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—— Abstract

We consider the problem of optimal transport between two high-dimensional distributions p, v in R™
from a new algorithmic perspective, in which we are given a sample x ~ p and we have to find a close
y ~ v while running in poly(n) time, where n is the size/dimension of x,y. In other words, we are
interested in making the running time bounded in dimension of the spaces rather than bounded in
the total size of the representations of the two distributions. Our main result is a general algorithmic
transport result between any product distribution p and an arbitrary distribution v of total cost
A + § under £} cost; here A is the cost of the so-called Knothe-Rosenblatt transport from px to v,
while § is a computational error that goes to zero for larger running time in the transport algorithm.
For this result, we need v to be “sequentially samplable” with a “bounded average sampling cost”
which is a novel but natural notion of independent interest. In addition, we prove the following.

We prove an algorithmic version of the celebrated Talagrand’s inequality for transporting the
standard Gaussian distribution ®" to an arbitrary v under the Euclidean-squared cost. When v is
®™ conditioned on a set S of measure €, we show how to implement the needed sequential sampler
for v in expected time poly(n/e), using membership oracle access to S. Hence, we obtain an
algorithmic transport that maps ®" to ®"|S in time poly(n/e) and expected Euclidean-squared
distance O(log 1/¢), which is optimal for a general set S of measure €.

As corollary, we find the first computational concentration (Etesami et al. SODA 2020) result for
the Gaussian measure under the Euclidean distance with a dimension-independent transportation
cost, resolving a question of Etesami et al. More precisely, for any set S of Gaussian measure ¢,
we map most of ®" samples to S with Euclidean distance O(\ /log 1/5) in time poly(n/e).
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1 Introduction

Optimal transport (OT) is a fundamental problem that arises in mathematics, science, and
engineering, including differential geometry [17], transportation planning [40], economics [21],
machine learning [34, 38], image registration [23], and seismic tomography [35]. In machine
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learning, it has been used in unsupervised learning [46], as a measure of the cost of misclassi-
fication [20], to define the fairness of algorithms [11], in Wasserstein GANSs [2], for transfer
learning [14], and in diffusion generative models [47, 26].

In the optimal transport problem, we would like to transport samples from a source
distribution p to points in the target distribution v with a minimum expected “transportation
cost” c(x,y) of transporting & ~ p to y ~ v. The study of this problem dates back to the
work of Monge [33], who wanted the transportation mapping A(z) = y to be deterministic.
Kantorovich [25] reformulated the problem by allowing A(z) to be a randomized (stochastic)
mapping. In other words, we now look for a coupling 7 over the distributions u, v with
minimum expected transportation cost Ec(z,y), using which we define the optimal cost of
transporting p to v,

T(u,v) = min E c(z,y)
where C is the set of all couplings between p,v. OT is closely related to the notion of
“Wasserstein metric” that generalizes OT using a parameter p > 1 and is the same for p = 1.

As a prominent example of the use of OT in mathematics, Talagrand [43] gave a bound
on the optimal transport, under the £2 cost, of the n-dimensional Gaussian measure ®" to
an arbitrary distribution v based on the KL-divergence of v from ®". Using this, he derived
an essentially optimal concentration of measure result, showing that for any set S of measure
g in ®", almost all of the measure ®" is within ¢3 (minimum) distance O(In 1/¢) from S.

Computational OT. Computational aspects of OT have recently become extremely import-
ant on their own [38]. In the most common formulation of “computational OT”, we would
like to compute or estimate T(u,v) efficiently. Computing T(u,v) is a key tool, e.g., for
applications that use OT to quantify a loss that allows one to know “how far” we are from a
target goal [4, 6, 7]. A common approach to computing T(u,v) is to work with empirical
sample sets S ~ pu™, T ~ v™ and find the best OT between the empirical distributions
Us,Ur that are uniform over S, T (e.g., see [24, 32] and the references therein). This
approximation converges to the quantity T(u,v) in the limit, and the OT between Us, Ur
can be computed using the Hungarian algorithm for minimum weighted matching [29]. The
popular iterative Sinkhorn algorithm solves a regularized version of the OT problem [42] but
it also works with empirical sample sets, that is, i.i.d. samples from the distributions. Using
empirical samples, one does not rapidly converge to the optimal OT in some elementary
cases. For example, to transport the uniform distribution on the n-dimensional unit cube
to itself, the OT between two poly(n)-size empirical versions of the original distribution is
©(y/n) in £3 distance even though the actual OT cost is zero.

m

Statistical OT. The above approach of using empirical samples & ~ p", 7 ~ v™ can
in fact be used to approximate the transport map itself from p to v, as in [24, 32]. For
example, Brenier’s theorem [10, 28] asserts that under the 2 cost and suitable conditions, a
unique Monge mapping achieves optimal transport, and one can aim at approximating this
deterministic mapping. This approach is sometimes known as statistical optimal transport [13].
However, this approach needs exponential in n samples for n-dimensional distributions to
achieve good approximate results. Some previous works like [24, 32] make improvements on
this analysis by assuming further smoothness and structural conditions on the distributions
but the curse of dimensionality basically remains intact. More importantly, to the best of our
knowledge, no previous work models the algorithmic aspect of searching for the transport
map by limiting its algorithm to run in polynomial time over the size of the input x ~ pu.
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1.1 OQur Contributions

In a nutshell, our contributions are (1) formalizing a new theory of algorithmic transport,
(2) obtaining initial results on algorithmic transport for the high-dimensional setting, and
(3) obtaining applications for algorithmic transport, e.g., to algorithmic concentration of
measure. Each of the items above has multiple aspects that are elaborated in the following.

Algorithmic Transport in Polynomial Time. The common computational OT formulation
aims to compute or approximate the optimal transportation cost T(u,v), yet it does not
answer the key question of how to algorithmically compute the transport map efficiently
over the size of the given input sample. I.e., suppose that we are given a particular sample
x ~ p as input, and we would like to map it to y ~ v as follows: (1) The mapping shall be
computed in polynomial time over the size of the input |z| = n. (2) We would like to control
the expected cost of the transportation. To point out the subtle distinction between our new
algorithmic formulation and the traditional computational OT, in this work we use the term
algorithmic transport to refer to the task of computing a (randomized) mapping A efficiently
based on its input size |z| (e.g., the dimension of z), such that A(x) ~ v, whenever x ~ p.

Algorithmic transport, when done optimally, can be used to approximate OT cost
efficiently as well. In particular, when the transportation cost is bounded by a constant, using
k = ©(¢7?) independent samples (z1,1),..., (Tx, yr) ~ (2, A(z))*, the average E; c(x;,y;)
gives an e-approximation of the OT, with high probability. However, it is not clear how to
do the reverse and obtain algorithmic transport from computational OT.

When p, v are one dimensional, for natural (convex) costs such as c(z,y) = [z —y[P,p > 1
one can find simple algorithms that simply use a “monotone” transportation plan [45].
Furthermore, when the distributions u, v have small domains of size k, one can use algorithms
based on min-cost flows to find a full description of the OT from p to v in poly(k) time [37].
However, our focus is on the high-dimensional setting and finding poly(n)-time computable
mappings between distributions of dimension n with super-polynomial support. We ask:

If p,v are n-dimensional distributions, how can we find a poly(n)-time computable
transport map from x ~ p to y ~ v of a small/optimal cost?

