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Abstract
Graph drawings are commonly used to visualize relational data. User understanding and performance
are linked to the quality of such drawings, which is measured by quality metrics. The tacit knowledge
in the graph drawing community about these quality metrics is that they are not always able to
accurately capture the quality of graph drawings. In particular, such metrics may rate drawings
with very poor quality as very good. In this work we make this tacit knowledge explicit by showing
that we can modify existing graph drawings into arbitrary target shapes while keeping one or more
quality metrics almost identical. This supports the claim that more advanced quality metrics are
needed to capture the “goodness” of a graph drawing and that we cannot confidently rely on the
value of a single (or several) certain quality metrics.

2012 ACM Subject Classification Human-centered computing → Graph drawings

Keywords and phrases graph drawing, quality metrics, assumptions, fooling

Digital Object Identifier 10.4230/LIPIcs.GD.2025.7

Related Version Full Version: https://arxiv.org/abs/2508.15557

Supplementary Material Software (Source Code): https://github.com/simonvw95/Same-Quality
-Metric--Different-Graph-Drawings [34]

START X VERT HOR O DINO GRID

bar-albert ST

ELD

CN

AR

ST-ELD-CN-AR

Figure 1 Morphing a graph drawing (START) into six different target shapes
(X,VERT,HOR,O,DINO,GRID) while keeping one or more quality metric(s) nearly constant
(ST,ELD,CN,AR). Values for ST,ELD,AR are within ±ϵ = 0.0025 and within ±ϵ = CN(Γ) ∗ 0.05
for CN, so the morphed drawings have very similar quality to the starting ones.

1 Introduction

Relational data is typically visualized using node-link diagrams, commonly known as graph
drawings (GD). High-quality graph drawings are key to user understanding and perform-
ance [31]. In turn, such quality is measured by various so-called quality metrics (QM) [30]. At
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a high level QMs capture two different aspects of the goodness of a GD: 1. how readable the
elements of the drawing are, e.g., few crossings, few node overlaps – we call these readability
metrics; and 2. how well the graph structure is represented by the drawing – faithfulness
metrics. For instance, nodes lie at distances similar to their graph theoretical distances
(measured by stress) or clusters are clearly depicted [28]

Quality metrics tend to correlate – often by design – with the aesthetic preferences of
users [18, 31] and task performance [29]. As such, GD algorithms aim to (in)directly optimize
them in order to produce pleasing drawings. For instance, spring-based techniques like
Fruchterman-Reingold [15] and ForceAtlas2 [20] use forces on their nodes (and edges) in
various ways, leading to drawings with “good” scores on most GD quality metrics. Other
techniques like Stress Majorization [16], Stress-Plus-X [11], DeepGD [36], SGD2 [1], and
Core-GD [17] directly optimize one or more metrics to produce aesthetically pleasing drawings.

Two underlying and often implicit assumptions on quality metrics are that a “high”
value indicates a “good” drawing; and that drawings of the same graph with similar metric
values have similar quality. It is, however, widely known by Graph Drawing researchers, and
has been exemplified multiple times by the Graph Drawing live challenge [12], that these
assumptions do not always hold. In particular, over the years, GD challenge participants
have presented drawings with very high QMs values that had an obfuscating appearance and
did not reveal the graph structure.

We devote this work to make this tacit knowledge explicit and show that we cannot
confidently rely on the value of a single quality metric nor on combinations of certain quality
metrics. For this, we “fool” the quality metrics by morphing given, high-quality graph
drawings into a given target shape (which can be any arbitrary shape) using a simulated
annealing process while keeping one or more given quality metric values relatively fixed.
Thus we are able to obtain drawings that obfuscate the graph structure and have very high
values of quality metrics. While for readability metrics this is rather a confirmation of the
tacit knowledge we already possess, it is very surprising to achieve this for a faithfulness
quality metric such as stress as well as for combinations of certain QMs. We also show the
limitations of our approach – certain combinations of metrics can not be fooled by it. Finally,
we experiment with graphs of varying structures to illustrate how the graph’s structure
affects the difficulty of fooling quality metrics.

