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—— Abstract

A well-known conjecture, named after David W. Barnette, asserts that every 3-regular, 3-connected,
bipartite, planar graph (for short, Barnette graph) is Hamiltonian. As another step towards addressing

Barnette’s conjecture positively, we show that every n-vertex Barnette graph admits a subhamiltonian

cycle containing 3% edges, improving upon the previous bound of 2?" Equivalently, every Barnette

6
graph admits a 2-page book embedding in which at least %"

spine are connected by edges. As a byproduct, we present a simple proof for a known result that

consecutive vertex pairs along the

guarantees the existence of Hamiltonian cycles in a certain subclass of Barnette graphs.
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1 Introduction

Barnette’s conjecture [3] is an intriguing open problem in topological graph theory; it asserts
that every 3-regular, 3-connected, bipartite, planar graph (for short, Barnette graph) is
Hamiltonian, i.e., it contains a simple cycle visiting each vertex exactly once. The conjecture
is inspired by two earlier conjectures by Tait [12] and Tutte [13], both of which were disproven.
While Barnette’s conjecture [3] remains open, several related results have been established.
For instance, Goodey [7] showed that Barnette graphs with faces of degree 4 and 6 are
Hamiltonian. Feder and Subi [5] extended this to Barnette graphs whose faces are 3-colored
such that two colors contain only degree-4 and degree-6 faces. The authors in [2] proved
Hamiltonicity under certain (improper) 2-colorings of the dual faces. Alternative forms of
the conjecture have also been studied. Kelmans [11] showed that Barnette’s conjecture is
equivalent to the existence of a Hamiltonian cycle containing exactly one of any pair of edges
on a common face. Other forms of equivalency include the existence of a Hamiltonian cycle
through (i) any edge [8], (ii) any path of length 3 with two consecutive edges on the boundary
of a face [9], and (iii) the middle edge of any path of length 3 avoiding its outer edges [9].
Using a computer-assisted method, Brinkmann, Goedgebeur and McKay [4] verified that
all Barnette graphs with up to 90 vertices are Hamiltonian. Their proof relies on the fact
that all Barnette graphs can be derived from the cube graph via cube- and Cy-expansions
(see Figure 1) [10]. As the former operation preserves Hamiltonicity, the main challenge in
Barnette’s conjecture lies in handling the latter; see a related open problem at Section 5.

Our contribution. Since Hamiltonicity in a planar graph is equivalent to admitting a 2-page
book embedding with all consecutive vertices (including the first and the last) connected,
studying subhamiltonian cycles (that is, linear vertex orders in such embeddings) offers a
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Figure 1 Starting from (a) the cube graph all Barnette graphs can be generated with either
(b) cube-expansions or (c¢) Cy-expansions.

relaxed yet meaningful perspective. In this context, it is known that every n-vertex Barnette
graph admits a subhamiltonian cycle containing at least %" edges [1]. Building on this, we
revisit and refine the approach of [1], improve the bound to %”, and discuss its potentials as

a step toward resolving Barnette’s conjecture. Note that a bound of n settles the conjecture.

2 Preliminaries

Basic definitions. We assume familiarity with basic concepts from Graph Theory and Graph
Drawing. A k-page book embedding of a graph defines an order of its vertices and partitions
its edges into k sets of non-crossing edges. A graph admitting a 2-page book embedding
is called subhamiltonian, as it can be augmented to Hamiltonian by adding edges between
consecutive vertices. The vertex order of such an embedding is called a subhamiltonian cycle.

Constructing Barnette graphs. As mentioned, all Barnette graphs can be constructed
by iteratively applying two operations, cube-expansions and Cj4-expansions, starting from
the cube graph (see Figure 1). In a cube-expansion, a vertex x is replaced by seven new
vertices x1,...,27 and the following edges: (z1,y1), (x2,¥y2), (z3,93), (v1,24), (z1,25),
(z4,26), (5,26), (T2, 24), (x2,27), (x3,27), (T6,27), and (x3,x5), where y1, y2, and ys are
the neighbors of z. In a Cy-expansion, two edges e; and ey with an odd distance along the
boundary of a face are each subdivided twice, and the resulting new vertices are connected
with two additional edges by preserving both planarity and bipartiteness.

