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—— Abstract

A k-page book embedding of a directed acyclic graph consists of a topological order of its vertices and

a k-coloring of its edges, such that no two edges of the same color cross, that is, their endpoints do
not alternate in the order. The minimum value of k£ for which such an embedding exists is referred
to as the page number of the graph. In contrast to general directed acyclic planar graphs, which
may have unbounded page number [SIAM J. Comput. 28(5), 1999], it was recently shown that
directed acyclic outerplanar graphs have bounded page number. In particular, Jungeblut, Merker
and Ueckerdt provided an upper bound of 24,776 on their page number [FOCS 2023: 1937-1952].
In this work, we focus on so-called monotone directed acyclic outerplanar graphs. Starting from
a single edge, these graphs are constructed by iteratively connecting a new vertex to the endpoints
of an existing edge on the outer face using either two incoming or two outgoing edges incident to it.
These graphs have twist-number 4 [GD 2023: 135-151] (i.e., they admit a topological order in which
no more than four edges pairwise cross), a property, which was leveraged by Jungeblut, Merker and
Ueckerdt to show that their page number is at most 128. We lower this upper bound to 5 and we
also provide a lower bound of 4. A notable consequence of our result is a significant improvement of
the upper bound on the page number of general directed outerplanar graphs from 24,776 to 1,160.
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1 Introduction

Embedding graphs in books forms a central topic in topological Graph Theory and Graph
Drawing with early results dating back to the 70’s [4, 19]. Primarily motivated by applica-
tions in VLSI design [7, 20, 21], book embeddings of graphs have been the subject of intensive
research [1, 2, 6, 11, 12, 22, 23]. Formally, a k-page book embedding of a graph consists of a
linear order of its vertices and a k-coloring of its edges, such that no two edges of the same
color cross, that is, their endpoints do not alternate in the order; refer, e.g., to [10] for a
thorough introduction. When the graph is directed, the underline linear order must coincide
with a topological order of the graph [18]; see, e.g., Figure 1. Given a graph (directed or not),
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Figure 1 (a) A directed acyclic monotone outerplanar graph with base edge (v1,v2), and (b) a
4-page book embedding of it.

the minimum value of k for which a k-page book embedding exists is commonly referred to
as the page number (a.k.a. book thickness and stack number) of the graph. Accordingly, the
page number of a graph family is defined as the maximum page number among its members.

In this context, a particularly intriguing research branch that has received significant
attention over the years involves planar graphs and their various subclasses. While the page
number of planar graphs has been recently resolved in the undirected setting [2, 23, 22],
several open problems persist in the directed setting despite numerous efforts; see, e.g., [15].
Undoubtedly, the most notable one, which dates back to 1989 [18], is the one of specifying
the page number of upward planar graphs; a sublinear upper bound was only recently
proved in the literature [14]. In general, directed acyclic planar graphs may have unbounded
page number as shown by Nowakowski and Parker [18]. This negative result was recently
further strengthened by Jungeblut, Merker and Ueckerdt [15], who showed that even graphs
with treewidth 2 may have unbounded page number. These negative results suggest that,
in the directed setting, only very restricted subclasses of planar graphs are expected to
have bounded page number. Indicatively, we mention the classes of directed trees [13],
two-terminal series-parallel graphs [9], N-free graphs [16], directed acyclic outerpaths [17]
and planar graphs whose faces have a special structure [5].

It is worth making a separate reference to the class of directed acyclic outerplanar graphs.
For this elementary class, Heath, Pemmaraju and Trenk [13] back in 1999 conjectured
a constant upper bound on their page number. Surprisingly enough, their conjectured
remained open for more than twenty years. An important step towards settling it was done
by Nollenburg and Pupyrev [17] in 2023, who showed that the monotone directed acyclic
outerplanar graphs have bounded page number; these graphs are constructed starting from
a single so-called base edge by iteratively connecting a new vertex to the endpoints of an
existing edge on the outer face using either two incoming or two outgoing edges incident to
it (and thus, they are by definition maximal). More precisely, an explicit upper bound of
128 can be derived by combining the work by Nollenburg and Pupyrev [17] with a known
result by Davies [8]. Based on this result, Jungeblut, Merker and Ueckerdt [15] managed
to settle in the positive the conjecture by Heath, Pemmaraju and Trenk [13]. In particular,
they first observed the following relationship between the page number of monotone and
general directed acyclic outerplanar graphs:

» Theorem 1 (Jungeblut, Merker and Ueckerdt [15]). If s is an upper bound on the page
number of directed acyclic monotone outerplanar graphs, then 8- (12 - (2s+2) + 1) is an
upper bound on the page number of general directed acyclic outerplanar graphs.

Theorem 1 together with the aforementioned bound of 128 by Néllenburg and Pupyrev [17],
enabled Jungeblut, Merker and Ueckerdt [15] to prove that the page number of directed acyclic
outeplanar graphs is at most 24,776. Of course, they asked for improvements to this bound.
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Our Contribution. In this work, we present the first such improvement. In view of the
multiplicative factors of the relationship given in Theorem 1, we naturally turn our attention
to the class of directed acyclic monotone outerplanar graphs, for which we lower the upper
bound on their page number from 128 [8, 17] to 5; as a side result of independent interest, we
also present a corresponding lower bound of 4. A notable consequence of our upper bound is
that, when it is coupled with Theorem 1, it yields a significant improvement of the upper
bound on the page number of general directed acyclic outerplanar graphs from 24,776 to
1,160. A summary of our findings is given in the following theorem and its corollary.

» Theorem 2. The page number of directed acyclic monotone outerplanar graphs is 4 or 5.

» Corollary 3. The page number of directed acyclic outerplanar graphs is at most 1,160.