Formalizing and answering the question above in various contexts is the focus of our work.
Our studies also bear similarities to the line of work on approximating the total variation
distance [5, 16] as it coincides with OT under the Hamming distance.

Transport in High-Dimensional Setting. In this work, we approach the main question
above through a study of so-called causal transports [30, 3] in high dimension, in which
the transporting algorithm A produces y = (y1,...,yn) from z = (z1,...,x,) in an online
manner: The algorithm A shall output y; based on z};) = (x1,..., ;) and before receiving
z;+1. Hence we also refer to those transports simply as online. The so-called Knothe-
Rosenblatt transport (KR transport for short) [27, 39] is an important online transport with
two properties: (1) its reverse is also online, and (2) it follows a “greedy” approach in each
round by using a monotone mapping of dimension one. Our motivations for studying online
transports is twofold: (1) Despite being a restriction on how the transport is done, the
“online lens” guides us towards algorithm development; (2) In our eyes, information-theoretic
study of online algorithms is interesting. In particular, in Section 2.1, we prove that the KR
transport is optimal among all online transports when the source distribution is a product.
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Main Result: Algorithmic Transport from Product Distributions. Our main result (The-
orem 28) is to design a poly(n)-time online algorithm that transports a generic product
distribution p = p; ® -+ - ® uy, to any n-dimensional distribution v, assuming that (1) the
transportation cost satisfies c(x,y) = Y. ¢;(z,y:), where z = (z1,...,25), ¥y = (Y1,- .-, Yn),
and (2) the transporting algorithm A has oracle access to proper samplers for both pu, v.

The algorithm is actually very simple: Given x, having determined yi,..., y;—1, to
determine y;, it samples k — 1 samples besides x; according to p;. Similarly it samples k
samples according to the conditional distribution of the ith coordinate of v conditioned on
the values of y1,...,y;—1. Then it optimally matches the two sets of two k& samples. The
value of y; is the match of x; in this matching.

The transportation cost of A turns out to be A + d, where A is the optimal cost of online
transports from p to v (which, as we will prove, will coincide with the KR transport [27, 39]
in our settings of interest), and d is a term that could be made smaller by choosing k larger.
We show that the reverse transport from v back to the product o can be done algorithmically
as well. This will be useful for deriving further algorithmic transports through composition.

Sequential Samplers. When it comes to the samplability conditions needed in our main
results above, we merely require that we can sample from p; efficiently. However, for the
non-product distribution v, the samplability condition is stronger and we require that one
can sample from v; conditioned on any previously sampled prefix y;;_;). We refer to such
samplers as sequential samplers. A key quantity of interest is the complexity of iterative
sampling of the coordinates yi,...,y, sequentially (conditioned on previous ones) till we
obtain a full sample y. We would like to have samplers where the average complexity of this
sequential generation is bounded. As it turns out, we can indeed bound such costs in our
special cases of interest.

From a real-world application point of view, this notion of efficient sequential sampler
is very natural in some generative models. This is indeed the case for transformer-based
language models that autoregressively generate their tokens one by one, each conditioned on
the previously sampled sequence of tokens [44, 18]. That is, the joint distributions produced
by these generative models have sequential samplers of low expected cost, as they indeed
generate their sequence of symbols in a reasonable time and in an online fashion.

Algorithmic Transport for the Standard Gaussian Distribution. One of the fundamental
results in OT is Talagrand’s transportation inequality for the n-dimensional Gaussian
distribution ®™ [43]. It is proved that for every distribution v, T(®",v) < 2KL(v, ®"), in
which the cost is measured in 2, i.e., c(z,y) = Diem) |z — yi|?, and KL(-,-) denotes the
Kullback—Leibler divergence. In this work, we lift this classical result to the algorithmic
setting. Note that, as mentioned in [43], this bound is optimal in general, e.g., when v is a
shifted @™, in which case our results converge to this optimal bound as well. In particular, we
derive this result from our main result by proving the following two complementary claims:

Information theoretic: We observe that Talagrand’s bound of 2KL(v, ®™) upper bounds
not only the best “offline” transport from the standard Gaussian ®”, but also the best
optimal online transportation of ®” to v. Namely, we show that A < 2KL(v, &™), where
A is the optimal online transportation cost as defined above.

Computational: We use results from [19] to show that the Gaussian distribution in one
dimension has a small transportation cost to its empirical samples on average.
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Transporting Standard Gaussian to Conditional Gaussian. We show that in a natural
setting, where v is the Gaussian distribution conditioned on an event S of Gaussian measure
e, such sequential samplers can be efficiently simulated using oracle access to membership
tests in S. In other words, we find an algorithmic oracle-aided transportation algorithm that
simultaneously work for all such distributions v = ®"|S. Note that such distributions have
2KL(v, ™) < 21In1/e. We obtain algorithmic transports running in expected time poly(n/e)
that achieve transport cost that converges to the upper bound of Talagrand.

Dimension-Independent Computational Concentration for Gaussian Spaces. One of the
applications of OT is to obtain concentration of measure (CoM) inequalities [22]: One shows
that any set S of “sufficiently large” measure in a concentrated metric probability space (u, d),
where p is a distribution and d is a distance metric, expands to cover most of the measure
in p, when we consider neighbors of S within a certain distance. Recently, a computational
(algorithmic) variant of the CoM phenomenon has been introduced [31, 15], in which one
aims to show that the reverse mapping can be computed efficiently from almost all of the
points in p back to § by moving the points within a bounded distance. Namely, given a
typical sampled point x ~ u, we aim to algorithmically find a “close neighbor” y € S of
bounded distance d(z,y). The work of [15] obtained such results for various settings, but
their work left open obtaining computational CoM with dimension-independent (optimal)

distance for the basic and natural space of Gaussian distributions under the ¢y distance.

Using our oracle set-transportation result for Gaussian spaces mentioned above, we resolve
this open question and obtain such an optimal and dimension-free bound (see Corollary 36).

Reductions for (Deriving New) Algorithmic Transport. Finally, considering the role of
reductions in resolving algorithmic tasks, we also develop the (right) notion of algorithmic

reductions for the goal of relating algorithms for (optimal) transport across different spaces.

In particular, suppose 1, us are distributions and c1,co are two different transportation
costs. In the full version we state conditions under which, we can automatically transform an
algorithmic transport result from g1 to v (under the cost 1) to a similar result that transports
2 to v (under the cost cg) for specific distributions py, g and arbitrary distribution v. We
then show how to realize such reductions when we transport uniform distributions over the
unit cube and the unit sphere (to an arbitrary distribution) by reducing them to the case of
transporting Gaussian distributions. Consequently, we obtain algorithmic transports from
these distributions as well.

2 Basic Concepts

In this section, we define the key notions studied in this paper and prove their basic properties.