The algorithm by Alam et al. [1] Let G be an embedded Barnette graph with n vertices.
By Lemma 2 of [1], the edges and the faces of G can be colored with three colors (red,
blue and green) with the following properties (refer to Fig. 3(a) of [1] for an illustration):
(i) every facial cycle of G is bichromatic, i.e., its edges alternate between two colors along its
boundary, (ii) no two neighboring faces are of the same color, (iii) every face of G is colored
differently from its bounding edges, (iv) the edge that bounds two faces of G colored z and
y is of color z, where {x,y, z} = {red, blue, green}, (v) the subgraph Gy, of the dual G* of
G induced by the blue and green faces of G is connected. Let 7,7 be a spanning tree of Gf,.
This tree together with property (iv) yields a partition of the red edges of G into those that
are crossed by Ty, (corresponding to those belonging to 7;*9) and the remaining ones that
are not crossed by 7;,*g. Then, the algorithm by Alam et al. [1] computes a subhamiltonian
cycle C of G by a traversal of 7;’;, assuming that 7;,’; is rooted at an arbitrary blue leaf p as
follows. For an arbitrary edge (u,v) of G that is crossed by 7;’;, let p and ¢ be the faces that
are bounded by (u,v), that is, (p,q) is an edge of Tpy- The removal of (p,q) from Ty results
in two trees 7, and 7T, such that w.l.o.g. p belongs to 7. For the recursive step, it is
assumed that a simple and plane subhamiltonian cycle C), for the subgraph G, of G induced
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(a) p is green, ¢ blue (b) p is blue, g is green

Figure 2 The solid (dotted) gray edges belong to Ty (Gi, \ Tpy). The bold (plain) red edges are
(are not, respectively) crossed by Ty,. Cycle Cy is drawn dotted black. Figure reproduced from [1].

by the vertices of the faces of G in 7, has been computed, which does not necessarily span
all vertices of G, but it satisfies the following invariant properties:
.1 The edge (u,v) is on C).
.2 Every red edge of G, is in the interior of C, or on C,,.
1.3 Every blue edge of G}, is in the exterior of C, or on C,,.
1.4 Every green edge of G), is on Cp,.
1.5 For every red edge e of G, that is not crossed by 7?; and that is adjacent to two faces h
and b’ of G, with h € 7,7 and b’ ¢ T, one of the following holds:
a. if b is a blue face, then both endpoints of e are on Cp,
b. if h is a green face, then none of the endpoints of e is on C),.

Depending on the colors of faces p and ¢, the traversal of ’7?;; is continued by extending
the cycle C, to vertices of face ¢ (thus obtaining a new cycle C;) and by maintaining
Invariants I1.1-1.5 as illustrated in Figure 2. Once the traversal of 7;2 has been completed,
a simple and plane cycle C has been computed, in which, by Invariants 1.2-1.4, every green
edge of G is on C, while every red (blue) edge of G is in the interior (exterior) of cycle C or
on C. Since Ty, is a spanning tree of Gy, every green edge of G’ bounds a face that is in 7y,
and by Invariant 1.4 both its endpoints are consecutive along C. As every vertex is incident
to a green edge, it follow that cycle C is indeed subhamiltonian. The following properties
directly follow from Invariants 1.4 and 1.5, respectively (see [1]).

» Property 1 ([1]). Every green edge of G belongs to the subhamiltonian cycle C.

» Property 2 ([1]). Every red edge of G that is not crossed by Ty;, belongs to the subhamiltonian
cycle C.

The authors in [1] used Properties 1 and 2 to show that every Barnette graph admits a
subhamiltonian cycle with 27” edges.

3 Our Main Result

To prove our main theorem, i.e., that every Barnette graph admits a subhamiltonian cycle
containing at least %" edges, we first establish a few more properties of the algorithm by Alam
et al. [1]. To this end, let G be a Barnette graph and let f be a face of it. By Property (i) of
the edge coloring of G, the edges on the boundary of f alternate between two colors. We
say that two edges of the same color ¢ are consecutive along f if and only if they appear
consecutively in a clockwise traversal of the edges of color ¢ in f.