2 Related Work

The assumption that quality metrics directly correlate with human understanding, perception,
and preference has been researched by many previous (user) studies [4]. The authors in [31]
showed that larger numbers of edge crossings and edge bends are negatively correlated with
human perception. Huang [18] refined such findings by using eye tracking to show that small
edge angles lead to poorer performance in path search tasks.

The number of edge crossings in a drawing has been shown to correlate with user
preferences [9, 31]. The perception of how well nodes are placed according to their shortest
path, also called stress, was researched in a 2024 study [26], which found that users are able
to perceive different values of stress in different drawings. Furthermore, stress also tends to
correlate with user preferences [9].

Several types of visualizations beyond GD have been put to the test to try and fool
statistical properties. Many works [2, 3, 7, 24] have shown that it is possible to control the
visual appearance of 2D scatterplots, by iteratively morphing these into target shapes, while
keeping summary statistical metrics such as means, standard deviations and correlation
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similar. Different DR algorithms can create wildly different projections of the same dataset
which have very similar quality metric values [14]. Separately, Machado, Telea, and Behrisch
showed that one can control the shapes of clusters in projections and only marginally affect
quality metrics [23], as well as completely distort the visual appearance of projections without
affecting multiple quality metrics [22].

Similarly, Chari and Pachter [6] showed that they could transform projections of the
same dataset into any specified shape without heavily adjusting the quality metric values.
While such work did not aim to technically “fool” quality metrics, it provides strong evidence
that metrics and projection appearance are not inherently correlated – an effect that we also
show, in our work, to hold for graph drawings.

Regarding graphs (but not their drawings), Chen et al. [8] showed that one can generate
graphs with the exact same graph statistics, such as the number of nodes, edges, and
triangles. Di Bartolomeo, Lang and Dunne [13] (potentially a satirical paper) suggested as
future research directions the idea of “rocketshipness”, in which a graph drawing is optimized
to resemble a rocket ship while maintaining one or more GD quality metrics. However, this
idea was not further explored.

3 fooling GD metrics: Experimental setup

3.1 Preliminaries

We first introduce a few notations and concepts. An undirected graph G = (V, E) is a set of
nodes V = {v1, . . . , vn} and a set of undirected unweighted edges E = {e1, . . . , em} ⊆ V ×V .
A straight-line graph drawing Γ of G assigns 2-dimensional coordinates Xi to nodes vi ∈ V

and line segments Li to edges ei ∈ E, so Γ can be represented as a matrix X2 ∈ Rn×2 with
rows Xi ∈ R2. Let D ∈ Rn×n denote the shortest path matrix of graph-theoretic distances dij

between all node-pairs (vi, vj) ∈ V × V . We next refer to the Euclidean distance ∥Xi −Xj∥
between two nodes vi and vj simply as distance. Let deg(v) be the degree of node v, i.e., the
number of edges incident to v. A quality metric is a function Q(Γ) ∈ [0, 1] which assigns a
value to Γ, with low (resp. high) values denoting better (resp. poorer) drawings.

3.2 Metrics

We consider in our work the following GD quality metrics and their combinations:

Stress. Measures the difference between the Euclidean distances of all node-pairs and their
shortest path distances [21] as ST(Γ) = 1

n(n−1)/2
∑n

i=0
∑n

j=i+1
(∥Zi−Zj∥−dij)2

d2
ij

, where Zi scales

the coordinate Xi by the shortest path distances as Zi =
∑

i̸=j
∥Xi−Xj∥/dij∑

i̸=j
∥Xi−Xj∥2/d2

ij

Xi.

ST(Γ) = 1
n(n−1)/2

∑n
i=0

∑i
j=0

(∥Zi−Zj∥−dij)2

d2
ij

,
We expect the ST metric to be the most difficult metric to fool in drawings, as it explicitly

evaluates how well graph structure is depicted in a drawing, i.e., is a faithfulness QM.

Edge length deviation. Measures the average deviation of edge lengths [25] from the mean
µ of all lengths in a drawing as ELD(Γ) =

√
1
m

∑m
i=1 ∥Li∥ − µ)2. We expect this metric to be

relatively easy to fool as it solely focuses on the uniformity of edge lengths.

