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Abstract
We study a question that lies at the intersection of classical research subjects in Topological Graph
Theory and Graph Drawing: Computing a drawing of a graph with a prescribed number of crossings
on a given set S of points, while ensuring that its curve complexity (i.e., maximum number of bends
per edge) is bounded by a constant. We focus on trees: Let T be a tree, ϑ(T ) be its thrackle number,
and χ be any integer in the interval [0, ϑ(T )]. In the tangling phase we compute a topological
linear embedding of T with ϑ(T ) edge crossings and a constant number of spine traversals. In the
untangling phase we remove edge crossings without increasing the spine traversals until we reach χ

crossings. The computed linear embedding is used to construct a drawing of T on S with χ crossings
and constant curve complexity. Our approach gives rise to an O(n2)-time algorithm for general trees
and an O(n log n)-time algorithm for paths. We also adapt the approach to compute RAC drawings,
i.e. drawings where the angles formed at edge crossings are π
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1 Introduction

In this paper we study the following problem: Given an n-vertex tree T , a set S of n distinct
points in the plane, and a non-negative integer χ, find a simple drawing Γ of T with the
following properties:
1. Γ is a point-set embedding of T on S, i.e. its vertices are the points of S,
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8:2 Tangling and Untangling Trees on Point-Sets

2. the edges of T are represented by polylines with constant curve complexity, measured as
the maximum number of bends per edge, and

3. the edges cross exactly χ times in Γ.
In the following we refer to them as Property 1, Property 2, and Property 3.

The problem locates itself at the intersection of three well studied research subjects in
Graph Drawing and Graph Theory, namely the study of point-set embeddings, the study of
drawings with limited curve complexity, and the study of drawings with prescribed numbers
of edge crossings. Before describing our contribution, we briefly recall each such topic.
Property 1 – For a graph G with n vertices and a set S of n distinct points in the plane, a
point-set embedding of G on S is a drawing of G where each vertex is mapped to a distinct
point of S. Most of the literature on this topic is about planar (χ = 0) point-set embeddings
of graphs (see, e.g., [7, 8, 9, 10, 11, 13, 35, 43, 44]). Specifically, it is NP-complete to test if
a planar graph G has a straight-line planar point-set embedding on a given point-set [13].
If G is an outerplanar graph and the points are in general position such a drawing can be
constructed in polynomial time (see, e.g., [8, 9, 10, 11]).
Property 2 – Together with the edge crossing minimization, the minimization of the edge
bends and/or of the bends per edge are among the oldest optimization questions in graph
drawing (see, e.g.,[15, 38, 50]). In particular, the relationship between point-set embeddings
and curve complexity has been studied when the mapping between the vertices of the graph
and the points is specified as part of the input as well as when it is partially specified or
not specified (see, e.g., [3, 29, 30, 31, 32, 33, 34, 39, 45, 46]). Notably, Kaufmann and Wiese
proved that when the mapping is not specified a planar graph admits a crossing-free point-set
embedding with constant curve complexity, namely at most two bends per edge [39, 40].
Property 3 – The thrackle bound ϑ(G) of a graph G = (V, E) with m = |E| edges is the
number of crossings that a drawing of G would have if every edge crosses every other non-
adjacent edge exactly once. It is well known that ϑ(G) = (m(m + 1) −

∑
v∈V deg2(v))/2;

see, e.g., [48, 49]. As an example, for a cycle Cn with n vertices the above formula gives
ϑ(Cn) = n(n − 3)/2. For a path Pn with n vertices, where all but two vertices have degree
two, the formula gives ϑ(Pn) = (n − 2)(n − 3)/2. A thrackle is a drawing of a graph G with
exactly ϑ(G) crossings. Not all graphs admit thrackles. For example, a cycle C4 with 4
vertices does not admit a drawing with ϑ(C4) = 2 crossings. As reported in [51], Conway
conjectured in 1969 that each thrackleable graph contains at most as many edges as vertices.
His conjecture, known as Conway’s thrackle conjecture, still remains open. Woodall [51] was
the first to work on the thrackle conjecture and, assuming the conjecture was true, showed
that a finite graph admits a thrackle if and only if it contains at most one odd cycle, no
4-cycle, and each of its connected components is either a tree or it contains exactly one
cycle. Refer to [26, 27, 41, 52] and the references therein for progress relevant to Conway’s
Thrackle conjecture. Graph classes that admit thrackles (and satisfy the thrackle conjecture)
include cycles of more than 4 vertices [36] and trees [48]. Given a tree T and an integer
0 ≤ χ ≤ ϑ(T ), Piazza et al. [48] presented an algorithm that constructs a drawing of T with
χ crossings and curve complexity O(n). A similar result was presented by Harborth [36] for
any cycle Cn , n > 4. Hence, the algorithms in [48] and [36] compute drawings that satisfy
Property 3.
Relationship between Properties 2 and 3 – A linear thrackle is a thrackle with curve complexity
zero. Not all graphs admit linear thrackles. For example, a cycle C6 with 6 edges does
not admit a linear thrackle with ϑ(C6) = 9 crossings (but it admits a thrackle [48]). It
should be noted that, as proved by Erdős [24] and Perles [47], Conway’s conjecture holds
for linear thrackles. More generally, there is a complex relationship between number of
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crossings and curve complexity. For example, a cycle C with an odd number of vertices
admits a drawing with curve complexity zero and χ crossings, where χ is any number up to
ϑ(C) except ϑ(C) − 1 [28]. On the other hand, an n-vertex cycle C with an even number of
vertices admits a drawing with complexity zero and χ crossings, where χ is any number up
to n(n − 4)/2 + 1 = ϑ(C) − n/2 + 1 [28]. Notice that there exist planar graphs admitting
straight-line pointset embeddings on non-convex pointsets that have more crossings than any
straight-line pointset embedding on a pointset in convex position [14]

