
Finding Diverse Solutions in Combinatorial
Problems with a Distributive Lattice Structure
Mark de Berg #

Eindhoven University of Technology, The Netherlands

Andrés López Martínez #

Eindhoven University of Technology, The Netherlands

Frits Spieksma #

Eindhoven University of Technology, The Netherlands

Abstract
We generalize the polynomial-time solvability of k-Diverse Minimum s-t Cuts (De Berg et al.,
ISAAC’23) to a wider class of combinatorial problems whose solution sets have a distributive lattice
structure. We identify three structural conditions that, when met by a problem, ensure that a k-sized
multiset of maximally-diverse solutions – measured by the sum of pairwise Hamming distances – can
be found in polynomial time. We apply this framework to obtain polynomial-time algorithms for
finding diverse minimum s-t cuts, diverse stable matchings, and diverse market-clearing price vectors.
Moreover, we show that the framework extends to two other natural measures of diversity. Lastly,
we present a simpler algorithmic framework for finding a largest set of pairwise disjoint solutions in
problems that meet these structural conditions.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Diversity, Lattice Theory, Submodular Function Minimization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2025.11

Related Version Full Version: https://arxiv.org/abs/2504.02369 [8]

Funding This research was supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement no. 945045, and by the NWO
Gravitation project NETWORKS under grant no. 024.002.003.

1 Introduction

In combinatorial optimization problems, the objective is typically to identify a single optimal
solution. However, this approach may be inadequate or impractical in real-world situations,
where some constraints and factors are often overlooked or unknown in advance. This
motivates the development of algorithms capable of finding multiple solutions, with diversity
playing a key role. A growing body of research has focused on finding diverse solutions
in classical combinatorial problems, much of it emerging from the field of fixed-parameter
tractability [1, 9, 12, 23, 24, 32, 38, 29]. These studies show that finding diverse solutions is,
in general, computationally more challenging than finding a single one. For instance, while
Maximum Matching is solvable in polynomial time, finding two edge-disjoint perfect (or
maximum) matchings is NP-hard, even on 3-regular graphs [12].

In this paper, we aim to develop theoretically efficient algorithms that produce a collection
of maximally diverse solutions. We use the sum of pairwise Hamming distances between
solutions as our measure of diversity. In contrast with the aforementioned literature, we
show that a broader class of diverse problems is computationally no harder than finding a
single solution in polynomial time. Specifically, we generalize the polynomial-time solvability
of k-Diverse Minimum s-t Cuts by De Berg et al. [7] to a class of combinatorial problems
whose solution sets form a distributive lattice.

© Mark de Berg, Andrés López Martínez, and Frits Spieksma;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Algorithms and Computation (ISAAC 2025).
Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.t.d.berg@tue.nl
https://orcid.org/0000-0001-5770-3784
mailto:a.lopez.martinez@tue.nl
https://orcid.org/0009-0000-6983-7093
mailto:f.c.r.spieksma@tue.nl
https://orcid.org/0000-0002-2547-3782
https://doi.org/10.4230/LIPIcs.ISAAC.2025.11
https://arxiv.org/abs/2504.02369
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

11:2 Diverse Solutions in Lattice-Structured Problems

We state our main result in terms of a unified general problem: Max-Sum k-Diverse
Solutions. Let E be a finite set with n elements, and let Γ ⊆ 2E be a set of feasible solutions.
For two feasible solutions X, Y ∈ Γ, the symmetric difference, or Hamming distance, between
them is defined as X△Y = (X \ Y) ∪ (Y \ X). Let (X1, X2, . . . , Xk) be a collection of k

subsets of E. We consider the pairwise-sum diversity measure: dsum(X1, X2, . . . , Xk) =∑
1≤i<j≤k |Xi△Xj |. We define Max-Sum k-Diverse Solutions as follows.

Max-Sum k-Diverse Solutions. Given a finite set E of size n, an implicitly defined family Γ
of subsets of E, referred to as feasible solutions, and a membership oracle for Γ ⊆ 2E, find a
k-multiset C = (X1, X2, . . . , Xk) with X1, X2, . . . , Xk ∈ Γ, such that dsum(C) is maximum.

Here, k is a fixed constant; i.e., k is not part of the input. Our main result is as follows.

▶ Theorem 1. Max-Sum k-Diverse Solutions can be solved in polynomial time if the set
of feasible solutions Γ satisfies the following three properties:
1. There is a relation ≤ such that the poset (E,≤) can be expressed as a disjoint union of r

chains, and each feasible solution X ∈ Γ contains exactly one element from each chain.
2. The set of feasible solutions with componentwise order defines a distributive lattice.
3. A compact representation of this lattice can be constructed in polynomial time.

Similar to the approach of De Berg et al. [7], we achieve this result via a reduction
to the submodular function minimization problem (SFM) on a distributive lattice, which
is known to be solvable in polynomial time [20, 27, 36]. More precisely, we show that the
pairwise-sum measure (reformulated as a minimization objective) is a submodular function
on a distributive lattice of appropriately ordered k-sized collections of feasible solutions. By
applying this result, in Section 4, we obtain polynomial-time algorithms for finding maximally
diverse k-sized collections of stable matchings and market-clearing price vectors, while also
reproducing the findings of De Berg et al. for minimum s-t cuts.