GD 2025
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Crossing number. We capture this by the number of intersections of all edge segments Li,
i.e. CN(Γ) =

∑m
i=0

∑m
j=i+1 1(Li ∩ Lj ̸= ∅). We expect that CN is hard to fool, as making

subtle changes to any drawing tends to have a strong impact on how its lines cross.

Angular resolution. We measure the frequency of small angles occurrences in a graph
drawing by computing the average deviation of angles [25] of adjacent edges vs the best
possible angle as AR = 1

n′

∑n′

i=1

∣∣∣ Θi−θi

Θi

∣∣∣ , where n′ is the number of nodes with degree
≥ 2; θi is the smallest measured angle between consecutive adjacent edges of node i and
Θi = 2π/deg(vi) is the best possible angle between consecutive edges for node i. We speculate
that this metric is easy to fool as it is easy to keep similar angles while making large visual
changes.

3.3 Simulated Annealing Approach
We follow the approach in [24] to slowly morph any given graph drawing Γ with node
coordinates X into a drawing Γ′ with node coordinates X ′, while keeping one or more quality
metrics values QM i(Γ′), i ∈ {a, b, . . . } very close to their original values QM i(Γ) and moving
X ′ closer to a target shape Y . Here, Y can be any set of node coordinates, as long as
|Y | = |X|, as this simplifies our morphing implementation.

Algorithm 1 Simulated Annealing Morphing.

1: DIFFcurr ← Sim(X, Y )
2: qm← [QMa(Γ), QM b(Γ), . . . ]
3: for i = 1 to Nmax do
4: (X ′, DIFFtest)← Jit(X, Ti, DIFFcurr, Y )
5: qm′ ← [QMa(Γ′), QM b(Γ′), . . . ]
6: if ∀j, |qm′[j]− qm[j]| ≤ ϵj then
7: X ← X ′

8: DIFFcurr ← DIFFtest

9: end if
10: end for

Algorithm 1 details our morphing: We start by computing the similarity of our graph
drawing to the target shape and its quality metric value (lines 1-2). The Jit function jitters
a random selection of nodes Xs ⊂ X, 1 ≤ |X|/15 by a random value drawn from a normal
distribution [−0.5, 0.5]/25 while increasing the similarity of X ′ to Y (line 4, see also Alg. 2).
We accept X ′ if the quality qm′ of its drawing Γ′ is within a small range ϵ of the initial
quality qm (lines 5-8). We repeat this process for Nmax = 30000 iterations. To escape local
minima, we also use simulated annealing: If a randomly generated value is below the current
temperature Ti, we accept the node coordinates Xjit, irrespective of its (dis)similarity to Y .
Ti varies over iterations: We start with Tinit = 0.4 and quadratically decrease it to a final
value TNmax = 0.001. After exploring the practical ranges of the metrics in [25] and their
variations discussed in [33], we set ϵ = 0.0025 for ST,ELD,AR and ϵ = CN(Γ) ∗ 0.05 for CN.

For the similarity Sim(X, Y ) (see Alg. 3), one can use Mean Squared Error MSE =
1
n

∑n
i=1(Xi − Yi)2 or the Procrustes Statistic [37] (similar to MSE but invariant to rotation,

translation and scaling). We also briefly experimented with the Wasserstein Distance [35]
and the Sinkhorn [10] algorithm. However, these approaches yielded slightly worse results
and were thus discarded.
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Algorithm 2 Jitter function Jit(X, T, DIF F, Y ).