2 Preliminaries

In this paper, we consider directed graphs, i.e., graphs in which every edge e between two
vertices u and v has an orientation, either from u to v, or from v to u; in the former case, we
denote e by (u,v), while in the latter case by (v,u). When neglecting the orientation of e,
we may refer to it with {u,v}. An edge in a directed graph is transitive if the graph contains
a directed path of length at least 2 from its source to its target. A directed graph is acyclic
if it contains no directed cycle. It is well-known that every directed acyclic graph admits a
topological order.

A linear order < of a directed acyclic graph G is a topological order of its vertices. For
any two vertices u and v of G, we write u < v if and only if (u,v) belongs to G and u
precedes v in the topological order. We say that two independent edges (u,v) and (w, 2)
with u < v, w < z and u < w cross in < if and only if u < w < v < z holds. A page is a set
of pairwise non-crossing edges with respect to <. A k-page book embedding of G consists of a
linear order < of its vertices and a partition of its edges into k pages with respect to <. The
page number of G is the minimum value of k such that G admits a k-page book embedding.

Our focus is on directed acyclic mazimal outerplanar graphs, which admit planar drawings
with all vertices being incident to the outer face, and no edge can be added such that the
resulting graph is still directed acyclic outerplanar. Such a graph is monotone if it can be
defined through the following construction sequence: (i) A single edge (u,v) is a monotone
directed acyclic outerplanar graph; we refer to this first edge in the construction sequence as
base edge. (ii) If H is a monotone directed acyclic outerplanar graph and (z,y) is an edge of
H incident to its outer face, then the graph obtained from H by adding a new vertex z and
either the edges (x,z) and (y, z) or the edges (z,x) and (z,y) is again a monotone directed
acyclic outerplanar graph; in both cases, we say that z is stacked on the edge (z,y). By the
next lemma, we assume that the base edge of G is incident to the outer face.

» Lemma 4. Every directed acyclic monotone outerplanar graph G with at least three vertices
contains exactly two base edges that are incident to its outer face.

Proof. If G has exactly three vertices, then its two non-transitive edges are base edges; see
Figures 2a and 2b. So, assume that G has more than three vertices. Let z be the last vertex
in the construction sequence of G and let (z,y) be the edge on which z is stacked. It follows
that z is incident to exactly two edges, namely, either the edges (z,x) and (z,y), or the
edges (z,2) and (y, z). We consider the case in which the edges (x, z) and (y, z) belong to G;
the case in which the edges (z,z) and (z,y) belong to G is symmetric. Let H be the graph
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obtained by removing z from G. Since z was the last vertex in the construction sequence of
G, it follows that H is a directed acyclic monotone outerplanar graph. Hence, by induction,
we may assume that H contains exactly two base edges that are incident to its outer face.

T Yy T Yy x x LA
z z Yy Yy
(a) (b) () (d)

Figure 2 Illustrations for the proof of Lemma 4.

We distinguish two cases depending on whether (z,y) is a base edge of H or not. Note
that, by definition of H, edge (z,y) is on the outer face of H. Assume first that (z,y) is
indeed a base edge of H. Since (x,y) is a base edge of H, it follows that the edge (y, 2) is a
base edge of G; see Figure 2c. Since z is the last vertex in the construction sequence of G,
since the edge (x,y) is an inner edge of G and since H has exactly two base edges on its outer
face, it follows that G has exactly two base edges on its outer face. To complete the proof,
assume that (x,y) is not a base edge of H. In this case, we prove that neither (x,z) nor
(y, z) is a base of G, proving that G has exactly two base edges on its outer face, namely, the
two of H. Since the edge (z, z) cannot be a base edge of G, assume for a contradiction that
(y, z) is a base edge of G; see Figure 2d. It follows that there is a construction sequence that
starting from (y, z) yields G. Neglecting z, this sequence implies a construction sequence for
H, contradicting the fact that H has exactly two base edges on its outer face. |

» Remark 5. Note that there is a technical difference in the definition of directed acyclic
monotone outerplanar graphs used in [15] and [17]. The latter requires the base edge to be
on the outer face, while the former relaxes this requirement. In view of Lemma 4, the two
definitions become equivalent. A notable implication of this equivalence is that substituting
the twist number of 4 into the expression given by Davies [8] yields an upper bound of 64 for
the page number of directed acyclic monotone outerplanar graphs (rather than 128, as used
in [15]).

3 Embedding directed acyclic monotone outerplanar graphs in 5 pages

In the following, we describe how to embed a directed acyclic monotone outerplanar graph

G = (V, E) into five pages. Our approach consists of three main steps.

1. We define a canonical construction sequence for G that yields a rooted spanning tree T
of the underlying undirected graph of G (see Section 3.1).

2. Based on these, we specify the linear order < of the vertices of G, such that the edges of
T do not cross in < (see Section 3.2).

3. The remaining edges of G, namely, those that do not belong to T, can be 4-colored, such
that the edges of the same color do not cross in < (see Section 3.3).

It should be emphasized that T is rooted, but the orientation of the tree edges T in G does

not reflect this hierarchy. Since T is rooted and spanning, we refer to a subtree of T rooted
at a vertex v by T'(v) and to the set of non-tree edges by N = E\ E(T).
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(a) (b)

Figure 3 Illustrations for the definition of the canonical construction sequence.

3.1 A canonical construction sequence

Even though G has exactly two base edges incident to its outer face, there may exist several
construction sequences that result in G, even if the starting base edge is fixed. We next
describe a so-called canonical construction sequence that is uniquely defined if we fix the
starting base edge to one of the two base edges incident to the outer face of G. To do so, we
consider the weak dual G* of G, which has a face-vertex uy for each bounded face f of G
and an edge between two vertices uy and ugy if and only if the corresponding faces f and g of
G are adjacent. G* is a tree, which we assume to be rooted at the bounded face of G having
the fixed base edge of G on its boundary. Since the fixed base edge is incident to the outer
face of G, this face is uniquely defined. Further, since G is maximal, G* is binary.