For simplicity, we present our results in terms of the dsum measure. However, in Section
5 we will show that the framework extends to at least two other measures of diversity: the
coverage (dcov) and absolute-difference (dabs) measures. Lastly, we consider the problem of
finding a largest set of pairwise disjoint solutions in problems whose feasible solution set
satisfies properties 1 and 2 of Theorem 1. In Section 6 we present an algorithm for this
problem that bypasses the need for SFM.

Remark. Recently and independently from us, Iwamasa et al. [26] also presented a general
framework for solving Max-Sum Diverse Solutions (and Max-Cov Diverse Solutions;
see definition in Section 5) under certain conditions on the set of feasible solutions. They
show that the conditions in our Theorem 1 imply the conditions in their framework. In the
full version of this paper, we show that the reverse is true as well. Thus, their conditions and
our conditions are, in fact, equivalent. Their approach reduces the problem to network flow,
avoiding SFM and resulting in faster algorithms for computing diverse minimum s-t cuts and
diverse stable matchings. However, in contrast to their framework, ours also supports the
absolute-difference measure dabs and thus, potentially applies to a broader range of problems.

2 Preliminaries

In this section, we introduce the notation and some basic results used throughout the paper.
For a more comprehensive discussion on sets and posets, we refer to [25, 40], and for a
detailed introduction to lattice theory, we refer to [2, 6, 19].

M. de Berg, A. López Martínez, and F. Spieksma 11:3

Sets, Multisets, and Tuples. For k ∈ N, we use [k] to denote the set {1, . . . , k}. The power
set of a set M is denoted by 2M . For any set M , we use the symbol Mk for the cartesian
product; {(a1, a2, . . . , ak) | ai ∈ M}. The disjoint union of two sets is simply their union,
but with the additional information that the two sets have no elements in common.

A multiset is a set in which elements can appear multiple times. The number of times an
element appears in a multiset is referred to as its multiplicity. The sum of two multisets A

and B, denoted by A ⊎B, is a multiset in which each element appears with a multiplicity
equal to the sum of its multiplicity in A and in B. We refer to a multiset of cardinality k as
a k-multiset. For a set M , we denote by Mk a k-multiset with elements drawn from M .

Unlike a multiset, where elements are unordered, a tuple is a collection of possibly repeated
elements that is ordered. A k-tuple is a tuple of k elements. We denote a tuple by listing
its elements within parenthesis and separated by commas; e.g., (a, b, c, d). Note that the
cartesian product of k sets is a k-tuple.

Posets. A partially ordered set (poset) P = (X,⪯P) consists of a ground set X along with
a binary relation ⪯P on X that satisfies reflexivity, antisymmetry, and transitivity. When
the relation ⪯P is evident from the context, we often use the same notation for both the
poset and its ground set. In case a poset is indexed by a subscript i, we use ⪯i to denote its
order relation. The Hasse diagram G(P) of P , is a directed graph where each element of X

is represented as a node, and an edge exists from element a to element b if a ⪯P b and no
intermediate element c satisfies a ⪯P c ⪯P b. Vertices are arranged so that edge directions
are implicitly understood as pointing upward.

A poset P ∗ = (X∗,⪯∗
P) is called a subposet of another poset P = (X,⪯P) if (i) X∗ ⊆ X

and (ii) for any x, y ∈ X∗ if x ⪯∗
P y then x ⪯P y. If the other direction of (ii) also holds,

then we call P ∗ the subposet of P induced by X∗, and write P ∗ = P [X∗]. Given two posets
P = (X,⪯P) and Q = (Y,⪯Q), their disjoint union P ⊔ Q is the disjoint union of X and
Y together with relation ⪯P +Q where x ⪯P +Q y if one of the following conditions holds:
(i) x, y ∈ X and x ⪯P y, or (ii) x, y ∈ Q and x ⪯Q y. Thus, the Hasse diagram of P ⊔ Q

consists of the disconnected Hasse diagrams of P and Q drawn together.
A chain is a subset of a poset in which every pair of elements is comparable, and an

antichain is a subset of a poset in which no two (distinct) elements are comparable. For
any two elements x and y in a chain E with order relation ⪯E , we say that x (resp. y) is a
chain-predecessor (chain-successor) of y if x ⪯E y. A poset is called a chain decomposition if
the poset can be expressed as the disjoint union of chains.

For a poset P = (X,⪯P), an ideal is a set U ⊆ X where u ∈ U implies that v ∈ U for all
v ⪯P u. In terms of its Hasse diagram G(P) = (X, E), a subset U of X is an ideal if and
only if there is no incoming edge from U . We use D(P) to denote the family of all ideals
of P . If x ⪯P y in the poset, then the closed interval from x to y, denoted by [x, y], is the
poset with ground set {z ∈ X | x ⪯P z ⪯P y} together with relation ⪯P .