Besides the above properties we are also interested in producing RAC drawings. A seminal
user-study by Huang, Eades, and Hong [37] shows that edge crossings that form sharp angles
affect the readability of a drawing much more than those that form large angles. This
has motivated the study of right-angle crossing drawings (RAC drawings), that are graph
drawings where the crossing angles are all π

2 ; see, e.g., [1, 2, 6, 16, 18, 19, 17, 20, 21, 22, 23]
for surveys and papers about RAC drawings. Point-set RAC embeddings were studied by
Fink et al. [25] who, among other results, show that every graph admits a point-set RAC
embedding with curve complexity 3.

Our Contribution. We solve the main problem in this paper for any 0 ≤ χ ≤ ϑ(T ). To
this aim, we first present an O(n)-time algorithm which tangles T by computing a linear
layout with ϑ(T ) edge crossings where each edge traverses the spine (i.e. the line passing
through the vertices) a constant number of times. We then show how to untangle the linear
layout until we reach the desired number χ of edge crossings. By carefully pruning some
edges of T , such a linear layout can be computed in O(n2) time. If T is a path the time to
construct the linear layout reduces to O(n). Finally, the linear layout is used to construct a
point-set embedding Γ of T having χ edge crossings and curve complexity at most 5. If we
require Γ to be a RAC drawing, then Γ has curve complexity at most 9, which decreases to 6
if the points are collinear. For the case of paths, a RAC point-set embedding with curve
complexity 3 can be computed in O(n log n) time.

Full proofs of statements marked with a “⋆” can be found in [5].

2 Preliminaries

We only consider simple graphs, i.e. graphs not containing loops and multiple edges. A
drawing of a graph G(V, E) maps each vertex v ∈ V to a distinct point on the plane and each
edge (u, v) ∈ E to a Jordan arc joining the points representing u and v. A drawing is simple
if: (i) two adjacent edges do not intersect except at a common end-vertex; (ii) no three edges
intersect on the same point; (iii) two edges intersect at most once at a common interior point;
and (iv) the intersection between a pair of edges must be “transverse”, i.e., the curves of the
two edges must alternate around the intersection point. We only consider simple drawings of
graphs which we shall call just drawings, for short. A drawing is straight-line if the edges
are represented as straight-line segments. A drawing is polyline if each edge is represented
as a chain of straight-line segments such that any consecutive segments of the chain have
different slopes. The curve complexity of a polyline drawing is the maximum number of
bends per edge in the drawing. A drawing is a RAC drawing if any two edges that cross do
so by forming four π

2 angles around the crossing point.
A topological linear embedding E of graph G(V, E) is defined as follows. (1) Each edge

(u, v) of E is mapped to a subdivision path π composed of k > 0 legs ⟨(u0, u1), (u1, u2), . . . ,
(uk−1, uk)⟩ with u0 = u and uk = v, possibly consisting of a single leg (u, v). The subdivision
vertices u1, u2, . . . , uk−1 internal to π are spine traversals. (2) The vertices in V and the

GD 2025
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Figure 1 A topological linear layout of the tree of Fig. 2a obtained from the topological circular
layout of Fig. 4.

spine traversals are ordered in E ; this order is the spine of E . (3) The legs are subdivided into
two partition sets named top page and bottom page in such a way that any two consecutive
legs of a subdivision path are assigned to distinct partition sets. (4) Two legs (a, b) and (c, d)
in the same partition set cross if a ≻ c ≻ b ≻ d. (4.1) No two legs of the same edge can cross.
(4.2) Edges (u, v) and (w, z) cross ρ times if there are ρ distinct pairs of their legs that cross.
We impose ρ ≤ 1. If ρ = 0 (u, v) and (w, z) do not cross in E , whereas, if ρ = 1 they do.

A drawing Γ of a topological linear embedding E can be constructed as follows. The
vertices and the spine traversals of E are represented in Γ as points along a horizontal line,
called spine of Γ, in the same left-to-right order they have in E . The half-plane above (resp.
below) the spine is the top page (resp. bottom page) of Γ. A leg (a, b) of G assigned to
the top page (resp. bottom page) in E is represented as the arc of a circumference in the
top page (resp. bottom page) of Γ having the points corresponding to a and b along the
spine as the extreme points of the diameter. Such arc is a leg of Γ. As a consequence, two
legs cross in Γ if and only if they cross in E . If a is a spine traversal in the topological
linear embedding, the point representing a along the spine of Γ is a spine traversal of Γ.
Drawing Γ is a topological linear layout of G. See Fig. 1. It is immediate to see that, given a
topological linear embedding of a graph G, a topological linear layout of G can be constructed
in O(n + σm) time, where n, m and σ denote the number of vertices, edges, and maximum
number of spine traversals per edge of G, respectively.