Notation. We let [n] = {1,...,n}. We denote the source (initial) distribution as . When
w is distributed over R™, we say that y has dimension n and by u; we denote the distribution

of its ith coordinate. We usually denote x ~ p, where x = (x1,...,2,) and x; ~ p;.

w=p & - ® u, means that p is a product distribution. We use a similar notation for
the target distribution v. By y + A(z) we denote the process of running a probabilistic
algorithm A on input = to obtain output y. When g is a distribution, A* denotes an oracle
algorithm A that has access to fresh samples from u, and when S is a set, A° denotes a
similar situation where the oracle responds membership in S. For vector (vy,...,v,), by
vj;) we denote the prefix vector (vq,...,v;). When a distribution x of dimension n with
marginals pi1,. .., i, is clear from the context, by j;|z};_1], we denote the distribution of
i; conditioned on having sampled z; from p; for all j < i. For further clarity on the
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underlying joint distribution, we might sometimes use ;| ,x;—q) instead. By u(S) or Pr,[S]
we denote the probability of event S under the distribution p. Whenever it is clear from
the context, for an outcome z, we use u(x) to either denote the probability of the outcome
x or the density of p at z depending on whether p is discrete or continuous. By Supp(u)
we denote the support set of u, which for the discrete and continuous cases can be defined
as {x | u(x) > 0}. When Supp(p) U Supp(v) C S, their Kullback-Leibler (KL) divergence is
denoted as KL(v,u) = >, s v(x)log (v(x)/u(x)) with the natural logarithm basis. In the
preceding definition and generally throughout this paper, we use the summation notation
corresponding to discrete distributions; the corresponding results for continuous distributions
replace sums with proper integrals. For p > 1, the £,-norm and /,-distance over R" are

1
defined as £,(2) = [z, = (Zicp [2il?) 7, and €y(z,y) = £(z —y).

Transportation Costs. In the following, all transportation costs, usually denoted as c, are
functions c: R?" — R with non-negative outputs that model the cost of transporting = ~ p
to y ~ v. We always assume c to be lower semi-continuous but do not assume c to be
symmetric or satisfy the triangle inequality; we state these conditions, whenever needed.

» Definition 1 (Coupling and Optimal Transportation Cost). We say that a distribution
over pairs with marginals w1, 7o is a coupling of u,v if m = u,mo = v. If for every x ~ u,
there is a unique y such that (x,y) € Supp(w), then we call this a deterministic (Monge)
transport from p to v. For a cost c, the transport cost of a coupling ™ of u,v is defined as

Te(m)= E c(z,y).

(z,y)~m

We refer to T:;p/p(ﬁ) as the (Wasserstein) p-cost of m under c. If C(u,v) denotes the set of all
couplings between p,v, the (Kantorovich) optimal transportation cost for (u,v) is defined as

To(p,v) = inf T(m).

TEC(p,v)

The infimum in Definition 1 for defining the optimal transportation costs turns out to be

a minimum as c¢ is lower-semi continuous [1].

» Definition 2 (Algorithmic Transport). For distributions u,v, algorithm A is a transport
from distribution p to distribution v if A is a (probabilistic) algorithm such that A(z) ~ v
whenever x ~ . By w4 we denote the coupling created by A. For a transportation cost c the
transportation cost of A is defined as Tc(A) = Tc(ma).

Computational Model. In Definition 2, we need to either work with discrete distributions
with samples of finite length, or when the distributions are continuous we need to work with
the generalization of algorithms working with real numbers as formalized in [8, 9].

We now define an algorithmic variant of so-called causal transport [30] with a discrete
time [3], We call it “online” to emphasize on the algorithmic aspect a la online learning [41].

» Definition 3 (Online (Algorithmic) Transport). For distributions p,v of dimension n, we
call a (probabilistic and perhaps computationally unbounded) algorithm A an online transport
algorithm from p to v if it forms a transport from p to v, while it makes its decisions in
an online way. Namely, A has an internal iterating process (for simplicity also denoted
by A) that reads (z1,...,x,) ~ p coordinate by coordinate while holding an internal state,
initially so = @. In the ith iteration, we have (s;,y;) < A(s;—1,2;), and at the end we output
Y1y, Yn) ~v. We also let COMT (u,v) to be the set of all couplings that can be obtained by
online algorithms and for a transport cost ¢ obtain the optimal online transportation cost as

TOT (4, v) = inf  Te(m).
(1) ec (m)
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To contrast and emphasize on a transport not being necessarily online, we refer to
(potentially) non-online transports as offfine transports.
We now define a class of couplings that is closely related to online transport.

» Definition 4 (Online Coupling). Suppose 7 is a coupling between n-dimensional distributions
w, v, and m; is the corresponding marginal coupling between p;,v;. We call m an online coupling
if for all z = (x;-17, Ypi—1]) € Supp(7—1]), Tlz is a coupling of pi|xy_q) (according to )
and vi|yp—1) (according to v). If CO"C(u,v) denotes the set of all online couplings between
w, v, for a transport cost ¢ we obtain the optimal online coupling cost between u,v as

TOMC (1, 1) = ﬂecoiyg(#,y) Te(m).

We now show how to characterize online couplings using online transports.

» Proposition 5. A coupling m between u, v is online if and only if it can be obtained through
both an online transport from p to v and an online transport from v to u.

» Definition 6. We call the cost function ¢ over R™ x R™ linear over ¢y, ...,¢Cy, if c(z,y) =
Cl(xlayl) + -+ Cn(xruyn)) fO’f’ a” r = (I‘l, o 7xn)7y = (y1> .. 7yn)

Greedy Coupling. One might wonder how we can compute/approximate T (u,v). One
approach is to use greedy methods, by trying to use an optimal coupling in each round.
This is formalized in the following definition in settings with dedicated costs for each round.
We will then discuss when this method succeeds in Theorem 10. More generally, we define
locally-optimal couplings, even when they are not online.

» Definition 7 (Locally Optimal and Greedy Couplings). Suppose the cost function c over
R?" s linear over ci,...,C,. A coupling m between p,v is locally optimal, if for every
2[i—1) € Supp(mpi—1)), it holds that m;|z;;_1y is an OT between ;|2 1y, Vilzi—1); i-e.,

Te, (milz1i—1)) = Te, (pil21—1y, vil 20— 1)) -

When m is an online coupling as well, the above condition simplifies to Tc,(milzi—1)) =
Te, (pilzi—1), vilyji—1)) in which case we call w greedy. For C%(u,v) denoting the set of all
greedy couplings from p to v, we define

TS(:“‘? V) = sup Tc(ﬂ')'
TeCS (p,v)

» Remark 8 (Greedy vs. Knothe-Rosenblatt Transports). Greedy couplings are closely related
to Knothe-Rosenblatt (KR for short) transports [27, 39]. Specifically, for a greedy coupling
7, when the cost functions c; are convex, for any z(;_1; ~ m};_1), the locally optimal coupling
7i|2[;—1) could be obtained by simply using the unique monotone mapping [12]. Hence, KR
coupling is a special case of greedy couplings and cover many interesting cases in this class.
For example, when the cost function c is 5 for p > 1, then TS (u,v) equals the cost of the
KR coupling between p and v. However, due to the generality of greedy couplings (e.g., for
non-monotone costs) we define and use greedy transports.

