:2011.00748.

8 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018. doi:
10.1126/science.aar6404.

9 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P.
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of Go without human knowledge. Nature, 550(7676):354–359,
2017. doi:10.1038/NATURE24270.

10 Xiaoqi Wang, Kevin Yen, Yifan Hu, and Han-Wei Shen. SmartGD: A GAN-based graph
drawing framework for diverse aesthetic goals. IEEE Trans. Vis. Comput. Graph., 30(8):5666–
5678, 2023. doi:10.1109/TVCG.2023.3306356.

GD 2025

http://graphdrawing.org/data.html
https://doi.org/10.1109/TVCG.2022.3155564
https://doi.org/10.1109/TVCG.2022.3155564
https://doi.org/10.1103/physrevlett.85.5234
https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1145/3325861
https://doi.org/10.1145/3325861
https://arxiv.org/abs/2011.00748
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/NATURE24270
https://doi.org/10.1109/TVCG.2023.3306356


56:4 Using Reinforcement Learning to Optimize the Global and Local Crossing Number

A Poster

Using Reinforcement Learning to Optimize
the Global and Local Crossing Number

Timo Brand, Henry Förster, Stephen Kobourov,

Robin Schukrafft, Markus Wallinger, and Johannes Zink

Reinforcement learning (RL)

environment interpreter

state

reward

2
agent

AI

action

• explore state space

• try to maximize reward

• learn from prior actions

• used in games like chess, go, etc.
(e.g., AlphaGo, AlphaZero)

• used to tune large language models
(LLMs) like ChatGPT

• powerful generic tool

• challenge: design states, rewards,
possible actions, type of agent

Graph drawing as a game
• choose measurable quality metric of a graph drawing
like number of crossings or stress

• start with some initial drawing; quality is a number

• give the agent a state derived from the current drawing

• give the agent a set of possible actions

• for each choice of an action, update the graph drawing
and re-compute the quality

• give the gain/loss of quality as reward to the agent

octant I II III IV V VI VII VIII

neighbors .1 .2 0 0 .2 .1 0 .4

vertices .14 .03 0 .11 .08 .2 .27 .17

closest ngb. .32 .5 0 0 .25 .67 0 .21

closest vtx. .32 .28 0 .94 .25 .67 .17 .21

crossings .1 .2 0 0 .1 .3 0 1.0

local cr. 1 2 0 0 1 2 0 4

Minimizing the (rectilinear) local crossing number
• for size-invariance, we follow ideas of Safarli, Zhou, and Wang (2020)

• measurable quality metric: maximum number of crossings in which any edge is involved

• start with a random graph drawing

• iterate through the vertices

• give the agent the view of current vertex v :
– state space: view of the 8 octants between the octagonal lines; for each octant

number of neighbors, closest neighbor, closest non-neighbor, number of crossings
of incident edges (all values normalized)

– possible actions: move v along one of the 16 hexadecagonal lines
– reward: decrease of the local crossing number plus (weighted less) decrease of

the global crossing number; small negative reward if no progress is madeExperimental setup
• implemented in Python with the Gymnasium library

• PPO agent trained using stable-baselines3

• Trained on 6,602 rome and 1,000 Barabasi-Albert
graphs, degree-1 vertices and planar graphs removed

• tested on one CPU with a time limit of 900 seconds

• methods do not start with random drawings but with
a drawing computed by the Kamada–Kawai method

• 1,650 rome graphs and 500 BA graphs for testing

Results

Discussion
• Global crossing number: RL not among the best-performing approaches.
This might be due to the design choices in our current RL implementation.

• Local crossing number: RL is among the best-performing methods.
But, local crossing number has been hardly investigated and optimized.
The other methods are generic or optimizing the global crossing number.

• Running time: large difference between algorithms and how they scale.
RL is mid-table and can still handle the little larger BA graphs.

rome

Barabasi-
Albert

• RL(GC): RL trained for global crossings

• RL(LC): RL trained for local crossings

• (SGD)2: Stochastic Gradient Descent [1]

• SmartGD: GAN-based deep learning fra-
mework [2]

• EI: Edge Insertion algorithm from [3]

• VM: Vertex Movement algorithm from [3]

• TB: TübingenBus, probabilistic hill-
climbing [4]

• KK: Kamada-Kawai method

• FR: Fruchterman-Reingold method

[1 ] R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, and M. Li. Multicri-

teria scalable graph drawing via stochastic gradient descent, (SGD)2 . IEEE
Transactions on Visualization and Computer Graphics, 2022.

[2 ] X. Wang, K. Yen, Y. Hu, and H.-W. Shen. SmartGD: A GAN-based graph
drawing framework for diverse aesthetic goals. IEEE Transactions on Visuali-
zation and Computer Graphics, 2023.

[3 ] M. Radermacher, K. Reichard, I. Rutter, and D. Wagner. Geometric heuri-
stics for rectilinear crossing minimization. Journal of Experimental Algorithmics
(JEA), 2019.

[4 ] Maximilian Pfister. Code for the Uwpard Crossing Minimization GD Contest
2019 and modified to drop the upward constraint. (Personal communication.)

I

II

III

IVV

VI

VII

VIII

v

global crossing number local crossing number running time

Conclusion and future work
• New post-processing procedure for graph drawing problems opti-
mizing quantifiable objectives like global & local crossing number.

• Initial hope: plug in crossing minimization problem to some out-
of-the-box RL solution. Turns out: not so obvious how, modeling
seems to be crucial for learning success.

• Tune design of this RL approach. Apply more/different RL me-
thods & frameworks to this and other graph drawing problems.

Full version:
https://arxiv.org/

abs/2509.06108


	1 Introduction
	2 Description of the Approach
	3 Experimental Evaluation
	4 Conclusion and Future Work
	A Poster