» Property 3. A blue edge appearing between two consecutive red edges of a green face of G
that are crossed by 7;’; belongs to the subhamiltonian cycle C.
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Proof. Let f, be a green face of G which contains a blue edge e, appearing between two
consecutive red edges e, and e, of f, that are crossed by Ty, Since e, and el are crossed by
Ty after the algorithm processes face f, in the traversal of 7,7, by Invariant 1.1 both edges
e, and e, are on the subhamiltonian cycle constructed so far. By Invariant 1.3, ey, is either in
the exterior or on the subhamiltonian cycle constructed so far. Since e, appears between e,
and e;. along fg, it follows that e, cannot be in its exterior. Since the subhamiltonian cycle
is not extended along blue edges (as those are not crossed by b’;), ep will be part of C. <«

» Property 4. Every green face of G that corresponds to a leaf of Ty, contributes a red edge
(that is crossed by Ty;) to the subhamiltonian cycle C.

Proof. Let f, be a green face of G that corresponds to a leaf of 7 and let f, be its parent
in 7;; Just before the algorithm processes face f; in the traversal of 7;;, the red edge
of G that is crossed by the edge (fg, f») of 7;’; necessarily belongs to the subhamiltonian
cycle constructed so far by Invariant I.1. Since f; is a leaf of 7;’; and since f, is green, the
subhamiltonian cycle will not be extended any further after the algorithm processes face f,
by Invariant 1.5b. Hence, the red edge of G that is crossed by the edge (fg, fo) of Ty, will
remain on the subhamiltonian cycle as desired. |

> Property 5. Every green 4-face of G that does not correspond to a leaf of Ty, contributes
two blue edges to the subhamiltonian cycle C.

Proof. Let f, be a green 4-face (i.e., of degree 4) of G and assume that f; does not correspond
to a leaf of 7;2. Since f, is a 4-face of G, it consists of two red and two blue edges that
alternate along its boundary. Since f; does not correspond to a leaf of 7,7, both red edges
are crossed by 7,7. Now the statement directly follows from Property 3. <

» Property 6. Every green 6-face of G that does not correspond to a leaf of Ty contributes
at least one blue edge to the subhamiltonian cycle C.

Proof. Let f, be a green 6-face of G that does not correspond to a leaf of 7. Hence, its
boundary contains at least two red edges that are crossed by 7;’;. These two red edges are
consecutive on the boundary of f, and thus the result follows by Property 3. <

So far, T,y has only been assumed to be a spanning tree of Gy . In the following, we show
that it can be chosen in such a way that the preceding property generalizes to all green faces.

» Property 7. There exists a choice of the tree T,y such that every green face of G that
does not correspond to a leaf of Ty, contributes at least one blue edge to the subhamiltonian
cycle C.

Proof. Let f; be a green face of G that is not a leaf in 7,7 Since f, is not a leaf, its boundary
contains at least two red edges that are crossed by 7. Our goal is to locally modify 7,7 so
that these two red edges appear consecutively along the boundary of f;; Once this goal is
achieved, we can apply Property 3 to obtain the desired result. Denote by 71, ..., r; the red
edges on the boundary of f; in clockwise order. Let also ey, ..., e; be the corresponding dual
edges of G . Finally, denote by v, the vertex of G}, corresponding to f,. W.l.o.g. assume
that 1 is crossed by 7;’;, that is, e; belongs to 7;;. Let r; be the edge on the boundary of
f that is crossed by 7;’;, such that j > 1 and j is minimum. Note that r; exists, because
fg isnot aleaf in 7,7, If j =2 or j = k holds, then ry and ry are consecutive and we are
done. Thus, assume 2 < j < k. Consider the graph 7?;; + e2. Since 7T, is spanning, ’7;; + es
contains a cycle. Let e be the edge of this cycle (distinct from ey) that is also incident to v,.
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If e # ey, then replacing e with es in by vields a new spanning tree in which e; and e; are
consecutive, as desired. Hence, suppose e = e;. In this case, we obtain a new spanning tree
by replacing e; with ez in 7,7 and we observe that the distance between the relevant pair of
red edges crossed by this tree has been decreased. Repeating this argument a finite number
of times will eventually yield a configuration in which the two red edges are consecutive,
completing the proof. <

We are now ready to prove the main theorem of this section.

» Theorem 1. FEvery n-vertex Barnette graph admits a subhamiltonian cycle with at least

5n
% edges.