Now we introduce the notion of componentwise order. Let (Xi,⪯i), i ∈ [r] be posets,
with r a positive integer, and let Y ⊆ X1 × · · · ×Xr. The componentwise order on Y is an
order relation ⪯ defined as follows: Given two tuples (a1, a2, . . . , ar) and (b1, b2, . . . , br) ∈ Y ,
we write (a1, a2, . . . , ar) ⪯ (b1, b2, . . . , br) iff ai ⪯i bi for all i ∈ [r]. Note that we drop the
subscript in ⪯ whenever the order relation is a component-wise order. If the posets (Xi,⪯i),
i ∈ [r], are all the same poset (X,⪯), we use ⪯r to denote the componentwise order on Xr

and refer to it as the product order.

ISAAC 2025

11:4 Diverse Solutions in Lattice-Structured Problems

L

x1

x2 x3

x4 x5

x6

D(J(L))

∅

{x2} {x3}

{x2, x3} {x3, x5}

{x2, x3, x5}

G(J(L))

x5

x2 x3

Figure 1 Example of Birkhoff’s representation theorem for distributive lattices. The left is a
distributive lattice L, the middle is the isomorphic lattice D(J(L)) of ideals of join-irreducibles of L,
and the right shows the compact representation G(J(L)) of L. The join irreducible elements of L

and D(J(L)) are highlighted in blue.

Lattices. A lattice is a poset L = (X,⪯) in which any two elements x, y ∈ X have a
(unique) greatest lower bound, or meet, denoted by x ∧ y, as well as a (unique) least upper
bound, or join, denoted by x ∨ y. We can uniquely identify L by the tuple (X,∨,∧). The
bottom, or minimum, element in the lattice L is denoted by 0L :=

∧
x∈L x. Likewise, the

top, or maximum, element of L is given by 1L :=
∨

x∈L x. A lattice L′ is a sublattice of L if
L′ ⊆ L and L′ has the same meet and join operations as L. In this paper we only consider
distributive lattices, which are lattices whose meet and join operations satisfy distributivity;
that is, x∨(y∧z) = (x∨y)∧(x∨z) and x∧(y∨z) = (x∧y)∨(x∧z), for any x, y, z ∈ L. Note
that a sublattice of a distributive lattice is also distributive. Every chain is a distributive
lattice with max as join (∨) and min as meet (∧).

Suppose we have a collection L1, . . . , Lk of lattices Li = (Xi,∨i,∧i) with i ∈ [k]. The
(direct) product lattice L1× . . .×Lk is a lattice with ground set X = {(x1, . . . , xk) : xi ∈ Li}
and join ∨ and meet ∧ operations acting component-wise; that is, x∨y = (x1∨1y1, . . . , xk∨kyk)
and x ∧ y = (x1 ∧1 y1, . . . , xk ∧k yk) for any x, y ∈ X. The lattice Lk is the product lattice
of k copies of L, and is called the k-th power of L. If L is a distributive lattice, then Lk is
also distributive.

A crucial notion in this paper is that of join-irreducibles. An element x of a lattice L

is called join-irreducible iff x ̸= 0L and it cannot be expressed as the join of two elements
y, z ∈ L with y, z ̸= x. In a lattice, any element is equal to the join of all join-irreducible
elements lower than or equal to it. The set of join-irreducible elements of L is denoted by J(L).
Note that J(L) is a poset whose order is inherited from L. Due to Birkhoff’s representation
theorem – a fundamental tool for studying distributive lattices – every distributive lattice L

is isomorphic to the lattice D(J(L)) of ideals of its poset of join-irreducibles, with union and
intersection as join and meet operations. See Figure 1 for an illustration.

▶ Theorem 2 (Birkhoff’s Representation Theorem [2]). Any distributive lattice L can be
represented as the poset of its join-irreducibles J(L), with the order induced from L.

Hence, a distributive lattice L can be uniquely recovered from J(L) and can thus be
represented as the Hasse diagram of its poset of join-irreducibles, denoted by G(J(L)). We
refer to G(J(L)) as a compact representation of L, since J(L) is usually exponentially smaller
than L. This representation is useful when designing algorithms, as the size of G(J(L)) is
O(|J(L)|2), while L can have as many as 2|J(L)| elements. Keep in mind, however, that
Theorem 2 only guarantees the existence of such a compact representation; it does not
provide a method to efficiently find the set J(L).

M. de Berg, A. López Martínez, and F. Spieksma 11:5

Submodular Function Minimization. Let f : X → R be a real-valued function on a lattice
L = (X,⪯). We say that f is submodular on L if f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y), for
all x, y ∈ X. If −f is submodular in L, then we say that f is supermodular in L and just
modular if f is both sub and supermodular. The submodular function minimization problem
(SFM) on lattices is, given a submodular function f on L, to find an element x ∈ L such that
f(x) is minimum. An important fact that we use in our work is that the sum of submodular
functions is also submodular. Also, note that minimizing f is equivalent to maximizing
−f . It is known that a submodular function on a distributive lattice L can be minimized in
polynomial time in |J(L)| – the number of join-irreducibles of L [20, 27, 36, 4].