3 Topological Linear Embeddings of Trees

In this section we describe Algorithm Tangle, that computes in O(n) time a topological
linear embedding of an n-vertex tree T with ϑ(T ) crossings and with two subdivision vertices
per edge. Second, we describe Algorithm Untangle which can be iteratively used to
reduce the number of crossings from ϑ(T ) down to zero, hence guaranteeing the existence
of a topological linear embedding with χ crossings, χ ∈ [1..ϑ(T )] and with at most two
subdivisions per edge. Since ϑ(T ) ∈ O(n2) and each step of Untangle takes O(n) time,
this leads to an O(n3)-time algorithm to produce a topological linear embedding with χ

crossings, χ ∈ [1..ϑ(T )]. We will also show how to reduce this time to O(n2).
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Figure 2 An example tree (a) and the subsequences of points on C used for its vertices/edges (b).

For the ease of the description, instead of producing a topological linear embedding, we
produce a topological circular embedding whose definition is analogous to that of a topological
linear embedding with the difference that the spine is a circular ordering1 rather than a linear
ordering. A topological linear embedding is obtained from a topological circular embedding
and vice versa by considering the spine ordering as linear or circular, respectively. Observe
that crossings among the edges and spine traversals are preserved in the two embeddings.

3.1 Algorithm Tangle

In the topological circular embedding E◦ of tree T (V, E) constructed by Algorithm Tangle
each edge e ∈ E has two subdivision vertices and, hence, it is split into three legs denoted
by ◦             ·e ,·              ·e , and ·             ◦e , where ◦             ·e is incident to the parent vertex and ·             ◦e is incident to the child
vertex. We will assign ◦             ·e and ·             ◦e to the inner region (bottom page) and second leg ·              ·e to the
outer region (top page). The crossing among legs will happen exclusively in the inner region.

We assume that T is rooted at vertex v1 and planarly embedded in such a way that
for any vertex vi, with i = 1, . . . , n, the non-leaf children of vi precede the leaf children of
vi (see, for example, Fig. 2a). Let h be the height of T . For j = 0, . . . , h, we denote by
Vj the set of the vertices at depth j in T and by Ej , j = 0, . . . , h − 1, the edges between
the vertices in Vj and those in Vj+1. We choose a sequence P = ⟨p1, p2, . . . , p|V |+2|E|⟩ of
|V |+ 2|E| distinct points in this clockwise order along a cycle C. The points in P will be used
either by the vertices in V or by the subdivision vertices of the edges in E. We subdivide the
points in P into contiguous subsequences of points along C. More specifically, if h is even,
we subdivide P into P0, P2, P4, . . . , Ph, P1, P3, P5, . . . , Ph−1; otherwise, we subdivide P

into P0, P2, P4, . . . , Ph−1, P1, P3, P5, . . . , Ph. Each subsequence Pj (j = 0, 1, . . . , h) has
size |Pj | = |Vj | + 2|Ej | and is used by the vertices in Vj and by the subdivision vertices of
the edges in Ej (refer to Fig. 2b).

1 A circular ordering generalizes a linear ordering to settings where there is no “first” or “last” element;
we can think it as arranging elements around a circle rather than along a line.

GD 2025
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Figure 3 Placement of the vertices (a) and Edge routing (b) of Algorithm Tangle.

Vertex placement. We map the vertices of Vj to specific points of Pj . If j is even (resp. j

is odd), denote by vj,1, vj,2, . . . vj,|Vj | the vertices of Vj in the order (resp. in the reversed
order) as they appear at depth j in T . For k = 1, . . . , |Vj |, we leave children(vj,k) points of
Pj unused and then we place vj,k (see Fig. 3a). Observe that after the last vertex vj,|Vj | of
Vj has been placed, there are 2|Ej | unused points, |Ej | of which are at the end of Pj .

Edge routing. We describe how to embed the edges of Ej , for each j = 0, . . . , h − 1. Denote
by pj,1, pj,2, . . . , pj,|Vj |+2|Ej | the points of Pj in this clockwise order around C. Recall that the
vertices of Vj have been already placed in Pj and that each vertex vj,k, with k = 1, . . . , |Vj |, is
preceded by children(vj,k) unused points, while the whole sequence Pj is closed by |Ej | unused
points. For k = 1, . . . , |Vj |, we process vertex vj,k of Vj and, for ℓ = 1, . . . , children(vj,k), we
embed each edge eℓ ∈ |Ej | incident to vj,k, where edges in Ej are considered in the left to
right order as they appear in the embedding of T . Intuitively, edge eℓ will greedily use the
last unused point of Pj and the first unused point of Pj . More formally, we embed ◦             ·eℓ in the
inner region using as its endpoint the last unused point of Pj (refer to Fig. 3b); we embed
·              ·eℓ in the outer region using as its second endpoint the (children(vj,k) − ℓ + 1)-th point of Pj

clockwise preceding the point used by vj,k (which is also the first unused point of Pj); we
embed ·             ◦eℓ in the inner region hitting the point of Pj+1 where the ℓ-th child of vj,k lies.

▶ Lemma 1. Algorithm Tangle computes in O(n) time a topological circular embedding of
an n-vertex tree T with ϑ(T ) crossings where every edge traverses the spine exactly twice.