Starting from the root of G*, we perform a specific DFS traversal of the vertices of G*.
When visiting a new vertex uy of G*, we assume that the edge (u,v) of G corresponding to
the edge connecting uy with its parent u, in G* has been assigned to 1" or to IN. At the root
of G*, we assume that this edge is the fixed base edge which is assigned to T, such that its
source is the parent of its target in 7. The task is to assign the other two edges of f to T and
N, and guide the traversal of G* to each of the (at most) two subtrees of G* rooted at uy.

Let w be the third vertex of f. Assume first that the edge (u,v) belongs to T'; see
Figures 3a and 3b. Since (u,v) belongs to T, it follows that either u is the parent of v or v
is the parent of w in T’; recall that the edge orientations do not reflect the hierarchy in T
Consider first the case, in which f contains the edges (u,w) and (v, w). If u is the parent of
v in T, then we assign the edge (u,w) to T and the edge (v,w) to N. We further assume
that w is a child of w in T'. On the other hand, if v is the parent of v in T, then we assign
the edge (v, w) to T and the edge (u,w) to N. We further assume that w is a child of v in
T. Consider now the case, in which f contains the edges (w,u) and (w,v). If u is the parent
of v in T, then we assign the edge (w,u) to T and the edge (w,v) to N. We further assume
that w is a child of u in T. On the other hand, if v is the parent of w in T', then we assign
the edge (w,v) to T and the edge (w,u) to N. We further assume that w is a child of v in
T. This completes the case where edge (u,v) belongs to T'. Observe that in all four cases,
we assigned to T' the edges towards the vertex that is the parent among u and v.

Assume now that the edge (u,v) belongs to N; see Figures 3¢ and 3d. Consider first the
case, in which f contains the edges (u,w) and (v,w). In this case, we assign (v, w) to T and
(u, w) to N. We further assume that w is a child of v in 7. Otherwise, f contains the edges
(w,u) and (w,v) and we assign (w,u) to T and (w,v) to N. We further assume that w is a
child of w in T'. Observe that in both cases we assigned to NV the transitive edge of face f.

So far, we have assigned the edges of f that are different from (u,v) to T and N. We
next describe how the traversal of G* proceeds. Let u, and u, be the (at most) two children
of uy in G*, such that f and g share the edge assigned to T, while f and ¢’ share the edge
assigned to N in . We recursively traverse the subtree of G* rooted at u, starting from u,
and then recursively traverse the subtree of G* rooted at ug starting from u,.
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The procedure described above uniquely defines a canonical construction sequence m =
{v1,v2,...,v,} of G, where (v1,v2) is the fixed starting base edge of G. For i > 3, let G;
be the subgraph of G induced by v1,...,v;. It follows that vertex v;y; is connected with
exactly two (neighboring) vertices in G;, while the edges realizing these connections have been
assigned to T and N. If the edge between the neighbors of v; 1 in G; belongs to N, then the
non-tree edge incident to v;11 is transitive. The fact that T is a spanning tree of G follows
by construction: each time that we define the next vertex v;4; in the canonical construction
sequence exactly one of the two edges connecting v; 1 with its two neighbors (incoming or
outgoing) in G; is assigned to T'; that is, v;41 is added as a leaf to T. We summarize these
observations below and then present two properties of the canonical construction sequence.

T.1 The edges of T induce a spanning tree of G
T.2 The root of T is the source of the base edge of G.
T.3 Vertex v;41 is a leaf in the restriction of T to G;41.

» Property 1. Assume that the edge between the neighbors v. and vy of vit1 in G belongs to
T, such that vy, is the parent of v. in T. Then i = c holds, that is, vi41 and v. are consecutive
in the canonical construction sequence.

Proof. We argue along the traversal of the dual G*. Let f be the face of G bounded by
Vit+1, Up and v.. Consider the parent vertex ug of uy in G*. Then, faces f and g share the
edge between v, and v.. Since this edge belongs to T, it follows that once the visit of ug4 is
completed, the traversal of G* will immediately continue to uy. In other words, after face g
the third vertex of face f is appended to the canonical construction sequence. This implies
that v, and v; 41 are consecutive in the canonical construction sequence. Hence, ¢t = c. <«

» Property 2. Let (vg,v;) be a non-tree edge of G, that is, (vi,v;) € N. Then, the endpoints
of (vg,v;) belong to disjoint subtrees, that is, T(vg) N'T(v;) = 0 holds.

Proof. We argue by induction on the length of the canonical construction sequence. The
property holds in Gs (i.e., for the base case i = 2), since N = (). Assume that for all non-tree
edges of G; with 2 < i < n the property holds. We prove that the property holds in G;41.
Consider vertex v;+1. We distinguish two cases based on whether the edge between the
neighbors of v;41 in G; belongs to T or to N. In the former case, let v, and v. be the
neighbors of v;11 in G;41, such that vy, is the parent of v, in T". Then, the edge between v;41
and v, is the non-tree edge incident to v;;;. This edge connects to two siblings of v, in T
Therefore, the endpoints of this edge belong to disjoint subtrees, namely, T'(v;+1) NT (v.) = 0.
Consider now the case where the edge between the neighbors of v;11 in G; belongs to N.
Let v, and v, be the neighbors of v;11 in G;41 and assume that v;41 becomes a child of v,
in G;+1. The edge between v;41 and v, is the non-tree edge incident to v;41 in Gi;41. By
induction hypothesis the endpoints of the edge between v, and v, are in disjoint subtrees.
Since v;41 € T'(vp), the same holds for the endpoints of the edge between v;1 and v, i.e.,
T(’Ui_;,_l) N T(’UC) = 0. <

3.2 Computing the linear order

We next describe the linear order < of G. A key ingredient in our approach is the so-called
consecutive subtree property, which requires for every vertex v in G the vertices in the subtree
T(v) to appear consecutively in <. We denote the corresponding interval of < induced by
T(v) by Ix(v). Note that by definition v is part of I (v). To guarantee this property, for
2 < i < n, we assume that we have recursively computed a linear order <; of G;, such that:
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i+1>k>1 I<k<i+1 = ’ |
)it T 0k [T 0e T 1 % [ ] 0e [0k [ ] 0ixi]_ o5 T o 0 [T 05t [T viri ]
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Figure 4 (a) Inserting v;+1 in <; for G; to derive <;4+1 for G;11. (b) The case in which two
sibling edge (v;,vi+1) and (v;,v;4+1) with common parent v, cross.