1: while do
2: Xs ⊂ X, 1 ≤ |X|/15
3: Xjit ← X + (Xs + rand(N (−0.5,0.5))

25 )
4: if Sim(Xjit, Y ) < DIFF ∨ T > rand(U(0, 1)) then
5: return (Xjit, Sim(Xjit, Y ))
6: end if
7: end while

The authors of [24] used the average distance of all points in X to the closest point in Y ,
which gives more morphing freedom. Our Sim design slightly adapts this idea. Algorithm 3
details our Similarity function: We start by computing the closest distances from two sets of
node coordinates X and Y . We compute the distance of node X0 (the current first node) in
coordinate set X to all nodes in coordinate set Y . The distance to the closest node Yidx in
Y is then added to the total loss after which both X0 and Yidx are removed from X and Y ,
respectively. This iterative process is then repeated until all nodes are removed from the
coordinate set and ensures no repetition of nodes in any pairs. To compare similarity values
across different graphs, we express the similarity in a percentage, where we consider perfect
similarity to the target shape (Sim(Y, Y ) = 0) as 100% and perfect similarity to the starting
shape as 0%, i.e.: 100− (Sim(X ′, Y )/Sim(X, Y ) ∗ 100) where Sim(X, Y )→ R is equal to
the starting similarity from Alg 1 (line 1).

Algorithm 3 Similarity function Sim(X, Y ).

1: loss← 0
2: while n > 0 do
3: DIS ← [∥X0 − Y ∥]ni=0
4: (idx, dis)← (argmin(DIS), min(DIS))
5: X ← RemoveRow(X, 0)
6: Y ← RemoveRow(Y, idx)
7: loss← loss + dis

8: n← n− 1
9: end while

10: return loss

3.4 Datasets
We perform experiments on the five graphs in Tab. 1. Four come from the Network
Repository [32] due to their interesting varying structures. We created the fifth one using the

Table 1 Descriptive statistics of graphs used in our experiments.

Graph n m deg(V )avg source
polbooks 105 441 8.40 [32]
lnsp_131 123 275 4.47 [32]
bar-albert 142 175 2.46 generated
gams10am 171 298 3.49 [32]
dwt_307 307 1108 7.22 [32]

GD 2025
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dual-Barabasi-Albert algorithm [27] to control the node count n. For each graph we create
initial drawings (START) using ForceAtlas2 [20] with 5000 iterations and default parameters.
We translate and scale all drawings to have coordinates in [0, 1] so that Jit becomes scale
invariant. We use six target shapes Y from [24] including the Dinosaur shape from [5], see
Fig. 2. For all shapes we create simple algorithms that generate Y for any point count n

so we can next easily enforce |X| = |Y | (see Sec. 3.3). Our data and code are available on
GitHub [34].

X VERT HOR O DINO GRID

Figure 2 Target shapes used in our experiments.

4 Results and Discussion

We next refer to results from the figures and tables in the Appendix with the ⋆ notation. For
larger versions of these figures check the full paper version. These extra results include the
drawings of all pairs and triples of metric combinations, distribution of similarity percentages,
and results of statistical testing. We also refer the reader to our video material, in which we
replicate a dancing person while keeping a quality metric value the same. An example of
four frames of this video can be seen in Fig. 3. Additional videos and details on how the
videos were created can be found on our GitHub page [34].

Individual metrics. Figures 1 and 4 show the resulting drawings of fooling individual metrics
and all four metrics at once. We see that not all individual quality metrics can be fooled
equally well. As speculated, fooling ST proves to be the most difficult. For example, the
bar-albert graph nearly perfectly morphs to all six targets for ELD,CN,AR but not for ST. We
see similar results for polbooks, lnsp_131 and dwt_307. For the metrics ELD and AR, we
observe easy fooling for all graphs except dwt_307. We also see that fooling the number of
crossings (CN) is easier than expected – see the results for all graphs except gams01am and
dwt_307. Aggregating the results over all graphs and target shapes (see Fig. 7⋆) shows that
ELD is much easier to fool than ST; and AR is much easier to fool than ST and CN.

frame 1 frame 2 frame 3 frame 4

targets

drawings

Figure 3 Four sequential target frames from the video and the resulting sequential drawings from
attempting to fool a quality metric (ELD) for the target frames.