Proof sketch. By construction, all the edges of a topological circular embedding E◦ produced
by Algorithm Tangle are composed by three legs, the second of which is drawn in the outer
region. It can be easily shown that the second legs of the edges in E do not cross in E◦.
Also, the first legs of the edges in E do not cross among themselves in E◦. It follows that
the only possible crossings in E◦ are between a first leg and a third leg of two edges in E or
between two third legs of two edges in E. Consider two edges (u, v) and (w, z) of the same
Ej , j ∈ [0..h − 1], where u and w belong to Pj . Edges (u, v) and (w, z) cross whenever u uses
a point of Pj that precedes the point of Pj used by w (

◦                                  ·
(u, v) crosses

·                                     ◦
(w, z)). Hence, all the
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Figure 4 A drawing representing a topological circular embedding of the tree T of Fig. 2a with
ϑ(T ) edge crossings and two spine crossings per edge.

edges of Ej cross among themselves with the exception of those that are incident to the same
vertex of Vj . Consider two edges (u, v) ∈ Ej and (w, z) ∈ Ej−1, with j ∈ [1..h − 1], where u

and z belong to Vj . Edges (u, v) and (w, z) cross when u uses a point of Pj that precedes
the point of Pj used by z (

◦                                  ·
(u, v) crosses

·                                     ◦
(w, z)). Also, (u, v) and (w, z) cross when u uses a

point of Pj that follows the point of Pj used by z (
·                                  ◦
(u, v) crosses

·                                     ◦
(w, z)). Hence, (u, v) ∈ Ej

and (w, z) ∈ Ej−1 cross whenever they are not adjacent (i.e., whenever u ̸= z). Finally, two
edges (u, v) ∈ Ej and (w, z) ∈ Ej′ with j′ /∈ {j − 1, j, j + 1} always cross once (

·                                  ◦
(u, v) crosses

·                                     ◦
(w, z)). In conclusion two edges of T cross if and only if they are not adjacent. Hence the
number of crossings is ϑ(T ). It is easy to check that E◦ can be computed in O(n) time. ◀

An example drawing of the topological circular embedding computed by Algorithm
Tangle is shown in Fig. 4. As a byproduct of the results in this section, we point out that
from the circular topological embedding E◦ it is not difficult to compute a polyline drawing
of T with ϑ(T ) crossings (a thrackle of T ) with curve complexity two as in Fig. 5.

3.2 Algorithm Untangle
We describe Algorithm Untangle as if the target were to reduce the number of crossings
down to zero. In order to obtain a topological circular embedding Eχ

◦ with χ crossings it is
sufficient to run ϑ(T ) − χ iterations of the algorithm.

Let ϑ′(T ) = 1
2 · |E|2 − 1

2 ·
∑h−1

i=0 |Ei|2 −
∑h−2

i=0 (|Ei| · |Ei+1|). The algorithm has two phases:
in the first phase the crossings are reduced from ϑ(T ) to ϑ′(T ), obtaining a topological
circular embedding Eϑ′(T )

◦ where each edge is subdivided exactly once. The reason for the
choice of ϑ′(T ) will become evident soon. In the second phase the number of crossings is
reduced to zero.

Phase 1: reducing the crossings to ϑ′(T ). Let Eϑ(T )
◦ be a topological circular embedding

of T with ϑ(T ) crossings. While reducing at each step the number of crossings by one, we
process T level by level bottom-up. In particular, for each i = h − 1, h − 2, . . . , 0, we first

GD 2025
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Figure 5 From a topological circular embedding of a tree to a thrackle with curve complexity two.
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Figure 6 Examples of vertices embedded as rainbows (a) and a full-rainbow configuration (b).

modify the embedding of T in such a way that each vertex of Vi assumes a configuration
that we call “rainbow” and we then bring all vertices of Vi and edges of Ei to a configuration
that we call “full-rainbow”. When all levels of the tree are processed, the number of crossings
will be exactly ϑ′(T ) and each edge of T will have exactly one subdivision vertex.

A vertex v is embedded as a rainbow if: (i) the edges that lead to its children are
subdivided exactly once, where their first leg is assigned to the outer region and their second
leg is assigned to the inner region and (ii) the subdivision vertex of such edges immediately
precede v in clockwise order. See Fig. 6a for an example of vertices embedded as rainbows.
The vertices of Vi are in a full-rainbow configuration if: (i) the edges of Ei are planarly drawn
with only two legs, the first external and the second internal to C and (ii) the crossing of an
edge (u, v) of Ei with C clockwise precedes all the vertices of Vi. See Fig. 6b for an example
of a full-rainbow configuration. Observe that in a full-rainbow configuration of Vi the first
legs of edges of Ei do not cross each other and no edge of Ei crosses an edge of Ei−1.

There are as many full-rainbow configurations of Vi as there are permutations of the
vertices in Vi. In particular, if we have a full-rainbow configuration and we swap the position
of two consecutive vertices vx and vy, we can obtain another full-rainbow configuration by
swapping the position of the crossings with C of the edges of Ei incident to vx with those
of Ei incident to vy, and propagating the swap to the descendants of vx and vy. Hence, we
obtain the following lemma:
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▶ Lemma 2. Let T be a tree of height h. Let 0 ≤ i ≤ h and assume that for all j ≥ i

the vertices of Vj are in a full-rainbow configuration. There exists a topological circular
embedding E◦ of T such that the only crossings among edges in Ei ∪ Ei+1 ∪ . . . Eh−1 occur
between edges in Ej and Ek with k > j + 1.

Note that for i = 0 Lemma 2 yields a topological circular embedding E◦ of T where the
edges of the same Ei do not cross and edges of Ei and Ei+1 do not cross either. As indicated
in Lemma 3, such an embedding has exactly ϑ′(T ) crossings.