L.1 <; is a topological order of G;
L.2 <; obeys the consecutive subtree property in G;
L.3 Let v, be the parent of two distinct children vy, and vg in 7. Then, the following holds:

Uk <3 Ve =i Vp OF VU =V <;v = k>L

In the base case ¢ = 2, G5 consists of the base edge (v1,v2), which is part of T’; thus
L.1-L.3 are trivially satisfied. For ¢ > 2, we show how to insert v;y; into <; to derive a
linear order <;4+1 of G;4+1 that satisfies L.1 - L.3; see Figure 4a. Assume that v; 41 is a child
of vy, in the restriction of 7' in G;11. We consider two cases based on the orientation of the
edge between v;; and vy; recall that the edge orientations do not reflect the hierarchy in
T. Assume first that this edge is the edge (vp, v;4+1). We insert v;4q directly after the last
vertex of I, (vp). Otherwise, we insert v; 41 directly before the first vertex of I<,(v,). This
ensures that L.2 holds for Gj1, since I, (vp) = I, (vp) U {viy1} is consecutive. For L.3,
we observe that for every child v, of v, in I, (vp), it holds that ¢ +1 > ¢, thereby satisfying
the invariant. It remains to show that <;;; is indeed a topological order of G;;1. Let v; be
the neighbor of v;1; in G; that is different from v,. We consider two cases based on whether
the edge between v; and v, belongs to T" or to N. In the former case, assume w.l.o.g. that the
edges from v;4; to v; and v, are incoming to v;41; the case, where these edges are outgoing,
is symmetric. Since we inserted v;41 after I<,(v,) and v; € I<,(vp), we have v; <41 viy1
and v, <i+1 Vi41 as desired. Assume that the edge between v; and v, belongs to N. Since
the edge between v;11 and v, belongs to T', the edge between v; and v;11 belongs to N and
thus is transitive in the face formed by v;y1, v; and v,. Again, assume w.l.o.g. that the
edges from v;41 to v; and v, are incoming to v;41; the case, where these edges are outgoing,
is symmetric. In this case, it follows that v, <;41 v;41 holds. By transitivity of (vj, viy1),
we get that (vj,v,) exists. Hence, vj <;41 vp <it1 i1 holds and L.1-L.3 are satisfied by
~<i+1-

We next present three key properties of the linear order < of G. For any two vertices u and
v of G, we write LCA(u,v) to denote the lowest common ancestor of u and v in T.

» Property 3. For every two vertices u and v of G, u € I<(v) if and only if u € T'(v).

Proof. It follows from the fact that < obeys the consecutive subtree property (L.2). <

» Property 4. Let (u,v) and (w, 2) be two edges that cross in <. Then, both of the following
two conditions hold: (i) w or v is in T(LCA(w, z)) and (ii) w or z is in T(LCA(u,v)).

Proof. W.l.o.g. assume that u < w < v < z holds. Since (w, z) belongs to G and since
w < v <z, by L.2 we obtain v € I (LCA(w, 2)). Symmetrically, w € I-(LCA(u,v)). Then,
the property follows from Property 3. |
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Notice that Property 4 holds for all edges, including edges of T. However, for a pair of two
independent tree edges only one of the two conditions can be satisfied, which directly implies
the following property guaranteeing that all edges of T fit into a single page as desired.

» Property 5. No two edges of T cross in <.

3.3 Assigning edges to pages

The overall approach for the edge assignment is as follows. We dedicate a single page for
edges belonging to the tree T (by Property 5). The algorithm for coloring the non-tree
edges is notably simple (though the proof of correctness will be tedious). More precisely, the
non-tree edge incident to the next vertex v;+1 (i = 3,...,n— 1) in the canonical construction
sequence is colored either (i) with the color that is not used by its two neighbors in G;, if
v;+1 is stacked on a tree edge, or (ii) with the color of the non-tree edge it is stacked on,
otherwise. In the following subsections, we will prove that this coloring yields a valid 5-page
book embedding.

3.3.1 Partitioning the non-tree edges to groups

For the non-tree edges in IV, we will first partition them into groups. These groups will then
be 4-colored such that groups of the same color can be assigned to the same page, i.e., no
two edges of the same color cross in <. In order to form the desired partition of N, we need
a few more notions. We start with the notion of sibling edge. An edge (v;,v;) that belongs
to N with v; and v; having the same parent v, in T is called a sibling edge with parent vp,.
Sibling edges satisfy the following property in the canonical construction sequence.

» Property 6. If (v;,v;) is a sibling edge with parent vy, then i = j+1 or j =14+ 1 holds.
Proof. Follows directly from Property 1 of the canonical construction sequence. |
Using Property 6, we next prove that no two sibling edges with the same parent cross in <.

» Property 7. If {v;,vi41} and {v;,vjq1} are two sibling edges with common parent v, then
they do not cross in <.