▶ Theorem 3 ([34, Note 10.15] and [30, Thm.1]). For any distributive lattice L, given by
its poset of join-irreducibles J(L), a submodular function f : L → R can be minimized in
polynomial time in |J(L)|, provided a polynomial time evaluation oracle for f .

3 The Reduction to SFM

In this section, we prove Theorem 1 by reducing Max-Sum k-Diverse Solutions to
SFM on a distributive lattice, under the assumption that the feasible solution set satisfies
properties 1–3 of the theorem. The core ideas of this proof were already established by
De Berg et al. [7] in the context of minimum s-t cuts. We include the argument here for
completeness, while adapting and generalizing it to a broader setting.

The proof is divided into four parts, each supported by a corresponding lemma. The
Distributivity Lemma (Lemma 4) shows that the set of (yet to be defined) left-right ordered
k-tuples of feasible solutions, with product order, defines a distributive lattice L∗. The
Cost-Equivalence Lemma (Lemma 7) further shows that optimizing the diversity over this
lattice is the same as optimizing over the original set Γk of k-multisets of Γ. Hence, we
can restrict ourselves to the elements of L∗. Next, the Submodularity Lemma (Lemma 11)
establishes that the pairwise-sum measure (reformulated as a minimization objective) is a
submodular function on L∗. Finally, the Compactness Lemma (Lemma 12) ensures that a
compact representation of L∗ can be constructed in polynomial time.

We begin by establishing some consequences of properties 1–3 of Theorem 1. Consider
a ground set E and a set of feasible solutions Γ ⊆ 2E for which the properties hold. By
property 1, we know that there is a poset associated to E that is the disjoint union of r chains
(Ei,⪯i), i ∈ [r], and that each feasible solution X ∈ Γ contains exactly one element from each
chain, meaning |X| = r and Γ ⊆ E1 × · · · ×Er. Then, the set Γ, with componentwise order
⪯, forms a poset of feasible solutions L = (Γ,⪯). Furthermore, by properties 1 and 2, this
poset is a distributive lattice, with join (∨) and meet (∧) given by componentwise maximum
and minimum. Let us now consider the poset (Γk,⪯k) of k-tuples of feasible solutions, with
product order ⪯k. We say that a k-tuple C = (X1, X2, . . . , Xk) in Γk is in left-right order if
Xi ⪯ Xj for all i < j. That is, the feasible solutions in C are arranged in non-decreasing
order according to relation ⪯. Let Γk

lr ⊆ Γk denote the subset of left-right ordered k-tuples.

Part 1: Distributivity. We now establish the first of the four lemmas.

▶ Lemma 4 (Distributivity Lemma). The poset L∗ = (Γk
lr,⪯k) is a distributive lattice.

Proof. By property 2 of Theorem 1, L = (Γ,⪯) is a distributive lattice. Now, let Lk =
(Γk,⪯k) be the k-th power of L. We know that the product of distributive lattices is
distributive; hence Lk is a distributive lattice. Moreover, since Γk

lr ⊆ Γk, the poset L∗ is a
sublattice of Lk. As any sublattice of a distributive lattice is itself distributive, the lemma
follows. ◀

ISAAC 2025

11:6 Diverse Solutions in Lattice-Structured Problems

Part 2: Cost equivalence. Following the proof of the Distributivity Lemma, we now
establish an equivalence between the costs of maximum diversity solutions in the sets Γk

and Γk
lr. (Note that this is the same as establishing the equivalence between the sets Γk and

Γk
lr, since a k-multiset over Γ has the same diversity as each of its up to n! permutations –

each a k-tuple – in Γk.) For this, we use the notion of element multiplicity. Let C ∈ Γk be
a k-tuple of solutions. The multiplicity µe(C) of an element e ∈ E, with respect to C, is
the number of feasible solutions in C that contain e. Since a feasible solution contains no
repeated elements, µe(C) is also the number of times e appears in the multiset sum of the
solutions in C. An immediate consequence of property 1 of Theorem 1 is the following.

▶ Observation 5. For any two X, Y ∈ L, we have X ⊎ Y = (X ∧ Y) ⊎ (X ∨ Y).

Proof. Let X = (x1, . . . , xr) and Y = (y1, . . . , yr), with xi, yi ∈ Ei and i ∈ [r], where Ei is
the i-th chain in the chain decomposition of E. By property 1, we know that the meet and
join of two elements L are given by componentwise minimum and maximum. That is,

X ∧ Y = (min(x1, y1), . . . , min(xr, yr)), and X ∨ Y = (max(x1, y1), . . . , max(xr, yr)).