Lambda and Delta Cost Functions. We now define two functions that play key roles in our
analysis of the cost of online transports. The first (Lambda) function depends on a coupling,
while the second one (Delta) depends on the two distributions that are coupled. As we prove
later in Proposition 12, Lambda is a parameter that lower bounds the cost of any coupling.
Delta is the optimal online transport from a product distribution to another one.

10:7
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» Definition 9 (The Lambda and Delta Functions). For a coupling m of dimension n between
distributions u,v of dimension n, and a cost function c that is linear over cq,...,cy,, we
define the Lambda functions as

Ac(m) = E > Te (wilzi—ays vil2i-1)-
i€[n]
We also define the Delta function between distributions p,v of dimension n as
Aclp,v) = E > Te (s vilyji—))-
1€[n]

Note that the coupling m in Definition 9 does not have to be online. Furthermore, the
definition of A(-) does depend on the order of the coordinates of the n-dimension distributions.

2.1 Online Coupling and Transport from Products

We end this section by stating a theorem showing that, whenever p is product, any online
coupling that is “locally optimal” in the sense that given history z = (2[;_1,y;—17) it finds
(an arbitrary) optimal transport between (s;), (v4]y;;—1]), finds an optimum online coupling
between p, v as well as an optimal online transport from g to v. This theorem does not
assume convexity of the costs. As stated in Remark 8, for convex transportation costs, greedy
algorithms can be instantiated using the KR transform.

» Theorem 10 (Optimal Online Coupling and Transport from Products). If p= 1 ® - - ® pp
is product and the cost function c is linear over ci,...,Cy, then

T?HT(M»V) = T?nc(ﬂay) = Tg}(lu'v’/) = AC(ny)'

Before proving Theorem 10 we prove some basic tools that are used in the proof. The first
lemma that we state can be obtained from a simple application of the linearity of expectation.

» Lemma 11 (Cost Splitting). Let m be a coupling between distributions p, v of dimensions n,
and let m; be the corresponding coupling between the marginals p;,v;. Suppose c is linear over

C1,---5Cn, and w is an n-dimensional distribution that is arbitrarily correlated with w. Then,
Te(m) = Z Te,(mi) = Z@w Z Te, (milwpi—1) = 2[i—1])-
i€[n] i€[n]

In particular, we can choose w =v, w = u, or w =7 as special cases.

We now prove some basic properties of the two functions, showing how to use it and
how to characterize it in some special settings. In summary, Lambda function lower bounds
the transportation of every coupling, while Delta will play a key role in characterizing the
transportation cost for product distributions.

» Proposition 12 (Properties of Lambda and Delta Functions). Suppose 7 couples p,v and c
is linear. The Lambda function satisfies the following properties.

1. Lower Bound: For all w, Ac(7) < Tc(m), and the equality holds iff 7 is locally optimal.
2. Online Transports from Products: If 7 is an online transport and p = 1 ® + -+ @ i, then

Ac(m) > Ac(p, v).
3. Online Coupling for Products: If 7 is an online coupling, and u is product then

Ac(m) = Ac(p, v).
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Proof of Proposition 12. We prove the claims in order.
1. By letting w = 7 in Lemma 11, we get

Te(m) = ZINEﬂ Z T, (m|z[i,1]) > ZINEﬂ Z Te, (/v‘i|2[i71]7yi|z[ifl]) = Ac(7),

i€[n] i€[n]

where the inequality follows from the fact that T, (-, ) minimizes the transportation cost.
2. We first claim that, in this case, for every z;_1) = (z[—1],Y[i-1)) ~ Ti—1], We have
#ilzi—1) = ps. This is true, because (1) (ps|Ti—1], Y[i—1)) = (#il2[i—1)) and the fact that w
is an online transport, and (2) (ui|x[;—1)) = p; by the fact that u is a product. Therefore,

Ac(m) = E Z Te, (il zji—1); vil2zji—) = E Z Te, (ki vilzi—1))-

1€[n] z=(@y)~m 1€[n]
We now use the right hand side. In analyzing the right hand side, we first use Lemma 11
(using w = 7) and then sample z,y in reverse order,

E Z Te, (i, vilzi-) = Z E E Te, (ki Vilyi—1)> Ti=11),

(z,y)~m icm) icn) Yli—1]~V]i—1] @[ —1]~V]i—1] Y-
where for each i € [n], we sample (z;_1],y[i—1)) ~ 7[i—1) by first sampling yj;_1) and then
sampling z[;_1) conditioned on y;_1j. Now, for every yj;_1) ~ v[;_1], we claim that

E Te, (kis vily—1y, wp—1)) = Te, (i vilyp—1))-
x[i—l]"’”[i—l]ly[i—l]
This claim follows from Part 2 of Proposition 19 and the fact that the average of
Vilyji—1], Zi—1] over the choice of xf_1) ~ v _11|ypi—1y is vilyp—1)-
3. When the coupling 7 is further an online coupling, then the equality holds, because
(Vilyi—11s 21i—1]) = (Yilypi—17), and the last inequality above becomes an equality. <

Proof of Theorem 10. It is enough to prove the following two claims.
L T8 (p,v) < Ac(p,v).
2. T (p,v) > Ac(p, v).
The reason is that we already know TO"T (u,v) < TS (u,v) (as being greedy is a limitation),
and so proving the two claims above would imply all the equalities of the theorem statement.
To prove the first claim, we observe that cost Ac(u,v) can be achieved using (any)
greedy algorithm that (by definition) optimally couples ju; = |21 with v;]y;;—1) in the
ith step. In fact, all greedy coupling algorithms have the same cost A.(u, ) when one of
the distributions is product.
To prove the second claim, let 7 be an online transport with cost TO"T(u, v). Our claim
follows from Parts 1 and 2 of Proposition 12, due to w being online and u being a product.

T (u,v) = Te(m) > Ac(m) > Ac(p, v). <

3 Basic Tools

3.1 Composition and Triangle Inequalities

Multi-distribution Coupling and Composition. We now generalize the notion of coupling
to more than two distributions and use it to define composition of (online) couplings.

» Definition 13 (Multi-distribution Coupling). A coupling 7 of u1,...,pn is a distribution
over n-vectors such that the marginal of the ith coordinate is distributed as p;.
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» Definition 14 (Composition of Couplings). For coupling m1 2 over p1, g and coupling ma 3
over pig, i3, we define the composition m 3 = ma 3 0m 2 of 12 and w3 as the marginal of
the first and third coordinates of the (unique) coupling of pi, po, pis such that.

1. For 1 <i< j <3, the marginal distribution of (u;, it;) in m 2,3 is distributed as m; ;.

2. In the coupling m1 23, i1, 43 are independent, conditioned on xo ~ s.

We now use Wasserstein p-cost, to state the following well-known triangle inequality.

» Lemma 15 (Triangle Inequality for Wasserstein p-Costs). Suppose a cost function c satisfies
the triangle inequality (but not necessarily symmetry) and p > 1. Then, for every coupling
over [, fi2, i3 with marginal coupling m; 5,1 < j over m;, m;, we have the following,

TP (m15) < TelP (m10) + TebP (2 3).
The following proposition can be obtained from the triangle inequality of Lemma 15.