Proof. Assume to the contrary that they cross; see Figure 4b. We distinguish cases based
on the relative order of the endpoints of these edges with respect to the common parent v,,.
Let us first consider the case where the endpoints of at least one of the two edges either
both precede v, or follow v,. W.l.o.g. assume v, follows both v; and v;11 in <. By L.3, we
have v;11 < v; < v,. Since both v; and v;1; are children of v, and j # ¢, neither of them
can be between v; and v;41 in <. Therefore, {v;,v;+1} and {v;,v,;11} cannot cross. We
conclude that in order for {v;, v;+1} and {v;,vj41} to cross, the endpoints of each of these
two edges have to be on different sides of v, in <, that is, v, is between the endpoints of
each of these edges in <. Since {v;,v;41} and {vj,vj41} cross, they are independent and
therefore i + 1 # j. Assume w.l.o.g. that i + 1 < j. In the following, we focus on the case
where v; < v, < v;41; the case in which v; {1 < v, < v; is symmetric. From L.3 we get that
for every child vy of v, with v; < vy < v;11, we have k < i. For {v;, v;41} and {v;,v;11} to
cross either v; or v;4; has to be between v; and v;41 in < contradicting that i +1 < j. <«

So far we have shown that tree edges can fit together in a single page and that the same
holds for sibling edges having the same parent. Two questions that arise at this point are
how to handle sibling edges with different parents and non-tree edges that are not sibling
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parent v, of Nj

T T

Ve sibling edge

Vk+1

outermost edge

Figure 5 Illustration for Invariants N.1-N.3.

edges. For the latter, the idea is to assign these edges to groups such that each group has a
designated sibling edge as representative. As we will see, a crossing between two non-tree
edges of different groups can be reduced to a crossing between the groups’ representatives.
Let us formally introduced the concept of groups. As already mentioned, each group of
non-tree edges has exactly one representative, which is a sibling edge. In other words, groups
and sibling edges are in a one-to-one correspondence. Further, a sibling edge belongs to the
group it represents. By Property 6, we denote with INV; C N the group that is represented by
the sibling edge {v;,v;11}. It follows that {v;,v;41} € N;. Note that the index 4 stems from
the rank of v; and v; 1 in the canonical construction sequence 7. Since not every pair of
consecutive vertices in 7 yields a sibling edge, it follows that there does not exist a group N;
for every integer ¢ in [1,n — 1]. We further require that the groups form a partition of N.
We now describe how to obtain such a partition of N. We do so by using the canonical
construction sequence and by imposing further invariant properties that will help us later to

show that no more than four colors are needed in order to color the groups that we will form.

With this in mind, we also need to ensure that non-tree edges of the same group can always
be assigned to the same page. We capture these properties with the following invariants.

Assume that all non-tree edges of GG; with 2 < ¢ < n have been partitioned to groups
Ny, ..., N;_1, such that the following hold for each non-empty group Ny with k € [1,i — 1]:
N.1 Nj has exactly one representative sibling edge {vj, vg41} of G;.

N.2 For every edge (u,v) of G; that belongs to group Ny one of the following holds:
a. If (vg,vgy1) is the representative of Ni, then there is a directed path in T'(vg) from
u to v and a directed path in T(vgy1) from vgq to v.
b. If (vky1,vk) is the representative of Ni, then there is a directed path in T'(vg41)
from u to vi41 and a directed path in T'(vy) from vy to v.
Each vertex of these directed paths is incident to at least one edge of Ny.
N.3 Each non-empty group Ny is also associated with an outermost edge (u,v), which is
the solely edge on the outer face of G; among the edges of Nj and covers all edges of
Ni in <, that is, for each (u/,v") € Ni, we have u < v < v < v.

We prove that the aforementioned invariants hold also for the non-tree edges of G;41
using the following approach. Consider vertex v;yi. We distinguish cases based on whether
the edge between the neighbors of v; 11 in G; belongs to T or to N.

We first consider the case in which the edge between the neighbors of v;;1 in G; belongs
to T'. Let v, and v, be these neighbors, such that v, is the parent of v, in T'. In this case,
vertex v;41 is a child of v, in G411, that is, the edge between v;;1 and v, belongs to 7', while
the edge between v;41 and v, belongs to N. In particular, the edge between v;11 and v, is a
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sibling edge. We assign it to a new group N; and we make it both the representative and the
outermost of this group. In other words, in this case we are creating a new group that solely
consists of a single sibling edge. N.1-N.3 are satisfied because the edge between v;11 and v,
cannot be associated with any of the groups Ny with & € [1,¢ — 1], belongs to the outer face
of G417 and trivially covers all edges of N;, as there are no other edges in this group.
Consider now the case where the edge between the neighbors of v; 1 in G; belongs to
N. Let v; and v, be these neighbors. To simplify the presentation, we assume that the edge
between v; and v, is oriented from v; to v,; the other case is symmetric. Since (v;, v,) belongs
to Gy, by N.1 the edge (v;, v,) has been assigned to a group, say N; with j € [1,7 — 1], whose
representative edge is (v, vj4+1) by N.2. Assume that the edges connecting v;11 with v; and
v, in G471 are outgoing from v;41; the case in which the edges connecting v;11 with v; and
v in G471 are incoming to v; 4 is symmetric. Under this assumption, the edge (v;y1,v)
is the non-tree edge incident to v;11 in Gj;1. We proceed by assigning this edge to IV;.
Regarding N.1 there is nothing to be proven, as N; is an existing group. Since (vj,v;+1)
is the representative of N;, we know that by N.2 applied on G; that there exist a directed
path in T'(v;) from v; to v; and a directed path in T'(v;11) from v;41 to v,. Since v;4q
has an outgoing edge to vy, it follows that there is a directed path from v;11 to v;, as well,
guaranteed that N.2 is satisfied from G;11. To prove that N.3 is satisfied in G; 1, we first
observe that (v, v,) is the outermost edge of N;, since it is the one incident to the outer face
of G; among the edges of N; by N.2. As a result, it covers all edges of G; belonging N; in <.
In Git1, the edge (viy1, v,) becomes that outermost edge of N;, as it is the solely edge of N;
incident to the outer face of G;41. Furthermore, (v;y1,v,) covers all edges of G;1 belonging
Nj in <, since v;41 appear right before v; in <. This guarantees that N.3 is satisfied in G41.