Hence, if xi = yi, the element xi appears twice in the multiset sum X ⊎ Y and twice in the
sum (X ∧Y)⊎ (X ∨Y). If xi ̸= yi, then xi appears in either the join or the meet of X and Y ,
and similarly for element yi. Finally, if an element e ∈ E is not in X ∪ Y , then it is neither
the minimum nor maximum of any entry and therefore cannot appear in (X ∧ Y) ∪ (X ∨ Y).
Since this holds for each i ∈ [k], the observation is proven. ◀

Observation 5 implies that the join and meet operations of the lattice L of feasible
solutions preserve element multiplicities. Consequently, any k-tuple in Γk can be reordered
into a left-right ordered form while preserving element multiplicities, as stated in the following
claim (see the proof in the full version).

▷ Claim 6. For every k-tuple C ∈ Γk there exists a left-right ordered k-tuple Ĉ ∈ Lk
lr such

that µe(C) = µe(Ĉ) for all e ∈ E.

Now, consider the pairwise-sum diversity measure introduced in Section 1. We can rewrite
it directly in terms of the multiplicity as

dsum(C) =
∑
e∈E

µe(C)(k − µe(C)) = k2 · r −
∑
e∈E

µe(C)2, (1)

which results from observing that
∑

e∈E µe(C) = k · r, for any C ∈ Γk, with r the cardinality
of each solution in C. This formulation highlights that maximizing dsum depends only on the
distribution of elements across feasible solutions, rather than their specific ordering within a
tuple C. Since the terms outside the latter summation in Eq. (1) are constant, the following
lemma is an immediate consequence of Claim 6.

▶ Lemma 7 (Cost-Equivalence Lemma). For any C ∈ Γk there exists Ĉ ∈ Γk
lr such that

dsum(Ĉ) = dsum(C).

Lemma 7 tells us that in order to solve Max-Sum k-Diverse Solutions, we do not
need to optimize over the set of k-element multisets of Γ. Instead, we can optimize over
the set Γk

lr of k-tuples that are in left-right order. Moreover, it follows from Eq. (1) that
maximizing dsum is equivalent to minimizing

d̂sum(C) =
∑
e∈E

µe(C)2. (2)

M. de Berg, A. López Martínez, and F. Spieksma 11:7

Hence, solving Max-Sum k-Diverse Solutions reduces to minimizing d̂sum(C) in the
lattice L∗. All we have left to do to complete the reduction to SFM is show that d̂sum(C) is
submodular in the lattice L∗.

Part 3: Submodularity. We begin with two claims regarding the multiplicity function µe(C)
on L∗. These claims rely crucially on property 1 of Theorem 1. Their proofs can be found
in the full version of the paper. We use E(C) to denote the set of elements

⋃
X∈C X for a

tuple C ∈ Γk.

▷ Claim 8. The multiplicity function µe : Γk
lr → N is modular on L∗.

▷ Claim 9. For any two C1, C2 ∈ L∗ and e ∈ E(C1) ∪ E(C2), it holds that max(µe(C1 ∨
C2), µe(C1 ∧ C2)) ≤ max(µe(C1), µe(C2)).

We observe that Claim 8 holds in the lattice Lk, not just in the sublattice L∗ of left-
right ordered k-tuples. In contrast, Claim 9 is specific to the sublattice L∗. The following
proposition is an immediate consequence of these two claims and the convexity of the square
function.

▶ Proposition 10. For any two C1, C2 ∈ L∗ and any e ∈ E, we have µe(C1 ∨C2)2 + µe(C1 ∧
C2)2 ≤ µe(C1)2 + µe(C2)2.

Proposition 10 states that, for each element e ∈ E, the square of the multiplicity function
µe is submodular in the lattice L∗. Then, taking the sum of µe(C)2 over all elements e ∈ E

is also a submodular function; that is∑
e∈E

µe(C1 ∨ C2)2 +
∑
e∈E

µe(C1 ∧ C2)2 ≤
∑
e∈E

µe(C1)2 +
∑
e∈E

µe(C2)2.

Each sum in this inequality corresponds to the definition of d̂sum applied to the arguments
C1 ∨ C2, C1 ∧ C2, C1 and C2, respectively. Hence, we obtain the following.

▶ Lemma 11 (Submodularity Lemma). The function d̂sum : Γk
lr → N is submodular in L∗.

Part 4: Compactness. While Lemmas 4, 7, and 11 already demonstrate the reduction
of Max-Sum k-Diverse Solutions to SFM, this reduction alone does not guarantee an
efficient algorithm. To complete the proof of Theorem 1, it remains to show that a compact
representation of the left-right ordered lattice L∗ exists and can be constructed efficiently.
By Birkhoff’s representation theorem, we need only specify the set of join-irreducibles of L∗

to obtain a compact representation in O(|J(L∗)|2) time. This is done in the following lemma,
whose proof can be found in the full version of this work.

▶ Lemma 12 (Compactness Lemma). The set of join-irreducibles of L∗ is of size O(kn) and
is given by

J(L∗) =
⋃k

i=1 Ji, where Ji := {(0L, . . . , 0L︸ ︷︷ ︸
i−1 times

, p, . . . , p︸ ︷︷ ︸
k−i+1 times

) : p ∈ J(L)}.