» Proposition 16 (Triangle Inequality for Wasserstein p-Costs in Multi-Round Settings). Let
p be a distribution over R™, and for every i € [n],xj;_1) € Supp(up—1)) let J(xi—1)) be a
distribution over triples of distributions over R. Suppose c satisfies the triangle inequality

and cP is linear over cq,...,c, for p > 1. Then, the following holds.
1/p
E E Tc Vi, U
T Zez[n] (vi,v2,v3)~J(xi-1)) 1,( 1 3)

1/p

<> E > 1) Te, (ks Vit1)

ke[2] S~ i) (v1,v2,v3)~J(@i—17)

The following can be obtained from the definition of online transport and Lemma 15.

» Lemma 17 (Properties of the Composition of Online Transports). Consider an online

transport Ay o from py to po with coupling m 2 and an online transport As 3 from o to ps

with coupling ma 3. Let m1 3 = ma 3 071 2 be the composed coupling. Then,

1. The coupling m 3 is an online coupling.

2. There is an algorithm Ay 3 that transports py to pus as the coupling 71 3, whose complexity
is bounded by running Ay 2 followed by running As 3.

3. If the cost function c satisfies the triangle inequality, then for all p > 1 the following holds

TUP(A13) < TP (A1) + THP(Ags).

The first item in Lemma 17 and Proposition 5 together show that the composition of two
online coupling is also an online coupling.

3.2 Transport Through Intermediate Distributions

In this section, we describe a method of transporting p to v (perhaps in an online and iterative
way) through optimal transports between intermediate distributions in one dimension. We
start with some definitions. We start by defining the notion of average for distributions and
stating a general way of transporting through averages.

» Definition 18 (Average Distribution). Suppose M is a distribution over distributions. We
define the average of M, denoted as E[M] =E,/ . [p'] = p, to be the distribution p of the
random variable x that is sampled by first sampling i’ ~ M and then x ~ p’. Namely, p is the
distribution that u(S) = Eyrwn (' (S) for all the events S defined over U, csupp(ar) Supp(u').
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» Proposition 19 (Transport to Averages). Suppose M is a distribution over distributions

with average .

1. Suppose w is the following joint distribution. We first sample p' ~ M, then couple p'
with v as 7., and then output a sample (x,y) ~ m,. Then, 7 is a coupling between i, v.

2. Eprnt Te(pyv) > Te(isv).

Proof. Part 1 holds because the marginals of « and y have the marginals of u,v. Part 2
follows from Part 1 and picking 7,/ to be the optimal transport between p/, v. |

The following definition states a way of finding a transport from p to v by working with
alternative (intermediate) distributions that approximate pu, v.

» Definition 20 (Transport Through Intermediate Distributions). Let u,v be distributions, c

be a cost function, and J be a distribution over pairs of distributions. We say that algorithm

A couples i, v through (the intermediate distribution) J, if the following conditions hold.

1. J produces marginals with averages p,v. Le., p=E gt and v =Eqy g v’

2. Algorithm A first samples (u',v') ~ J, then finds some optimal transport = between p’', v’
according to ¢, and finally outputs (z,y) ~ 7.

» Definition 21 (Conditioning and Composing Transports with Distributions). Suppose p', u, v
are distributions and w is a transport from u to v. If Supp(p’) C Supp(p), then consider the
following sampling process.

1. Sample v ~ .

2. Sample y from the v-coordinate of w, conditioned on its p-coordinate being x.

Then, the notation 7|y’ denotes the joint distribution of (z,y) and whu' denotes the distribution
of y. Additionally, if M is a distribution over distributions, then N = w#M denotes the
distribution over distributions sampled by outputting v’ = iy’ for u’ ~ M.

Notation. Let Uy , be the distribution over distributions obtained by first sampling X ~ wk,
and then outputting 4 = Ux. A simple observation is that E Uy, = p for all k.

» Proposition 22. If M is a distribution over distributions with average distribution p, and

if m is any transport from p to v, then the following holds.

1. N = wM is a distribution over distributions with average v.

2. For cost ¢, Te(m) =By Te(m|p') in which w|p is defined in Definition 21.

3. Uk, = 7l{Uy ., and if p is samplable in time t,, and coupling  is computable in time t,
then one can sample the set Y,|Y| = k that describes Uy ~ Uy, in time k(t, + tz).

Proof. For Part 1, observe that if we sample = ~ p’ for u/ ~ M, by definition we get x ~ p,
which means y ~ m§M will be sampled as y ~ v. For Part 2, E,,..ps Tc(m|p) also computes
the cost of the same coupling 7 by breaking it into marginal costs based on how x ~ p is
sampled. For Part 3, let (z,y) ~ 7. We first sample (z1,...,75) = X ~ ¥ and then let
Y=(y1,...,yx) for y; ~ y|lx = x,;. It holds that z;s are independently sampled according to
1, and because 7 transports p to v, y;’s are also independently sampled according to v. <«

» Lemma 23 (Multi-Round Algorithmic Coupling Through Intermediate Distributions). Suppose

cost function c satisfies the triangle inequality, and cP is linear overcy,...,c, forp > 1. Let,
with marginals w1, . .., 7, be a transport from p with marginals p1, . - ., by to v with marginals
Vly.ooyUn. For round i € [n] and previously sampled z;_1) = (x;—1], Y[i—1)) € Supp(mji—1)),

suppose J(z[i—1)) is a distribution over pairs of distributions defined based on zj;_1}, and

Oz;_y 05 an optimal transport from ilzi—1) to vilzi—1) under c;. Suppose T can also be
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obtained using the following algorithm A in n rounds. In round i € [n] and for previously
sampled z;_1) = (2[i—1), Yji—1]) € Supp(7—1]), A couples p;|z;;—1) and v;|z—q) through the
intermediate distribution J(z;—1)) as defined in Definition 20 using the cost c;. Then,

1/p

Ti}{p(w) < Z@ﬂ Z T, (u;, 0o I]ﬁy) _|_A1/:D( ),

’o i
ZE[?’L] (Miv’ji)’\’J(Z[i—l])

where o~ refers to the inverse coupling that changes the order of its marginals.

Proof of Lemma 23. The proof uses the triangle inequality for Wasserstein p-costs for the
multi-round setting (Proposition 16).

For each i € [n] and z;_q) € Supp(7;_1)), consider the following sampling process I(z[;—1))
that extends J (2[1'71]) by outputting one more coordinate as well.
1. Sample (W, V") ~ J(z-1)-
2. Let p” = 0*1 ﬂz/
3. Obtain (¢, /L V')~ I(zp-q))-

1/p
It holds that T;{”(A) = (Ezmr D icin) Boww w)~I (o) Tes (', y’)) , which is the left side
of the inequality of Proposition 16, and the right side is:
1/p 1/p
E Z TCi, (,u/a :u//) + E Z TCi (u//’ l/)

wop' v’ i—1]) wop' V’)NI(Z’L 1)
Zli—1] E[] [

The first term is exactly the first term on the right hand side of the inequality of the lemma.
Therefore, all we have to do is to prove that

z@,, Z T, (1", V') < ZIET Z T, (Jz[iil]).

icn ] W 71//)’\‘1(21 1) icm]

In fact, we prove this statement for every choice of z and 4, so ignoring z,¢ we prove the
claim:
E T v E  To((e )™ =Te(o
BTN B Tl ) =Te ),
where the middle term is added for the proof.
We now prove both the inequality and the equality above through the steps below.
Equality: Since the average of v/ ~ J is v; and ¢~ ! is a transport from v; to p;, if we
define c(y;,x;) = c;(x;, yi), then by Part 2 of Proposition 22 we have

E T )= E Tl ') =Tglo™) =Tc(0).
(MHJ/I)NI v (M”,V')NI i i

Inequality: Again, using c}(y;, ;) = ¢;(z;,y;), we have

E T, v)= E T, u"
W o (1’ v") o MUNT)
To(eW)Y= E T ((e )1,
S B (o V) o (@) )

where the inequality is due to the fact that T (v, ") is the optimal cost. <
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3.3 Borrowed Tools

The following can be obtained from the proofs in [43, 22] (see the full version). For p = 2, it
gives the celebrated Talagrand’s transportation inequality for Gaussian under ¢s.