3.3.2 Properties of the formed groups

Having proved that N.1-N.3 hold for the non-tree edges of G;;1, and thus by induction of G,
we proceed to investigate properties of the groups that are formed with this approach.

» Property 8. No two edges assigned to the same group cross in <.

Proof. Assume that no two (non-tree) edges of the same group cross in < for the subgraph
G; of G. By Invariant N.3, it follows that the non-tree edge incident to v; 1 in G441 covers
all edges of the same group in G;, as it becomes the outermost of this group. This implies
that no two edges of the same group cross in < for the subgraph G;;1 of G. This completes
the proof, since in G5 the property trivially holds. |

» Property 9. Let N; and N; be two distinct groups with group parents vy, and v, respectively,
such that neither vy is an endpoint of an edge in N; nor vy is an endpoint of an edge in N;.
If vi, # v or if the representative sibling edges of N; and N; are independent, then no two
edges in N; and Nj cross in <.

Proof. Let (u,v) and (z,y) be two edges of N; and Nj, respectively. Let also {v;,v;41} and
{vj,vj+1} be the representative sibling edges of N; and N, respectively. We assume that
the former edge is oriented from v; to v;41, while the latter from v; to vj41; the remaining
cases are handled symmetrically. It follows by N.2 that u € T(v;), v € T (vi4+1), € T'(v;)
and y € T(vj4+1). Since vy and v; are the group parents of IV; and N, these relationships
imply that u,v € T'(vg) and z,y € T'(v;). Assume to the contrary that (u,v) and (x,y) cross
in <. Consider first the case where the two subtrees T'(vi) and T'(v;) are vertex-disjoint. 1.2
implies that both u and v either precede or follow both = and y in <. This implies that (u,v)
and (z,y) do not cross in <; a contradiction. Hence, T'(vy) and T'(v;) are not vertex-disjoint.
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(a) (b)

Figure 6 Illustrations for the proof of Property 9: (a) T'(vx) and T'(v;) share the same root;
(b) T'(vx) is a proper subtree of T(v;).

Assume first that T'(vy) and T'(v;) share the same root, that is, vy, = v;; see Figure 6a. It
follows by the assumptions of the lemma that the representative sibling edges (v;, v;11) and
(vj,v;41) of N; and Nj are independent, implying that the subtrees T'(v;), T'(viy1), T'(v;) and
T(vj41) are vertex-disjoint. By N.2, we know that the vertices of each of these four subtrees
are consecutive in <. Since (u,v) and (z,y) cross in <, it follows that either u < x < v <y
orz <u <y <v. W.lo.g. consider the former case; the latter follows by the same argument.
Since u € T(v;), v € T(vi41), « € T(vj) and y € T(vj41) and since the vertices of each of
these four subtrees are consecutive in <, it follows that v; < v; < vi41 < vj41, that is, the
representative edges of N; and N; cross in <; a contradiction to Property 7.

Hence, we deduce that vy, # v;. Since T'(v) and T'(v;) are not vertex-disjoint and since
vk # vy, it follows that either T'(vy) is a proper subtree of T'(v;) or vice versa. Assume the
former, that is, T'(vx) € T'(v;); see Figure 6b. Since the vertices of T'(vy) appear consecutively
in <, it follows that in order for (u,v) and (z,y) to cross in <, one endpoint of (z,y), say
w.l.o.g. x, has to be contained in T'(vi). Then, by N.2, there exists a path between x and
v; in T, such that with the exception of v; all vertices on this path are incident to an edge
of N;. Since x belongs also to T'(vy), this path necessarily contains vertex vy, which is a
contradiction to the fact that vy is not an endpoint of an edge in N;. |

3.3.3 The groups can be 4-colored

We next color the groups with four colors, such that edges in groups with the same color do
not cross in < (recall Property 9), thus completing the proof of the upper bound of Theorem 2.

» Property 10. There exists a 4-coloring of the groups that contain the non-tree edges of G,
such that no two edges assigned to two groups of the same color cross in <.

Proof. Our proof is by induction on the length of canonical construction sequence. Assume

that we have computed a 4-coloring of the non-tree edges of G; satisfying the next invariants:

C.1 Edges of the same group in G; are of the same color.

C.2 Each vertex in G; is incident to at most two edges belonging to groups of different
colors, that is, the non-tree edges incident to it are either single-colored or bicolored.

C.3 For every tree edge {vp,v.} on the outer face of G;, with v, being a child of v,, all
non-tree edges incident to v, belong to the same group, that is, they are single-colored.

C.4 If N; and N; are two distinct groups with group parents v, and vg, such that either v,
is an endpoint of an edge in N; or v, is an endpoint of an edge in Ny, then N and V;
are of different colors.
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Figure 7 Illustration for two main cases of the proof of Property 10, in which the edge between
neighbors of v;41 in G; is: (a) a non-tree edge (v;, v,) belonging to Nj, (b) the tree edge {vp,vi},
whereas {v;,v;+1} is the representative sibling edge of the new group N;.

C.5 If Ni and N; are two distinct groups with common group parent v, such that their
representative sibling edges {vk,vi+1} and {v;, v;41} share an endpoint, then Ny and
N; are of different colors.

Clearly, for G5 all invariants are satisfied since N = ). So, we assume that ¢ > 2 and
we will prove that we can appropriately color the edges incident to v;41 in G;41, such that
C.1-C.5 are satisfied by for the non-tree edges in G;11. We distinguish cases based on
whether the edge between the neighbors of v;11 in G; belongs to T or to N, that is, v;41 is
stacked on a tree or a non-tree edge of G;, respectively.