With Lemma 12, a compact representation of L∗ can be constructed in polynomial time.
It is also clear that, given a k-tuple, the function d̂sum can be evaluated efficiently. Then, by
Theorem 3 and Lemmas 4, 7, 11, and 12, the proof of Theorem 1 is complete.

ISAAC 2025

11:8 Diverse Solutions in Lattice-Structured Problems

. . . ts
x y

Figure 2 Illustration of the order relation ⪯i over the edges of an s-t path pi ∈ P.

4 Applications of the Framework

We now present examples of combinatorial problems whose feasible solution sets meet each
of the conditions outlined in Theorem 1, allowing for the generation of maximally diverse
solutions within our framework. Specifically, we discuss minimum s-t cuts (Section 4.1),
stable matchings (Section 4.2), and market-clearing price vectors (Section 4.3).

4.1 Minimum s-t cuts
In the Minimum s-t Cut problem we are given a directed graph G = (V, E), along with two
special vertices s, t ∈ V , and are tasked with finding a subset S ⊆ E of minimum cardinality
that separates vertices s and t, meaning that removing these edges from G ensures there is
no path from s to t. Such a set is called a minimum s-t cut or s-t mincut. Here, we consider
the problem of finding diverse minimum s-t cuts, formally defined below.

Max-Sum k-Diverse Minimum s-t Cuts. Given are a directed graph G = (V, E) and vertices
s, t ∈ V . Let Γ ⊆ 2E be the set of minimum s-t cuts in G, and let Γk be the set of k-multisets
over Γ. Find C ∈ Γk such that dsum(C) = maxS∈Γk

dsum(S).

Using our framework, we reproduce the findings of De Berg et al. [7] for Max-Sum
k-Diverse Minimum s-t Cuts by showing that the set Γ of minimum s-t cuts satisfies
properties 1-3 of Theorem 1. We prove these statements in order.

▶ Lemma 13 (Property 1). There is a chain decomposition of the edge set E into r disjoint
chains, such that each minimum s-t cut X ∈ Γ contains exactly one element from each chain.

Proof. We construct the r chains as follows. Let P be an (arbitrary) set of edge-disjoint s-t
paths in G with maximum cardinality r. Define E(pi) as the set of edges traversed by the
path pi ∈ P . For each path pi ∈ P , consider the order relation ⪯i defined as follows: for any
x, y ∈ E(pi), we say x ⪯i y if and only if path pi meets edge x before edge y, or if x and y are
the same edge. Since every pair of edges within a path pi is comparable under this relation,
each poset (E(pi),⪯i), for i ∈ [r], forms a chain. Moreover, these chains are disjoint by the
definition of the set P . By Menger’s theorem, the size of a minimum s-t cut in G equals the
maximum number of edge-disjoint s-t paths, which is r. Consequently, any minimum s-t cut
X ⊆ E must include exactly one edge from each chain (E(pi),⪯i), i ∈ [r]. Otherwise, if X

contained fewer than r edges, it would not be a valid s-t cut, and if it contained more, it
would not be of minimum size. Hence, Γ ⊆ E(p1)× · · · × E(pr).

Consider now the edges in E′ = E \
⋃

1≤i≤r E(pi). We call these edges residual edges.
Observe that these edges can never be part of a minimum s-t cut. This follows because such
a cut must contain exactly one edge from each chain in P, and cutting any additional edge
from E′ would only increase the cut size, violating minimality. Hence, we simply distribute
the residual edges arbitrarily over the r chains. This does not change the fact that the chains
are disjoint, or that the set of minimum s-t cuts is a subset of the cartesian product of the
augmented chains. This completes the proof. ◀

By Lemma 13, the set Γ ⊆ E(p1)× · · · ×E(pr) of minimum s-t cuts with componentwise
order – defined by: (x1, . . . , xr) ⪯ (y1, . . . , yr) for (x1, . . . , xr), (y1, . . . , yr) ∈ Γ iff xi ⪯i yi for
all i ∈ [r] – forms a poset L = (Γ,⪯). It is well known that this poset defines a distributive

M. de Berg, A. López Martínez, and F. Spieksma 11:9

lattice [11, 31, 22]. Specifically, proving that Γ is closed under the joins and meets induced by
⪯ suffices to establish this property (see e.g., [7, Claim A.1]). Thus, property 2 of Theorem 1
follows directly.

▶ Lemma 14 (Property 2). The set Γ of minimum s-t cuts with componentwise order ⪯
defines a distributive lattice L.

Next, we note that a compact representation of the lattice of minimum s-t cuts can be
constructed in polynomial time. This result is well known from the work of Picard and
Queyranne [35], who gave an algorithm to build such a representation using a residual graph.
Specifically, the resulting graph has vertex set J(L) ∪ 0L and total size at most |V |, and can
therefore be constructed in O(|V |2) time.

▶ Lemma 15 (Property 3). A compact representation of the lattice s-t mincuts can be
constructed in polynomial time.