Suppose to have a topological circular embedding Eχ
◦ of T such that for a given 0 ≤ i ≤ h−1

it holds that: (i) for all j > i the vertices of Vj are in a full-rainbow configuration; (ii) for all
j ≤ i the vertices of Vj are embedded as in Eϑ(T )

◦ ; and (iii) for all j < i the edges of Ej are
embedded as in Eϑ(T )

◦ . Observe that for i = h − 1 such a drawing is trivially Eϑ(T )
◦ . First, we

reduce the number of crossings one by one moving all vertices of Vi to a rainbow configuration.
Second, we reduce the crossings one by one moving Vi and Ei to a full-rainbow configuration.
For the first target, recall that in Eϑ(T )

◦ a second leg of an edge in Ei is embedded on the
outer region and that the second legs of edges in Ei do not cross. Consider a non-leaf vertex
u of Vi and one of its edges e = (u, v) ∈ Ei. If u has more than one child in T , then consider
the edge e ∈ Ei such that the first subdivision vertex x of e is closer to u (refer to Fig. 7).
There are three cases: Case 1: If the last point of Pi before x in clockwise order is used by u

(see Fig. 7a), then the first subdivision vertex of the edges joining u with its children can be
removed, and u can be joined directly to their second subdivision vertices on the outer region
without changing the total number of crossings (see Fig. 7b). This yields an embedding of u

as a rainbow. Case 2: If the last point of Pi before x in clockwise order is used by a leaf w

(see Fig. 7c), then we can swap the position of w and x, decreasing the number of crossings
by one, having removed the crossing that was between the edge incident to w and e (see
Fig. 7d). This swap operation can be repeated with the other subdivision vertices x′, x′′,
. . . of the edges joining u with its children, reducing each time the number of crossings by
one (see, for example, Fig. 7e). Case 3: If the last point of Pi before x in clockwise order
is used by a non-leaf vertex w, then we can assume that w is embedded as a rainbow (see
Fig. 7f). Indeed, if this was not the case we would process w before u. We move w, together
with the first subdivision vertices of the edges joining w with its children, clockwise after
x (see Fig. 7g). In doing so, we reduce the number of crossings by deg(w) instead of one
unit (compare Figs. 7f and 7g where (u, v) loses four crossings). However, since the vertices
of Vi+1 are in a full-rainbow configuration, they can be permuted and, in particular, the
vertex v′ that clockwise follows the children of w can be moved counter-clockwise so that the
third leg of edge (u, v′) crosses children(w) edges of Ei and the total number of crossings is
reduced by one unit only (see Fig. 7h where vertex v′ coincides with v). Successively, we
move v′ back to its original position reducing the crossings of one unit at each swap (Fig. 7i
shows the first step of such a process). We iterate these operations until none of the above
moves apply, i.e., until all the vertices of Vi are in a rainbow configuration.

We now describe how to change the embedding of T in such a way that the vertices in
Vi and the edges in Ei are in a full-rainbow configuration. Recall that, since each vertex of
Vi has a rainbow configuration, each edge of Ei has a single subdivision vertex. Consider
the first subdivision vertex x, in clockwise order, of an edge e ∈ Ei that is preceded by a
vertex u ∈ Vi. Move x before u and before all subdivision vertices of the edges joining u with
its children. Observe that this change reduces the number of crossings by one (the crossing
between e and the edge of Ei−1 incident to u). By iterating this process we have that no
subdivision vertex of Ei is preceded by a vertex of Vi in Pi, i.e., the vertices of Vi are in a
full-rainbow configuration.
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Figure 7 Illustrations for Algorithm Untangle.

▶ Lemma 3. Following the completion of Phase 1, when all Vi, 0 ≤ i ≤ h, are in full-rainbow
configuration, the total number of crossings is ϑ′(T ).

Phase 2: reducing the crossings to zero. When all the levels of the tree are in a full-rainbow
configuration, all edges are drawn with a single subdivision vertex. Consider an edge (u, v)
incident to a vertex v ∈ Vh such that v is the last vertex clockwise of Vh. Observe that v is a
leaf. Denote by x the subdivision vertex of (u, v). Vertex v can be moved clockwise towards
x removing one crossing at each step. When v reaches x, vertex v can be transferred close to
its parent u and identified with it (i.e., v can be planarly embedded arbitrarily close to u

and moved with u from now on). Iteratively performing this operation on the last vertex of
the last level of T reduces the number of crossings down to zero, thus we have:

▶ Lemma 4. Any n-vertex tree T admits a topological linear embedding with χ edge crossings,
χ ∈ [0..ϑ(T )], where every edge traverses the spine at most twice. Such an embedding can be
computed in O(n3) time.

3.3 Algorithm Prune-Tangle-Untangle
In this section we describe an algorithm, called Prune-Tangle-Untangle, that reduces
the time complexity of Lemma 4 to O(n2). The algorithm uses the Tangle and Untangle
algorithms. However, before these, it launches the Prune procedure illustrated below.