Stacking on a non-tree edge. Assume first that the edge, say (v, v,-), between the neighbors
v and v, of v;11 in G; belongs to some group N;; see Figure 7a. By C.1, we can assume that
the color assigned to the edges of IV; is w.l.o.g. ¢;. To simplify the presentation, we assume
that the two edges incident to v;11 in Gy are outgoing from wv;y1, that is, (v;y1,v;) and
(vit1,v;) belong to G; the case of these edges being incoming is symmetric by exchanging the
roles of v; and v,.. Under this assumption, the non-tree edge incident to v;4+1 in G;41 is the
edge (vi11,v,); the edge (vit1,v,) is the tree edge incident to v;41 in Gi41. Since (viy1,v,)
belongs to IN;, we color it with color c1, so as to guarantee C.1. Since the set of colors that is
used for the edges incident to v, and v; does not change and since there is only one non-tree
edge incident to v;41 in G;11 (namely, the edge (v;11,v;)), it follows that C.2 is guaranteed
in Gi+1. Regarding C.3, we observe that the tree edge (vit1,v,) incident to v;41 in Gty is
an edge on the outer face of G;y1. Since for the tree edge (v;+1,v,) viy1 is the child of v
in T and since there is only one non-tree edge incident to v;11 in G;4; (namely, the edge
(Vit1,vr)), it follows that C.3 is maintained in G;41. Since v;4; is a leaf in the restriction of
T to Giy1, C.4 is satisfied by the inductive hypothesis. By the same argument and the fact
that no new sibling edges are introduced in G;11, C.5 holds in G;11. This completes the
case where the edge between the neighbors of v;11 in G; belongs N.

Stacking on a tree edge. We proceed to the more tedious case, where the edge between
the neighbors of v;4; in G; belongs to T'; see Figure 7b. Let v, and v. be the endpoints
of this edge, such that v, is the parent of v, in T. By Property 1, ¢ = i holds. Also, by
T.3, it follows that v, = v; is a leaf in the restriction of T' to G;. In this case, the edge
{vi,vi11} is the representative of the new group N; in G;4; solely consisting of {v;, v;y1},
while {vp,v;+1} belongs to T. The former implies that regardless of the color that we will
assign to N;, C.1 holds in G;41. We further observe that since v; and v;41 are siblings and
v; is a leaf in the restriction of T' to G;, it remains a leaf also in the restriction of T' to G;41.
In particular, this implies that v; is not the group parent of some group in G;4;.

To guarantee C.4 and C.5, we have to choose the color for the representative sibling
edge {v;,v;41} in N; appropriately. In particular, we have to ensure that the color chosen is
different from the colors incident to v, and v; in G;. By C.2, the non-tree edges incident
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to v, in G; have at most two colors, say ¢; and ca. Since {v,,v;} is incident to the outer
face of G; and since v; is a child of v, in T', by Item C.3 the non-tree edges incident to v; in
G; belong to the same group; let c3 be the color assigned to this group. The color that we
assign to N; is one not belonging in {c1, co, c3}, say cs.

Invariant C.2 is trivially satisfied at v;11 because of its degree in G;41. Since by C.3 the

non-tree edges incident to v; in G; belong to a single group, C.2 is satisfied for v; in G;41.
The same holds for v, by the inductive hypothesis, since the edge {v,,v;+1} belongs to T

Hence, C.2 is maintained G;41. Since the edge {vp, v;+1} belongs to the outer face of G;41
and since v; 41 has only one non-tree edge incident to it in G;4; (i.e., the edge {v;, v;11}),
C.3 is maintained in G;41. Note that the edge (vp,v;) is not on the outer face of G;y1.

For C.4, consider a group N with & < ¢ and group parent v, and assume that either v,
is an endpoint of an edge in N}, or v, is an endpoint of an edge in INV;. For the latter case,
note that since N; consists only of its representative sibling edge {v;, v;11}, the only possible

candidate for v, is v;. However, v; is a leaf in G;;1 and therefore not a parent of a group.

For the former case, that is, there is a non-tree edge incident to v, (the parent of INV;) having
the same color as N;, we argue with our definition of ¢4 that this is not the case. For C.5
it is sufficient to consider a possible sibling edge sharing an endpoint with {v;, v;1+1}. The
only possible candidate in G;; would be a sibling edge {v;_1,v;}. However, we ensure that
¢4 is different from the color of any other non-tree edge incident to v; which is sufficient to
maintain C.5 in G;41. This completes the proof that C.1-C.5 are maintained in G;41.

Putting everything together. To prove that no two non-tree edges assigned to two groups
of the same color cross in <, we combine all properties that we have obtained so far. Let e
and e’ be two such edges and assume that e and €’ belong to N; and N; and that v, and v
are the group parents of N; and IV;, respectively. By C.1 and Property 8, it follows that if
N; = Nj, then e and €’ do not cross in <, as desired. Hence, we may assume that N; and N}
are two distinct groups. If v, is an endpoint of an edge in IV; or v, is an endpoint of an edge
in N;, then N; and N; are of different colors by C.4; a contradiction to the fact that e and
¢’ belong to groups of the same color. It follows that neither v, is an endpoint of an edge in
N; nor v, is an endpoint of an edge in N;. In this case, if v, # vy, then by Property 9, e and
e’ do not cross in <. Therefore, we may assume that N; and N; share the same parent, that
is, v, = v,. If the representative sibling edges of N; and IV; share an endpoint, then by C.5,
it follows that N; and N; are of different colors; a contradiction. Hence, the representative
sibling edges of N; and N; are independent. Then, again Property 9 applies which states
that e and €’ do not cross in <. This concludes the proof of the property, which in turn
coupled with Property 5 concludes the proof of the upper bound of Theorem 2. <

3.4 Time complexity

Given an directed acyclic graph, we prove in the following lemma that we can determine
whether it is monotone outerplanar and compute a 5-page book embedding of it, if so, in
linear time.