Then, by Theorem 1 and Lemmas 13-15, we obtain a polynomial time algorithm for
Max-Sum k-Diverse Minimum s-t Cuts via submodular function minimization.

▶ Theorem 16. Max-Sum k-Diverse Minimum s-t Cuts is poly-time solvable.

▶ Remark 17. Since the edge version of Menger’s theorem is known to hold for multigraphs,
our results for unweighted directed graphs extend naturally to weighted graphs by replacing
each edge of weight w with w parallel edges.

▶ Remark 18. Similar results to those presented in Lemmas 13-15 can be established for
minimum s-t vertex cuts. Since a vertex-connectivity version of Menger’s theorem also exists,
the arguments in Lemma 13 remain valid when replacing E with V . Moreover, the poset of
minimum s-t vertex cuts, ordered componentwise, forms a distributive lattice, which can be
demonstrated analogously to Lemma 14. Finally, a compact representation of this lattice
can be computed efficiently, as shown by Bonsma [5, Sec. 6], or via the constructive version
of Birkhoff’s theorem for computing a slice, as described by Garg [33] (see also [15, Ch. 10]).

4.2 Stable Matchings
In the Stable Matching problem, we are given a complete bipartite graph Kn,n = (A∪B, E)
along with a linear ordering ⪯a over B for each vertex a ∈ A, and similarly a linear ordering
⪯b over A for each vertex b ∈ B. For a vertex a ∈ A (resp. b ∈ B), the poset La = (B,⪯v)
(resp. Lb = (A,⪯v)) is referred to as its preference list. The task is to find a perfect matching
M in Kn,n such that no two vertices a ∈ A and b ∈ B prefer each other over their matched
partners. Such a set of edges is called a stable matching. We now consider the problem of
finding diverse stable matchings.

Max-Sum k-Diverse Stable Matching. Given are a complete bipartite graph Kn,n = (A ∪
B, E), along with preference lists La and Lb for each a ∈ A and b ∈ B. Let Γ ⊆ 2E be the
set of stable matchings in G, and let Γk denote the set of k-multisets over Γ. Find C ∈ Γk

such that dsum(C) = maxS∈Γk
dsum(S).

We show that Max-Sum k-Diverse Stable Matching can be solved in polynomial
time by proving that the set Γ of stable matchings satisfies properties 1-3 of Theorem 1.

▶ Lemma 19 (Property 1). There is a chain decomposition of the edge set E into r disjoint
chains, such that each stable matching X ∈ Γ contains exactly one element from each chain.

ISAAC 2025

11:10 Diverse Solutions in Lattice-Structured Problems

Proof. Let r = n. Note that the posets La and Lb are chains. We claim that the chains
La, a ∈ A define a disjoint chain decomposition of the ground set E.1 First, we argue for
disjointness. Let E(a) = {(a, b) | b ∈ La} denote the set of edges defined by the preference
list La of an arbitrary vertex a ∈ A. Since Kn,n is bipartite, there are no edges between
the vertices of A. This implies that E(a1) ∩ E(a2) = ∅ for all distinct a1, a2 ∈ A. Moreover,
E =

⋃
a∈A E(a). Hence, the chains La, a ∈ A define a disjoint chain decomposition of E.

Now, we argue that a stable matching must contain exactly one element from each chain
La. This follows immediately from the definition of perfect matching, which requires every
vertex in A to be matched to exactly one vertex in B. Consequently, each stable matching
selects precisely one edge from E(a) for each a ∈ A. This completes the proof. ◀

To establish property 2, we use the following well-known result from the stable matchings
literature [28, 3].

▷ Claim 20 ([28, Thm. 7 & Cor. 1]). Given any two stable matchings X =
((a1, b1), . . . , (an, bn)) and Y = ((a1, b′

1), . . . , (an, b′
n)), then

X ∨ Y = ((a1, max
⪯a1

(b1, b′
1)), . . . , (an, max

⪯an

(bn, b′
n)))) and

X ∧ Y = ((a1, min
⪯a1

(b1, b′
1)), . . . , (an, min

⪯an

(bn, b′
n))))

are also stable matchings.

By standard results in lattice theory (see e.g., [19]), the cartesian product Eprod =
E(a1) × · · · × E(an), with componentwise order ⪯, forms a distributive lattice (Eprod,⪯).
Then, by Lemma 19 and Claim 20, the poset L = (Γ,⪯) is a sublattice of Eprod, which
implies that L is also distributive.

▶ Lemma 21 (Property 2). The set Γ of stable matchings with componentwise order ⪯ defines
a distributive lattice L.

It only remains to verify that property 3 of Theorem 1 is satisfied by the set Γ of stable
matchings. This property follows directly, since the so-called poset of rotations introduced
by Gusfield [21] provides the required structure (see also, e.g., [14, Sec 2.3]).

▶ Lemma 22 (Property 3 [21, Lemma 3.3.2]). A compact representation of the lattice L of
stable matchings can be constructed in O(|V |2) time.