Let Tn be the input n-vertex tree. The leaves of Tn are recursively removed (in any order)
obtaining trees Tn−1, Tn−2, . . . , while ϑ(Tn−i) > χ. Note that an edge (u, v) of an n-vertex
tree Tn, incident to a leaf v, may cross all other n − 2 edges of Tn except the deg(u) − 1 edges
incident to u. Hence, removing (u, v) produces a tree Tn−1 where the number of possible
crossings decreases by a quantity in [0..n]. To efficiently identify the leaves and compute the
current number of crossings, we equip vertices with their degrees and maintain a list of all
the leaves. When a leaf is removed from the tree (and from the list) the degree of its parent
is decreased, and if it becomes one, the parent is added to the list of leaves. We continue
until we encounter a leaf that cannot be removed. Thus, it holds that ϑ(Tn−i) < χ + n.
Then, we launch Algorithm Tangle on Tn−i to obtain Eϑ(Tn−i)

◦ of Tn−i and then perform
ϑ(Tn−i) − χ iterations of Untangle to obtain Eχ

◦ of Tn−i. Finally, the removed edges are
planarly added in reverse order as they were removed, iteratively placing them along C at a
small enough distance from their parent, to obtain a topological circular embedding of T

with χ crossings. The above description implies the following:
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Figure 8 Topological linear layouts of paths. (a) A linear layout of P7 with 10 crossings. (b)
Linear layout obtained moving vertices v1 and v7 in the one in Fig. 8a. ∆χ = 2 and k = 1. (c)
Linear layout computed for path P9 and χ = 8.

▶ Theorem 5. Any n-vertex tree T admits a topological linear embedding with χ edge crossings,
χ ∈ [0..ϑ(T )], where every edge traverses the spine at most twice. Such an embedding can be
computed in O(n2) time.

4 Topological Linear Embeddings of Paths

In the first part of this section we present an algorithm, which we call χ-Spiral that, given an
n-vertex (n ≥ 4) path Pn and any integer χ such that (n−3)(n−4)/2 < χ ≤ (n−2)(n−3)/2
computes a spine traversal free, one-page topological linear embedding Γ with χ crossings of
Pn. In all topological linear embedding constructed in this section each edge is mapped to just
one leg. Hence, we refer to edges and not to legs. Notice also that (n−3)(n−4)/2 = ϑ(Pn−1)
is exactly the maximum number of crossings for a drawing of a path with n − 1 vertices.

Algorithm χ-Spiral consists of two steps.
(Step 1) Compute a spine traversal free, one-page topological linear embedding Γ with

χ′ = ϑ(Pn) = (n − 2)(n − 3)/2 crossings of Pn. Let v1, . . . , vn be the vertices of Pn

each with a subscript that corresponds to the order in which it appears by visiting Pn

from any of its vertices of degree one to the other. Place on the spine of Γ first the
vertices with odd subscript, in increasing order of subscript, and then the vertices with
even subscript, in increasing order of subscript, too. Hence, the order of the vertices
on the spine of Γ is v1 ≺ v3 ≺ · · · ≺ vn−1 ≺ v2 ≺ v4 ≺ · · · ≺ vn if n is even and
v1 ≺ v3 ≺ · · · ≺ vn ≺ v2 ≺ v4 ≺ · · · ≺ vn−1 if n is odd. Then, assign all the edges of
Pn to the same page, say top page, of Γ. The linear embedding computed by Step 1 of
Algorithm χ-Spiral for path P7 is shown in Fig. 8a

(Step 2) Let ∆χ = χ′ − χ be the “excess of crossings” that Γ has with respect to the target
χ. Observe that ∆χ < n − 3. Now, perform what follows. If ∆χ = 2k + 1 is odd, then
move vertex v1 by k + 1 positions on the spine to the right, leaving the position of all
the other vertices unchanged. Else, (∆χ = 2k is even) move vertex v1 on the spine by k

positions to the right, leaving the position of all the other vertices unchanged. Then, as a
last action of the even case, move vertex vn to the left by one position. The assignment
of all the edges to the same page remains unchanged. The topological linear embedding
computed by Algorithm χ-Spiral for path P7 and χ = 8 (i.e., ∆χ = 2) is shown in Fig. 8b.

▶ Lemma 6. Let Pn be an n-vertex (n ≥ 4) path and let χ be an integer such that (n −
3)(n − 4)/2 < χ ≤ (n − 2)(n − 3)/2. Algorithm χ-Spiral computes a spine traversal free,
one-page topological linear embedding Γ with χ crossings of Pn in O(n) time.
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Proof sketch. First, we prove that at the end of Step 1 Algorithm χ-Spiral gets a topological
linear embedding Γ with χ′ = (n − 2)(n − 3)/2 crossings. Since all the edges of Pn are
assigned to the same page, Γ is one-page and spine traversal free. We prove that, in Γ, each
edge crosses all the other edges but those incident to its end-vertices. Consider any two
edges (vi, vi+1) and (vj , vj+1) of Pm such that i, j, i + 1, and j + 1 are pairwise different
and assume, w.l.o.g., that i < j. We prove that (vi, vi+1) and (vj , vj+1) cross in Γ. Suppose
that i and j are both odd, the other cases being similar. We have that, since i < j, vi ≺ vj .
Also, both i + 1 and j + 1 are even, with i + 1 < j + 1, hence, vi+1 ≺ vj+1. Further, since
j is odd and i + 1 is even, vj is placed before vi+1 on the spine (vj ≺ vi+1). In summary,
vi ≺ vj ≺ vi+1 ≺ vj+1. It follows that (vi, vi+1) and (vj , vj+1) cross. The time complexity of
Step 1 of the algorithm follows from the construction, which is just a scan of the path.