» Theorem 24 (Talagrand's Inequality for the Gaussian Measure). If c(z,y) = (5(xz,y),
p € [1,2], ®, is the standard Gaussian and v is an arbitrary distribution both in R", then

TO (D, 1) = Ad(®y,v) < n'7P/2. (2KL(r, ®,))P/2.

» Definition 25 (Transports to Empirical). For distributions p and symmetric cost c, we let
TEI,;‘(u) =Exux Te(Ux,p) denote the cost of transporting ju to an empirical set of size k,
where Uy is the uniform distribution over the multi-set X .

The following lemma follows from [19] and known moments of the Gaussian distribution.

» Lemma 26 (Original-to-Empirical Transport for the Normal Distribution). Let p > 1, c be e,
and p = N(0,1) is the normal distribution. Then, for a constant C, depending on p,

TER () < Gy - 22 T (p 4 1)t - /2,

4  Algorithmic Transport for Products

In this section, we put together the tools from previous sections to derive algorithmic results
about online transport for the setting that one of the source or target distributions is product.
We then derive a corollary for the Gaussian measure. We first define sequential samplers.

» Definition 27 (Sequential Sampler). For a distribution v in dimension n with marginals
Vly...,Vn, we call U its sequential sampler for v, if for all y;;_1) ~ v 1) calling D(yp—1))
returns an independent answer D(y_1)) ~ Vilyji—1]. For queries yp_q) & Supp(v;—1), calling
D(ypi—1)) returns L. We also assign a (sequential sampling) cost sc, (yj—1)) to query yp—1j,
and call sc, = E, Zie[n—l] sc, (y[i—1)) the average (sequential sampling) cost of 0. For an
oracle-algorithm A calling (a potentially randomized) set Q of queries to U, we define its
average total cost of calling 0 as sciy =Eg Y ,cq5cy(a).!

One natural way of using sc is to model sampling time, but it can model other costs
as well. The average cost sc, of ¥ is indeed the average total cost of the following simple
algorithm A that uses sc, sequentially to obtain a full sample: Let yjg) be the empty string,
and for i € [n], A let y; = D(y;;—1]). Also, when p is a product distribution, then /i is nothing
other than a direct way of sampling from independent distributions v; for all i € [n].

Before stating our main result, recall the notation for transport cost to empirical sets
from Definition 25.

» Theorem 28 (Main Result). Suppose pp = p1 @ -+ @ uyn, and v are distributions over
R™, with sequential samplers i, and corresponding oracle cost functions sc,,,sc,. Suppose
the transportation cost function c is a metric (i.e., symmetric and satisfies the triangle
inequality) and cP is linear over symmetric costs cy,...,cn.2 Then, there is an algorithm Ay,
parameterized by k, that uses oracle access to samplers i, and achieves the following:

1 Since sc,,(y[i,ll) naturally measures the (e.g., computational) cost of sampling a coordinate conditioned
on previously sampled coordinates, for natural settings and independent v1, v2, the value of sc,,(y[l])
will be independent of y;.

2 An example is ¢ = ;.
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1. Aﬁ’[’ transports ju to v through an online coupling in time poly(nk) with p-cost®
TUP(ART) <5+ A

. . 1/p 1/p . ops 4
in which § =2 (Z TE‘E(;LJ) and A = A4 (u,v) as in Definition 9.

2. The average total cost of A calling fi,0 is as follows. sc2 <k -sc, and scf < k-scy,.

i€[n]
5

3. There is an algorithm B that achieves the same as A does, but it transports v back to p.

Proof. At a high level, we use an empirical variant of the greedy algorithm (which is related
to the KR transport) to design the algorithm. The algorithm itself is quite simple; the bulk
of the work goes into its analysis, which is quite delicate and uses many tools from Section 3.

The Transportation Algorithm A. The algorithm A works in n rounds. In round ¢ € [n],

given x; ~ p; find y; ~ v|y—1) as described below.

2. Pick t + [k] at random. For all j € [k],j # ¢, let xz(-j) ~ 1 be k — 1 independent samples.
Additionally, let .TZ(-t) = z;, and X be the multi-set {xgj) |je [k}} of size k.

3. Find the optimal transport between the two distributions Uy, Uy under the cost c; (e.g.,

using the Hungarian method®) that is in the form of a matching between X and Y.”
4. Output y; € Y that is matched with xgt) =z; € X.

1. For j € [k], let y(j) ~ D(y};—1]) be independent samples forming the multi-set ) of size k.

We now analyze the algorithm A above.

Transportation. A’s running time is clearly poly(kn). We now prove that A’s algorithm
produces an online coupling between u, v, by showing that in round i, it couples p; and
Vilyji—1). It is simple to check that all the elements of X" are distributed as p; and all the
elements of ) are distributed as in v;[y;;_q). At first, it might not be clear why y; is distributed
as vi|yp—1), because the matching algorithm might change its distribution by picking it
adversarially. However, since the algorithm hides the index of x; and statistically hides it
among X, the final “matched pair” (z;, y;) is a random edge of the optimal matching/transport.
Therefore, y; is also distributed accurately, and hence A is producing an online coupling.
More formally, we can choose t € [k] at random after the matching between XY is
chosen. Moreover, the marginal distribution of yl(j ) is D(ypi—1))- Therefore, for every (even
fixed) matching between X, ), picking ¢t at random will lead to picking y; = ygj ) where jis
the index of the sample in ) that is matched with the index ¢ in . Therefore, y; ~ 2(yj—1))-

The Cost. To analyze the transportation cost we apply Lemma 23 from Section 3, which is
stated in a more general form to better demonstrating the key ideas.

To apply Lemma 23, let J(y};—1]) return pair of distributions (u; = Ux,v; = Uy) that are
constructed using independent sample multi-sets X', ) of size k, in order, from pu;, vi|y;—1-
Finally, because the algorithm A finds an optimal transport between u}, v}, we will have the
premises of Lemma 23 and conclude that

1/p

X7o—z_,1_1]ﬁUy) +Ail{p(7TA)7

1/p 8%
AR < | E Y ;

(z,y)~m

E T (
i (Ux,Uy)~J(ypi-11)

See Definition 1.

By Theorem 10, A is also equal to TOMT (i, v) = TS (u, v) = TG (s, v).