» Lemma 6. Given a directed acyclic graph, there is a linear time algorithm to determine
whether it is monotone outerplanar and to compute a 5-page book embedding of it, in the
positive case.

Proof. Let G be a directed acyclic n-vertex graph. We first check in O(n) time whether
the underlying undirected graph of G is maximal outerplanar. If so, we assume a maximal
outerplanar embedding and proceed to check whether G is monotone. In view of Lemma 4,
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this can be trivially done in O(n?) time, since given an edge e on the boundary of G one can
check whether G is monotone with e being a base edge in O(n) time by performing a BFS
traversal of the weak dual G* of G starting from the bounded face having e on its boundary.

For an O(n) implementation, let f be a face that corresponds to a leaf us of the weak
dual G* of G. If f is the solely bounded face in G, then, since G is directed acyclic, it follows
that G is monotone and we can also report the two base edges on its boundary (as observed
in Lemma 4). Otherwise, let f’ be the bounded face neighboring f in G, which is uniquely
defined, since uy is a leaf in G*. Denote by (x,y) the edge shared by f and f’ in G, by z
the third vertex of f (which is of degree 2, since uy is a leaf in G*), and by H the subgraph
of G obtained by the removal of z from G. There exist two cases for G to be monotone;
(i) either one of the two edges incident to z is a base edge of G, or (ii) none of these two
edges is a base edge of G. In Case (i), the edges incident to z are the edges (z,2) and (z,y);
further, the edge (x,y) must be a base edge of H. In Case (ii), the edges incident to z are
either the edges (x, z) and (y, z), or the edges (z,x) and (z,y); further, the edge (z,y) cannot
be a base edge of H. Now, we recursively check whether H is monotone. In the negative
case, we report that G is not monotone, as well. In the positive case, we may assume that
the recursion also reports the two base edges of H. With this information, we can check in
constant time, whether G is monotone by just observing the orientation of the edges incident
to z depending on whether the edge (z,y) is a base edge of H or not. Since each such check
takes constant time and since we perform at most n — 4 such checks (that is, the number of
bounded faces of G), it follows that in O(n) time we can check whether G is monotone.

If G meets the requirement of being monotone outerplanar and with a base edge on
the outer face given, we can easily construct the canonical construction sequence and the
spanning tree T’ of G in O(n) time by a DFS traversal of the weak dual G* of G as described
in Section 3.1. For the linear order <, one may use the canonical construction sequence and
maintain for every vertex v, two ordered lists of its children in T'. The first list contains the
children that have to precede v, in <, while the second contains the ones that follow v, in <
as described in Section 3.2. Once these lists have been obtained, a simple in-order traversal
of T yields <. Therefore, < can also be computed in O(n) time. As a final step, the coloring
of the non-tree edges (that is, their page assignment) can be trivially done in O(n) time
by the simple approach described in the introduction of Section 3.3. This concludes the
description of the linear-time implementation. |

4 Lower bounds

In this section, we first demonstrate a relatively small directed acyclic monotone outerplanar
graph and prove combinatorially that it does not admit a book embedding with two pages.

» Theorem 7. There exist directed acyclic monotone outerplanar graphs that do not admit
book embeddings in two pages.

Proof. The graph given in Figure 8a consists of nine vertices x,y, v1,...,v7 and it is indeed
a directed acyclic monotone outerplanar graph, whose base edge is the edge (v1,v3). Assume
for a contradiction that there exists a book embedding L of it with two pages pg and p;.
Since the graph contains the directed path v; — ... — w7, these vertices appear in this order
in £. Furthermore, w.l.o.g., we may assume that the edges (vy, v,12) are assigned to page
po, if a is even, and to page p1, if a is odd (see the blue and red edges in Figure 8b).

Due to the edges (v4,2) and (y,v4), vertices z and y have to appear after and before
vertex vy in L, respectively. In particular, vertex x cannot appear between vy and vg in L,
as otherwise the edge (ve,x) crosses (v1,vs) and (v4,vg), which are assigned to pg and py,
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Figure 8 A directed acyclic monotone outerplanar graph not admitting a 2-page book embedding.

respectively. Symmetrically, vertex y cannot appear between vy and vy. This implies that
(va, ) and (y,ve) cross in £, which, in turn, implies that they have to be assigned to different

pages. If (vg, x) is assigned to po, then it crosses (v1,v3), which is also in pg; a contradiction.

If (y,ve) is assigned to po, then it crosses (vs,v7), which is also in pg; a contradiction. It
follows that there is no 2-page book embedding for the graph, completing the proof. |

» Remark 8. We remark that there exist directed acyclic monotone outerplanar graphs that
do not admit book embeddings with three pages; for an example refer to Figure 9. This
statement is the outcome of the application of a well-known approach [3], which using SAT
solving allows to test whether a given graph can be embedded in a book with a certain
number of pages. Note that we are not aware of a directed acyclic monotone outerplanar
graph that cannot be embedded in 4 pages. This motivated the title of our paper.

U20<7 Vg ——U12/v10 V2ge—19
V15 U16 V11 V25 V21 V14

U3 V22 U7 V30 U1g
V27— V6 —>{ U8 (%1 V31— V0

Figure 9 A directed acyclic monotone outerplanar graph that does not admit a 3-page book
embedding. Note that the graph is 4-page book embeddable; the linear order of one such 4-page
embedding is given by the vertex labels, while the page assignment by the coloring of the edges.

5 Open problems

The most natural open question raised from our work is to close the gap of Theorem 2. Towards

another improvement on the page number of general directed acyclic outerplanar graphs,

one needs either to introduce improvements for each of the remaining steps in the approach

by Jungeblut, Merker and Ueckerdt [15] that supports Theorem 1 or to come up with a new,

novel approach. We deem both problems intriguing.
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