Concerning Step 2 of the algorithm, we have what follows. (1) Because of the range of
χ, we have that ∆χ < n − 3. (2) If ∆χ is odd we have 0 ≤ k < (n − 4)/2. If ∆χ is even we
have 0 ≤ k < (n − 3)/2. Because of these upper bounds on k, after the moves, v1 is still to
the left of vn in Γ. (3) If v1 moves by one position to the right, then it is placed right after
v3, hence, the number of crossings in Γ decreases by one (namely (v1, v2) no longer crosses
(v3, v4)). (4) If v1 moves by k + 1 positions to the right then the number of crossings in Γ
decreases by 1 + 2k; e.g. if k = 1 then v1 is positioned between v5 and v7, hence, (v1, v2)
no longer crosses (v3, v4), (v4, v5), and (v5, v6). Essentially, the first move of v1 to the right
decreases the number of crossings in Γ by one, while each of the subsequent moves decreases
the number of crossings by exactly two. Observe also that a move of vn to the left of one
position decreases the number of crossings in Γ by one unit. Since Step 2 involves only a
linear number of moves on the spine of Γ, its time complexity is also linear. ◀

Now, we exploit Algorithm χ-spiral and Lemma 6 to efficiently produce a drawing of Pn

with “any” number of crossings, proving the following lemma.

▶ Lemma 7. Let Pn be an n-vertex path. For each χ ∈ [0..ϑ(Pn)], Pn admits a one-page
topological linear embedding with χ crossings, that can be computed in O(n) time.

Proof. In order to compute the desired linear embedding, we first look for an integer n′ such
that ϑ(Pn′−1) < χ ≤ ϑ(Pn′). Namely, we look for the shortest path Pn′ such that Lemma 6
can be used to obtain a linear embedding of Pn′ with the desired number of crossings. This
is given by n′ = ⌈ 5+

√
25−4(6−2χ)

2 ⌉.
We then execute Algorithm χ-Spiral to construct a one-page linear embedding Γ′ with χ

crossings of path Pn′ . Once the one-page linear embedding Γ′ of Pn′ has been computed, we
augment Γ′ by adding to it a path Pn′′ with n′′ = n − n′ vertices on the same page of Pn′

just besides vertex v1, positioning its vertices consecutively say before v1 and joining its last
vertex with v1. Let Γ be the obtained linear embedding. We have that the edges of Pn′′ do
not cross any edge, hence the total number of crossings of Γ is the same of Γ′. As an example,
the linear layout computed for path P9 and χ = 8 is shown in Fig. 8c. In this case n′ = 7.

The O(n) time bound easily descends from the description of the algorithm. ◀

5 Point-set Embeddings with Prescribed Edge Crossings

In this section we address the general problem of computing a point-set embedding of a graph
G with prescribed edge crossings and O(1) curve complexity. The following lemma extends
and refines ideas described in the literature for crossing-free point-set embeddings, [25, 39].
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▶ Lemma 8. Let G be a graph with n vertices and m edges. Let S be a set of n distinct
points in the plane. If G admits a topological linear embedding with χ edge crossings and at
most σ spine traversals per edge, then the following hold:

G admits a RAC point-set embedding on S with χ edge crossings and at most 3(σ + 1)
curve complexity, which can be computed in O(mσ + n log n) time.
G admits a point-set embedding on S with χ edge crossings and at most 2σ + 1 curve
complexity, which can be computed in O(mσ + n log n) time.

Proof sketch. We assume, w.l.o.g., that no two points of S have the same x-coordinate (this
is in fact always the case by suitably rotating the plane). Let Ltop be a horizontal line above
the point of S with the largest y-coordinate and Lbottom be a horizontal line below the point
of S with the smallest y-coordinate. Let S be the strip of plane between Ltop and Lbottom.
Project the points of S onto the x-axis and order them by increasing x-coordinate. Let Γ
be a topological linear layout of G whose spine is the x-axis and whose vertices are the
projection points of S onto the spine. For each spine crossing of Γ add a dummy point to S

that has the same x-coordinate of the spine crossing and is in the interior of S. Let S′ be
the set of points that includes all points of S and all dummy points corresponding to the
spine crossings of the edges of Γ. In this sketch we show how to construct a RAC point-set
embedding, see the appendix for the complete proof.

Since no two points of S′ have the same x-coordinate, we can define around each point
s ∈ S′ a vertical strip τs whose interior contains s and such that no other element of S′ is in
the interior or on the boundary of τs; we call τs the safe strip of s.

Let u be a vertex of Γ and let s ∈ S′ be the point of S′ having the same x-coordinate as u.
Let degtop(u) be the number of edges of Γ incident to u in the top page and let degbottom(u)
be the number of edges incident to v in the bottom page. We place degbottom(u) dummy
points in the interior of τs ∩ Lbottom and degtop(u) dummy points in the interior of τs ∩ Ltop.
We then connect s to each such dummy points. Each segment connecting s to a dummy point
along τs ∩ Lbottom is a bottom stub of s. Each segment connecting s to a dummy point along
τs ∩ Ltop is a top stub of s. Let a be a spine crossing along an edge of Γ and let s ∈ S′ be
the point of S′ having the same x-coordinate as a. The top stub of s is the vertical segment
from s to the projection of s onto Ltop. The bottom stub of s is the vertical segment from s

to the projection of s onto Lbottom. The projection point of s to Ltop (Lbottom) is referred to
as the endpoint of the top (bottom) stub of s.