https://arxiv.org/abs/2508.15557
https://github.com/simonvw95/Same-Quality-Metric--Different-Graph-Drawings/blob/main/example_figures/rr-ba_rr-ELD.gif
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START X VERT HOR O DINO GRID

polbooks ST

ELD

CN

AR

ST-ELD-CN-AR

lnsp 131 ST

ELD

CN

AR

ST-ELD-CN-AR

gams10am ST

ELD

CN

AR

ST-ELD-CN-AR

dwt 307 ST

ELD

CN

AR

ST-ELD-CN-AR

Figure 4 Collection of different graph drawings. The START column indicates the starting drawing
of various graphs. The results of applying Alg. 1 to START to six target shapes (X, VERT, HOR, O,
DINO, GRID) are shown in their respective columns. The rows indicate the (combinations of) metrics
that have ±ϵ = 0.0025 for ST,ELD,AR and ±ϵ = CN(Γ) ∗ 0.05 for CN.

GD 2025
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Combination of metrics. We observe that our technique is almost never able to fool all
four metrics at once, except for the bar-albert graph. Looking at the drawings in Fig. 5⋆ and
the similarity values in Fig. 6⋆, we see that fooling three metrics at the same time is also
hard. In contrast, fooling combinations of two metrics is sometimes possible but proves to be
hard for dwt_307 and gam10am. We observe that the combination ST-CN is rather resistant
to fooling; every other metric pair is much easier to fool than ST-CN except for ELD-CN.

Graph type. The spread of the similarity values in Fig. 6⋆, and in particular the low values
for dwt_307 and bar-albert, support our hypothesis that the graph type can influence how
difficult it is to fool its quality metrics. For dwt_307, we see that the target shapes (except
GRID) are much less visible for most metrics compared to results of other graphs. In Fig. 8⋆,
we see that the metrics and their combinations for this graph are significantly harder to fool
than other graphs, most likely due to its strong mesh-like structure. The metrics and their
combinations for the bar-albert graph, whose tree-like structure allows for a lot of layout
flexibility, are significantly easier to fool compared to all other graphs in our dataset.

Target shape. Lastly, we observe that some target shapes are harder to morph to. For
instance, DINO is much more complex than O or X. This leads to messy drawings for some
graphs – dwt_307 is unable to even come close. When aggregating the results over all graphs
and metric combinations (see Fig. 8⋆), we see that only the GRID shape is significantly easier
to morph to than all other shapes.

5 Conclusion

In this work we provide evidence against the assumptions that (1) “high” quality metric
values indicate “good” graph drawings; and that (2) drawings of the same graph with similar
metric values are similar in their quality. We use simulated annealing to morph existing
graph drawings into six different, arbitrary, target shapes without substantially altering one
or more quality metric values. To our knowledge, this is the first time that a systematic
fooling of graph drawing quality metrics has been explored. Depending on the graph and
metric, most graph drawings can easily be morphed towards such targets. We observe
that the structure of the graph has an influence on how well a graph drawing can fooled.
Furthermore, we find evidence that some metrics (stress) are more difficult to fool than
others, depending on the target shape; and that some combinations of metrics are easier to
fool. All in all, our results suggest that current quality metrics are not enough to capture the
essence of a “good” graph drawing on their own. Similar to Huang et al. [19], we emphasize
the importance of combinations of two or more quality metrics that capture both the graph
structure (faithfulness) and readability of the drawing. Future work can consider advancing
our fooling method by using more sophisticated techniques such as gradient descent or deep
learning approaches. Furthermore, more experiments can be conducted with more graphs,
target drawings, and quality metrics, as well as linear combinations of multiple quality
metrics. Lastly, a perceptual user-study could explore how readable or misleading these
morphed drawings are.
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A Appendix