Note that because p is a product distribution, if sc, models the computational cost of sampling from g,
then we would have sc, =) scy,, where scy,, models the computational cost of sampling from f;.

oo W

i1€[n]
This method can be implemented faster when the cost function is convex, in which case simply sorting
X, gives us the optimal matching, as a monotone mapping.

This can be proved, e.g., using the Birkhoff-von Neumann decomposition of doubly stochastic matrices.
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in which o, is an (optimal) transport from p; to v;|y;;—1). (See Definition 21 for the #
notation.) We now further simplify the summation above.
Because Uy, Uy are empirical distributions from p;, v;|yji—1y, if we let Ux = pj, Uy = v
in Proposition 22, by Part 3 we get Uy’ = oz_[}_llﬁUy (see Definition 21 for the notation)
in which Uy is also an empirical distribution sampled from pu; independently of Ux. So,

the first term of the right hand side in the inequality above simplifies to:

1/p

E > E T (Ux,Ux)
Yy

(z,y)~m iem] X,X/Nuf

Now, in the first term, both coordinates of (x,y) ~ 7 are irrelevant to the summation.
Since A is producing an online coupling the second term simplifies into Ai,{p (n,v) =
Ai;{p(ﬂ'A), due to Part 3 of Proposition 12 and that u is a product.

Finally, by the triangle inequality of Proposition 16, the first term will become at most
1/p

2( ST ()| =26,

1€[n]

To apply Proposition 16, we let J; to be the distribution over distributions that outputs
the following triple of distributions (v1, va, v3), where

k / k
V1 :UXv){NNivVQ:Mi»V-?’:UX’?X ~ g .

Oracle Costs. In each round, A asks k — 1 samples from p; and k samples from v;|yj;_1;.
Furthermore, the previous samples yj;_1j are sampled according to vj;_qj itself, so the average
total cost will be as claimed.

Inverse Transport. The reverse mapping uses the same algorithm for one dimension trans-
port, but it maps v;|yj;_1) to u;, and inspection shows its transportation and (expected) total
oracle costs will be the same as that of A. |

4.1 Extending Transport to Conditional Distributions

In this subsection, we study how to use the main result of Theorem 28 and obtain transports
from the same p to a more rich set of distributions that can be obtained from v by conditioning
v on an event S of not-so-small probability. Doing so would be extremely useful, when later
on, we focus on transporting Gaussian distributions to the same distributions conditioned
on an event S. To prove this extension, we prove a general result about using sequential
samplers for v to obtain sequential samplers for v|S.

» Theorem 29 (Sequential Samplers for Event-conditioned Distributions). Suppose v is an
n-dimensional distribution that has a sequential sampler U with average cost sc,. Suppose
S is an event of measure v(S) > €, and w = v|S is v conditioned on S. Then, there is an
algorithm O that uses oracle U and a membership oracle S and achieves the following.
1. For all y_q ~ wii—1), O%"(yi—1)) ~ &(yi—1))-
2. If we define sc,(y;i—1]) be the average total cost of OS"A’(y[i_l]) querying v, and if we
define sc, (i) = Ey~, sc, (yji—1)), then

1 . . sC,

sc, < R Zz~scu(z) <n-—.

g
i€[n]
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3. When iteratively sampling (y1,...,yn) ~ w, the expected number of calls to S in round i
is at most 1/e, making the total expected number of calls to S to be at most n/e.
4. The running time of the iterative sampling of (y1,...,yn) ~ w, relative to the provided

oracles 0,8 is at most O(n?/e).

In other words, one can use O” to emulate a sequential sampler for w = v|S in such a
way that the average cost of obtaining a full sequence y ~ v|S using n nested calls to the
provided sequential sampler only goes up (at most) by a multiplicative factor n/ Pr[S].

The main idea in the proof is to use rejection sampling with a subtle analysis. Namely,
OS5 simply keeps using © to obtain full sequences multiple times until the sample sequence
falls within the event S. The full proof follows.

Proof of Theorem 29. For v = (vy,...,v,), let v>; = (v;,...,v,) and v = (Vji—1), V>4)-
Our algorithm O%”(y;;_q]) samples from &(y;—_1)) as follows.
1. Sample from v|yj;_y) as follows: for j =4,...,n sample fresh values y; ~ 7(yp;—1])-

2. If y = (yji—1],¥>i) € S, then output y;; otherwise, go back to the previous step.

We refer to each execution of the two steps above (that has exactly one call to S) a trial.
Part 1 follows from the fact that the above sampling process is a simple rejection sampling.

To prove Part 2, let H(yj;—17) be a random variable that counts the number of trials, and let

its expectation be

h(yi-1)) = E[H (y-1))] =

PryNVw [y S S} '

Also let 5¢, (yi—1]) = Eymvjy, 1 2> SCv(yj—1). It can be observed that Ey., 5¢, (yi—1)) =
221 sc,(i). Using these notations, the oracle sampling cost of &(-) at y};_1; will be

sy (Ypi-17) = P(ypi-1)) - € (Ypi-1))-

Therefore, the average cost of @ will be

SCu —yﬂjw Z h(yji-1)) - sCw (Yi-1) Z E h(yji-1)) - s (yji-1)-

i€[n] ze[n]

A subtle point is that, in the above sums the first half y;_;) is sampled conditioned on S,
while the second half is done without such conditioning. We claim that for each ¢, we have

1
E A(yji-1)) - sCw(ypi-1) < = E scy,(ypi-1))- (1)
yrw £ y~v

Note that if Eq. (1) holds, then we conclude Part 2, because we get:

sc, < Z gyIEVscw( li—1]) Z Zscy % Zi-scy(i)

i€[n] i€[n] j>1 1€[n]

The following lemma proves Eq. (1) using U = Supp(vj;—q)),V = Supp(v>;), 0 = v,
f(y) =3¢, (yji—1)) and S as before.

» Lemma 30 (Expected Cost of Two-Step Sequential Sampling). Suppose o is distributed over
U x V with margins oy, oy, and S CU x V has probability o(S) = €. Also, suppose f is a
random variable defined over o with average f. Consider the following process: (1) Sample
u ~ oy|S, which is the marginal distribution of U in o|S and let e, = Pryoy[(u,v) € 8],
in which o3, is the marginal distribution over V in o conditioned on oy = u. (2) Sample
v~ o}5|S. Then,
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Proof. We write the proof for the discrete setting. A similar proof holds in general. For each
u ~ oy, define p, = Prloy = u] and fy = Eyoypu f(u,v). We have € = 3 1/ Pucu, and

_ Putu
qu = L=

Then, if we let Us = {u | &, > 0} = Supp(oy|S), we have

ELE fuo)= Y Lp= 3 Py 3 Pep =L «

u £ 13 €
u vlu uelds uel u€ls

To prove Part 3, using Lemma 30 and f(u,v) = 1, we conclude that the expected number of
times we call the S oracle at each node y;_y) is at most 1/e.