We are now ready to compute a RAC point-set embedding of G. Every vertex or spine
crossing of Γ is mapped to the point of S′ with the same x-coordinate. For every vertex
u ∈ Γ we order its incident edges in the bottom page from left to right; similarly we order
from left to right its incident edges in the top page. Let s ∈ S′ be the point onto which we
map u: We order both its bottom stubs and its top stubs from left to right. Let (u, v) be
the i-th edge of Γ incident to u (either in the bottom or top page of Γ) and the j-th edge
incident to v (either in the bottom or top page of Γ).

Let (a, b) be a leg of (u, v) in Γ. Let s ∈ S′ be the point to which a is mapped and let
s′ ∈ S′ be the point to which b is mapped. Without loss of generality, we assume that a ≺ b

(the case where a ≻ b is handled similarly). If a and b are both spine crossings and (a, b) is in
the top (bottom) page of Γ, we connect the endpoint p of the top (bottom) stub of s to the
endpoint p′ of the top (bottom) stub of s′ with a polyline consisting of two segments: the
segment incident to p has slope +1 (−1), the segment incident to p′ has slope −1 (+1). Note
that the leg (a, b) is mapped to a polyline with three bends: One at p, another at p′ and a
third one where the two segments with opposite slopes meet. The case where either a = u

and/or b = v is treated similarly; the only difference being that the polyline representing
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the leg (a, b) in the point-set embedding must be incident to either the i-th stub of the
point representing u or to the j-th stub of the point representing v. In this case (a, b) is
also represented by a polyline having 3 bends. After every leg of Γ has been drawn in the
point-set embedding by means of the above procedure, all dummy points corresponding to
the spine crossings of Γ are removed from S′. By construction, every edge of Γ that crosses
the spine k times (and consists of k + 1 legs) is represented in the point-set embedding as a
polyline having 3(k + 1) bends. Therefore, if Γ has at most σ spine crossings per edge, the
curve complexity of the point-set embedding is 3(σ + 1).

By construction, the stubs are in the interior of the safe strips and the safe strips
do not overlap with each other. This implies that the point-set embedding has no edge
crossing in the interior of S. Also, note that the safe regions follow the left to right order
of the points around which they are defined: This order is consistent with the left to right
order of the vertices and spine crossings along the spine of Γ. It follows that a crossing
occurs in the point-set embedding if and only if we have four points s0, s1, s2, s3 in S′

with x(s0) < x(s1) < x(s2) < x(s3) which correspond to four vertices or spine crossings
u0, u1, u2, u3, respectively, such that in Γ we have an arc of circumference with diameter u0u2,
another arc of circumference with diameter u1u3, such that both legs are in the same page
and and u0 ≺ u1 ≺ u2 ≺ u3 in the linear order. This implies that the point-set embedding of
G onto S has the same number χ of edge crossings as the topological linear embedding of G.

Since all segments along the polylines outside S have either slope +1 or slope −1 and
since any crossing occurs outside S, we also have that the edge crossings form π

2 angles and
hence the point-set embedding is a RAC drawing.

Concerning the time complexity, the procedure in this sketch first sorts the points of S

by increasing x-coordinate, then it maps the vertices of G to the points of S and then it
processes an edge at a time. It spends constant time to draw any leg. It follows that all edges
of the point-set embedding are processed in O(mσ)-time, which leads to a computational
complexity of O(mσ + n log n) to compute a (RAC) point-set embedding of G. ◀

Thm. 5, Lemma 7, and Lemma 8 imply that any tree (resp. path) admits a RAC point-set
embedding with a prescribed number of crossings and curve complexity 9 (resp. 3). It can be
proved that if the points are collinear, the curve complexity of the RAC point-set embedding
can be reduced to 6 (see Fig. 9 for an example and the appendix for details). If we drop the
constraint that the edge crossings form right angles, we obtain smaller curve complexities by
means of the same Lemmas, as it is summarized in the following theorem.

▶ Theorem 9. Let T be a tree with n vertices, let χ ∈ [0..ϑ(T )], and let S be a set of n

distinct points in the plane. The following hold:
We can compute in O(n2)-time a point-set embedding of T on S with χ edge crossings
and curve complexity 9 if the drawing is RAC and 5 otherwise. Also, if S is a set of
collinear points, the curve complexity of the RAC point-set embedding reduces to 6.
If T is a path, we can compute in O(n log n)-time a point-set embedding of T on S with
χ edge crossings and curve complexity 3 if the drawing is RAC and 1 otherwise.

6 Final Remarks and Open Problems

Graph Drawing is characterized by a range of computational aesthetic metrics [12, 53]. To
investigate the impact of each metric on the readability it is useful to produce different
drawings of the same graph where all metrics but one remain fixed [42]. In this context, we
compute drawings of trees with any number of crossings (which is probably the most studied
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Figure 9 A RAC point-set embedding on collinear points of the tree of Fig. 2a.

aesthetic), while guaranteeing constant curve complexity, and constraining the vertices at
given locations.

We conclude with several open problems.
1. Is there an o(n2)-time algorithm to compute a point-set embedding of a tree with χ

crossings and constant curve complexity? This question is interesting even for binary
trees.

2. Is it possible to compute RAC point-set embeddings of trees with any number of edge
crossings and curve complexity smaller than 9?

3. A seminal paper by Pach and Wenger studies the point-set embeddability without crossings
when the mapping between vertices and points is part of the input [45, 46]. It would be
interesting to study the question of the present paper also in such a setting.

4. Further, it would be interesting to extend our investigation to graph classes other than
trees.

Finally, we believe that examining well-known theoretical problems from an unconventional
perspective (see, e.g., [4]) can yield new and interesting insights.
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