Proof. Let G be an n-vertex Barnette graph and let F,, F,. and F} be the set of green,
red and blue faces of G, respectively. Since G is 3-regular, Euler’s formula directly yields
that G has (i) 22 edges out of which 2 are green, 2 are red and 2 are blue, and (ii) 2 + 2
faces. Hence, |Fy| + |F;| + |Fy| = § + 2. Assume w.l.o.g. that |Fy| > |F,.| > |Fy|. By this
assumption, F, contains at least %(% + 2) faces. Thus, for some x > 0, we may write:

n
Fl=" 1 )
Since |F,| > |F,| > |Fyl, it follows:
n x
F.|>—-—-——=+4+1 2
=ty ®

We next claim that the average degree of the faces in F}; is at most 6. To see this, observe
that edges on the boundary of the faces of F, are in total n, since by Properties (iii) and (iv)
of the edge coloring of G, they correspond to the red and the blue edges of G. Thus, by
Eq.(1) the average degree of the faces in Fj is =1, which is at most 6 as claimed. It follows
that for every face in Fj; of degree greater than 6, there is at least one face in F;, which has
degree 4. With these observations in mind, we are now ready to count the number of edges
contained in the subhamiltonian cycle C.

By Property 1, subhamiltonian cycle C contains all green edges of G, which are % in

2
total.

By Property 2, subhamiltonian cycle C contains all red edges of G not crossed by bZ'

We claim that these are at least § — 5. To see this, recall that all red edges of G are %

in total. Since 7;’; is a spanning tree of G , the number of red edges crossed by ’7;;; is:
n n
|Fb|+|Fg|71:§+27|Fr|*1:§*|Fr|+1.
Therefore, the number of red edges of G which are not crossed by 7,y is:

n n @n
5—(§—|F,.|+1)_\F,.|—1 2% 3
Each green face of G contributes an additional edge to C. To see this, observe that a green
face corresponding to leaf in 7;; contributes at least one (red) edge to C by Property 4.
Each of the remaining faces contributes at least one (blue) edge by Properties 5 and 7.
From the discussion above, it follows that the number of edges belonging to the subhamiltonian
cycle C is at least

n,on_x . n . bnow
2 6 2 6 6 2
which concludes the proof. <
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4 Implications for Restricted Subclasses

In this section, we focus on certain restricted subclasses of Barnette graphs for which the
algorithm yields a Hamiltonian cycle.

» Observation 2. Let G be a Barnette graph. If 77;; is such that any green face f of G is (i)

a leaf in bz or (i) its degree in ’72*9 is exactly half of the degree of f, then G is Hamiltonian.

Proof. A green leaf f contains exactly %\ f| red edges, one of which is crossed by Tpy- The
crossed edge will be part of C due to Property 4, while the others are part of C by construction.
A green non-leaf f has, by assumption, maximum degree in 7,7, i.e., all its red edges are
crossed by 7,;. But then Property 3 directly implies that %| f| blue edges of f are part of C.
Hence, for any green face, half of its boundary edges are part of C. Since the faces in Fy, are
disjoint and cover all red and blue edges, they include exactly n edges. Summing over all
green faces, this contributes a total of n/2 edges to C. Together with all green edges (which
are n/2 many), this means that |C| = n and thus G is Hamiltonian. <

The following known result from the literature due to Florek [6] can hence be obtained as a
direct corollary of Observation 2.

» Corollary 3. A Barnette graph is Hamiltonian if its faces are 3-colored, with adjacent faces
having different color, such that one of the three colors contain only faces of degree 4.

Proof. W.l.o.g. let all green faces have degree 4. Hence, a green face is either a leaf in ’77;;
or its degree is 2 in 7;2, i.e., maximum. Thus, Observation 2 yields the desired result. <«

5 Open Problems

In this work, we approached Barnette’s conjecture from the lens of 2-page book embeddings.
Our work, while not resolving Barnette’s conjecture at this time, makes another step forward
and raises new open problems and possible directions for Barnette’s conjecture:

1. Improve the lower bound of %" on the size of the subhamiltonian cycle guaranteed by
Theorem 1; a more strategic choice of the underlying spanning tree may lead to a better
result in this direction (although our preliminary attempts were not successful).

2. It is also worth asking whether, for a given Barnette graph with a given Hamiltonian
cycle, there is always a choice of the spanning tree 7,y such that our algorithm yields the
given Hamiltonian cycle.

3. Is it true that all Barnette graphs generated solely by Cy-expansions are Hamiltonian?

4. The previous question is interesting also when the faces have a certain maximum degree.

5. Extend the set of restricted subclasses for which Observation 2 can be shown. Potential
candidates are known subclasses from the literature which admit a Hamiltonian cycle.
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