To prove Part 4 we can simply use a fake oracle sampling cost of sc,(-) = 1. Then the
claim about the running time follows from Part 2. |

Deriving corollaries. Using Theorem 29, we can derive more transportation results from
Theorem 28 by conditioning v on an arbitrary event S for which we have a membership
oracle at hand. Note that the parameter A will change to a new value, but the key point is
that we can control the cost of sequential samples from the new oracle, so long as we could
do so for the initial oracle. Another interesting application of Theorem 29 is to transport a
product distribution p to p|S for an arbitrary event S, obtaining the following corollary.®

» Corollary 31. Suppose the assumptions of Theorem 28 hold. Then, we have the following:

1. There is an algorithm My, such that, for all events S defined over u, M,f’ﬂ transports p
to p|S in expected time poly(nk/e) and p-cost Tigp(M,’:”) <0+ A, in which § is as in
Theorem 28 and A = Ailp(,u,MS).

2. There is an algorithm Ny such that, for all events S defined over v, N,‘f’ﬁ’p transports
to v|S in expected time poly(nk/e) and p-cost TiZ{p(N,‘f’ﬂ”}) <6+ A, in which § is as in
Theorem 28 and A = Ai,{p(/,t, v|S). Moreover, sc) <n-sc/e, for A of Theorem 28.

In both cases above, the expected number of calls to S is at most kn/e, and the transportation

can be reversed with the same upper bounds on the running time and oracle costs.

5 Algorithmic Transport for Gaussian

In this section we focus on cases where at least one of the two distributions involved in
the transport is Gaussian. We first use the main result of Theorem 28 and derive an
algorithmic variant of Talagrand’s result [43] about transporting Gaussian measure to
arbitrary distributions with bounded KL divergence from Gaussian. We then derive, as a
corollary, a computational concentration result for the Gaussian source measure under the ¢
distance. Finally, we focus on finding (optimal) online transports in cases where both the

source and destination are Gaussians, but they could be arbitrary (non-product) Gaussians.

5.1 Algorithmic Variant of Talagrand’s Transport for Gaussian

» Theorem 32 (Algorithmic Version of Talagrand's Gaussian Transport Theorem). Let ®™ be
the standard Gaussian in dimension n and v be an arbitrary distribution in R™. There is an
algorithm Ay, with integer parameter k, such that whenever AZ is provided with a sequential
sampler U for v, the following properties hold.

8 In the next section we apply this idea to the special case of Gaussian distributions.

is the probability we sample u in the sampling process of the lemma statement.
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1. For allp > 1 and v, AY transports ®" to v in time O(nklogk) with p-cost at most

1 o 1 n -~ 1/p
Ty (A7) < AP (@ v) + (op(nk 1/2)) .
For p =2, by the Talagrand inequality of Theorem 24, we have A@(@", v) < 2KL(®™,v).
2. The average total oracle cost of AY is at most k - E, ., Zie[n] sc(vilypi—1))-
3. There is an algorithm B};’ that achieves the same as AZ, but it transports v back to ®".

» Remark 33 (Working with ¢, instead of /). One might wonder what happens if we want
to measure (and upper bound) transfer costs using ¢, rather than 5. However, this can be
obtained using Jensen’s inequality (or rather the monotonicity of Wasserstein p-costs for a
fixed cost c). In particular, for every coupling 7, we have T, (7) < T;ép(w) for all p > 1.
Hence Theorem 32 is stated in the stronger form already.

Proof of Theorem 32. The proof follows directly from Theorem 28 and Lemma 26. Namely,
we use Corollary 26 to bound the term ¢ in Theorem 28 that upper bounds the transportation
cost of empirical Gaussian from the Gaussian itself. One small point here is that, we will not
need oracle samplers from the Gaussian itself, as we can use well-known sampling methods
such as the Box-Muller method that generate such samples efficiently [36].° |

We now focus on a special case of interest, in which the target distribution v is ®"|S for
an event S of probability ®”(S) = ¢, and show that in this case, one can have a single online
transportation algorithm that uniformly works for all & by merely accessing S through a
membership oracle. We first define such uniform transportation algorithms.

» Definition 34 (Oracle Set-Transport). For distribution p and transportation cost c, we say
that (u,c) has a set-transport of cost at most k(-) for a non-increasing function x: [0, 1] —
[0,1], if for every event S C Supp(u), it holds that Tc(u, p|S) < k(u(S)). We further say
that (u,c) has an oracle set-transport of cost at most k(-) if there is a single algorithm A
such that with oracle membership queries for an arbitrary set S and sampling queries for u,
ASH produces a transport of cost at most k(u(S)) from p to u|S.

» Theorem 35 (Oracle-Set Transport for Gaussian Measure). Let @™ be the standard Gaussian
in dimension n. There is an (online) oracle-set transport algorithm Ay, for ®" such that:
1. For allp € [1,2] and S of measure ®"(S) = ¢,

v
TUP(AS) < 61/7(e) = n/7 712 2T e + (O (nk112)) "

which is at most (1 + ) - n'/P=Y/2,/2In1/c, for sufficiently large k = poly(n,1/e,1/7).
2. In expectation, A asks at most kn/e queries to S and runs in poly(nk/e).
3. There is an algorithm By that achieves the same, but Bf transports ®™|S back to ™.

Proof of Theorem 35. To prove Theorem 35 we first use the first item of Corollary 31 where
w = ®". This way, we already know that the running time of the transportation algorithm
and its number of calls to S are bounded as stated.

Then, we need to bound both terms A, §. To bound §, we again use Corollary 26 as we
did in the proof of Theorem 32. To bound A, we again use Corollary 24 and the well-known
fact that KL(p|S, 1) <1Inl/e for S such that u(S) > ¢ (applied to p = ®™). <

9 In particular, given two independent and uniform wui,us ~ [0,1], the sampling works as follows:
v1 = v—2Inu cos(2mu2),v2 = vV/—2Inuy sin(27wus) are independent samples vi,v2 ~ N (0, 1).
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Due to our transports being “reversible”, one can obtain a variant of the result above
that transports conditional distributions to conditional distributions through composition.

5.2 Dimension-Independent Computational Concentration for Gaussian

It is well-known that transportation inequalities can be used to derive concentration of
measure results [22]. Recently, a computational variant of this phenomenon has been
explored [31, 15], which bears similarities to how we make transportation algorithmic. In a
computational concentration result, we need an algorithm that maps “most” of the sampled
points from the space to any “sufficiently large” event S, algorithmically. The “cost” of the
concentration is (a worst-case) allowed distance d that the algorithm is allowed to move the
points, and its error is the fraction of the sampled points that it fails to map to S withing the
allowed distance d. The work of [15] obtained such results optimally for some settings (e.g.,
Gaussian under ¢; distance), however they left open obtaining an optimal (dimension-free)
computational concentration result for the Gaussian space under the ¢ distance.

Using Theorem 35, we can resolve the question left open in [15] and derive such optimal
computational concentration for the Gaussian space under ¢y as a simple corollary to our
algorithmic transport result. Theorem 36 below follows from Theorem 35 and the Markov
inequality. Using p = 2 below implies the desired dimension-independent result.

» Corollary 36 (Computational Concentration for Gaussian). For all £,0, A\, p € [1,2], given
oracle access to S C R™, A3 (x) of Theorem 35 runs in poly(Z%)-time and with probability
1—06 over x ~ ®", it finds a point y € S of distance

_ 1+ /P12, [oIn /e

gp(xv y) 6
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