A.1 Combinations of Metrics

START X VERT HOR O DINO GRID

bar-albert ST-ELD

ST-CN

ST-AR

ELD-CN

ELD-AR

CN-AR

ST-ELD-CN

ST-ELD-AR

ST-CN-AR

ELD-CN-AR

ST-ELD-CN-AR

polbooks ST-ELD

ST-CN

ST-AR

ELD-CN

ELD-AR

CN-AR

ST-ELD-CN

ST-ELD-AR

ST-CN-AR

ELD-CN-AR

ST-ELD-CN-AR

START X VERT HOR O DINO GRID

lnsp 131

gams10am

START X VERT HOR O DINO GRID

dwt 307 ST-ELD

ST-CN

ST-AR

ELD-CN

ELD-AR

CN-AR

ST-ELD-CN

ST-ELD-AR

ST-CN-AR

ELD-CN-AR

ST-ELD-CN-AR

Figure 5 Collection of different graph drawings. The START column indicates the starting drawing
of various graphs. The results of applying Alg. 1 to START to six target shapes (X, VERT, HOR, O, DINO,
GRID) are shown in their respective columns. The rows indicate the metrics that have ±ϵ = 0.0025
for combinations of ST,ELD,AR and ±ϵ = CN(Γ) ∗ 0.05 for CN.
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A.2 Similarity percentages
Figure 6⋆ visualizes the distributions of the similarity percentages. Here, each dot represents
how similar the fooled drawing is to its target shape.
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Figure 6 Distributions of how similar the res-
ulting drawings are to the six target shapes.
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Sign. Matrix Metric Comparison

Figure 7 Comparing the distributions of each
metric’s results with each other metric. Each box
indicates that the resulting distribution of the
results of the row metric minus the results of the
column metric are non-significantly (gray) and
significantly (yellow) greater (easier to fool) than
a distribution symmetric about zero.

A.2.1 Metric comparison
To test significant differences between the non-normally distributed results of the fooled
metrics we first employ the Friedman test. We find that there are significant differences
(χ2 = 314, p < 0.05) between the results of metrics. Since our data is paired, we then perform
pairwise metric comparisons using the Wilcoxon signed-rank test. Additionally, we correct
the p-values using the Bonferroni adjustments.

In Figure 7⋆ we display the results of the significance tests with p < 0.05. Here, the metric
of a row is compared with the metrics of all columns and vice-versa. A yellow (resp., gray)
color indicates that the resulting distribution of the row metric minus the column metric is
significantly (resp., or non-significantly) greater than a distribution symmetric about zero. As
we are using a greater than alternative hypothesis, the pattern in Figure 7⋆ is not symmetric.
For example, for ELD and ST we see that there is a significant difference, meaning that the
difference between the distributions of ELD and ST is greater than a distribution around
zero, i.e. ELD is easier to fool than ST. However, that means that the difference between the
distributions of ST and ELD is smaller than a distribution around zero which is why this pair
is not significant for the “greater than” test.
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From this pair-wise metric comparison, we observe that fooling individual metrics is easier
than fooling combinations, with ELD and AR being the simplest. For pairs of quality metrics,
the ST-CN combination is more resistant to fooling than others. We see the same for any
other larger combination that includes ST and CN, such as ST-ELD-CN and ST-CN-AR which
are the most difficult to fool.

A.2.2 Target shape comparison
We test the differences between graphs in exactly the same manner as for the metric
comparison, with now the dependent variable being the target shape. The Friedman test
shows that there are significant differences between the results of the target shapes (χ2 = 42.9,
p < 0.05). The results of the pairwise Wilcoxon signed-rank tests are visualized in Figure 8⋆.
From these results we observe that the GRID shape is significantly easier to morph into than
any other shape. All the other shapes are more or less equally difficult to morph any drawing
into, with the exception that the DINO shape is significantly easier than VERT.
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Figure 8 Comparing the distributions of each target’s results with each other target (left)
and comparing each graph with each other graph (right). Each box indicates that the resulting
distribution of the results of the row metric target the results of the column target are non-significantly
(gray) and significantly (yellow) greater (easier to fool) than a distribution symmetric about zero.

A.2.3 Graph comparison
We test the differences between graphs in a similar way to the metric comparison, with now
the dependent variable being the graph. However, due to the graph data being independent
samples we use the Mann-Whitney U test to determine significant differences between pairs
of graphs. These results are visualized in Figure 8⋆. From these results we observe that for
the bar-albert graph it significantly easier to fool any metric combination than it is for any
other graph. Conversely, fooling metrics for the dwt_307 graph is significantly more difficult
than for any other graph
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