Then, by Theorem 1 and Lemmas 19-22, the following theorem holds.

▶ Theorem 23. Max-Sum k-Diverse Stable Matching is poly-time solvable.

4.3 Market Clearing Price Vectors
As a final example, we consider the problem of finding an integer market-clearing price in a
matching market (see e.g., [10, Ch. 10] for details). Such a market consists of a set I of n

items and a set U of n bidders, where each item can be assigned to at most one bidder, and
each bidder wants to buy at most one item. Each bidder b ∈ U assigns a valuation vb,i to
every item i ∈ I, where vb,i is an integer between 0 and T . We assume that T = poly(n).

1 Note that we may also choose the chains Lb, b ∈ B and get similar results.

M. de Berg, A. López Martínez, and F. Spieksma 11:11

The Market Clearing Price problem asks for a price vector P assigning a price
P [i] ∈ [0, T] to each item i, such that the bipartite graph (I, U, E(P)) defined by

(j, b) ∈ E(P)⇐⇒ ∀i ∈ I : (vb,j − P [j]) ≥ (vb,i − P [i])

has a perfect matching. (Informally, an edge connects item j to bidder b if j gives b their
highest payoff – valuation minus price.) A price vector P that yields such a graph is called a
market-clearing price vector.

We now turn to the problem of finding diverse market-clearing price vectors.

Max-Sum k-Diverse Market Clearing Price. Given is a matching market M = (I, U, v)
where I is a set of n items, U is a set of n bidders, and v : I × U → [0, T] is a valuation
function. Let Γ ⊆ [T]n be the set of market-clearing price vectors in M , and let Γk be the set
of k-multisets over Γ. Find C ∈ Γk such that dsum(C) = maxS∈Γk

dsum(S).

At this point, the reader may wonder whether dsum is a good choice for vectors; we return
to this question later. For now, we show that Max-Sum k-Diverse Market Clearing
Price can be solved in polynomial time by verifying that Γ satisfies properties 1–3 of
Theorem 1. The first property follows immediately from the definition of a price vector.

▶ Lemma 24 (Property 1). There is a chain decomposition of the ground set E into r disjoint
chains, such that each market-clearing price vector contains exactly one element from each
chain.

Proof. By definition, a market-clearing price vector is an element of the power set Eprod =
[0, T]n. Hence, the chain decomposition of Eprod consists of n copies of the integer interval
E = [0, T], with elements from different chains deemed incomparable. The ordering ⪯i of
each chain Ei is the natural ordering. ◀

It is clear that the power set Eprod with product order ⪯n forms a distributive lattice,
where join (∨) and meet (∧) are determined by componentwise maximum and minimum.
Shapley et al. [37] (see also [39]) establish that the poset L = (Γ,⪯n) is closed under these
join and meet operations, hence L is a sublattice of Eprod, and thus, L is distributive.

▶ Lemma 25 (Property 2 [37]). The poset (Γ,⪯n) is a distributive lattice, with the meet and
join defined appropriately.

As for property 3, Garg [16, 17] recently established that the set J(L) of join-irreducibles
of the lattice L of market-clearing price vectors can be determined efficiently (in polynomial
time) via an algorithm for detecting so-called lattice-linear predicates (see also [18] and [15,
Ch. 10]). We thus get the following result.

▶ Lemma 26 (Property 3 [17]). A compact representation of the lattice L of market-clearing
price vectors can be constructed in polynomial time.

Then, by Theorem 1 and Lemmas 24, 25, and 26, the following theorem holds.

▶ Theorem 27. Max-Sum k-Diverse Market-Clearing Price is poly-time solvable.

Let us briefly reflect on the choice of diversity measure. The pairwise-sum measure dsum
captures whether elements differ, but not by how much; an important aspect for price vectors,
where the magnitude of values matters more than their identity (unlike in cuts or matchings).
In the next section, we extend our framework to support alternative measures, such as the
absolute-difference measure, which better captures diversity in price vectors.

ISAAC 2025

11:12 Diverse Solutions in Lattice-Structured Problems

5 Other Diversity Measures

The proof of Theorem 1 relies on four lemmas, with the diversity measure playing a role in
only two of them: the Cost-Equivalence (Lemma 7) and Submodularity (Lemma 11) lemmas.
For simplicity, we have presented our main result in terms of the dsum diversity measure.
However, the framework is not limited to this specific measure. Just as it applies to problems
whose solution sets satisfy the properties of Theorem 1, it also extends to other diversity
measures, provided they satisfy both the Cost-Equivalence and Submodularity lemmas.

Here, we mention two such diversity measures: the coverage diversity dcov, and the L1-
or absolute-difference diversity dabs. Let E be a finite set with n elements, and let Γ ⊆ 2E

be a set of feasible solutions. Given a k-tuple of feasible solutions (X1, . . . , Xk) ∈ Γk, these
measures are defined as follows:

dcov(X1, X2, . . . , Xk) =
⋃

1≤i≤k

|Xi|, and (3)

dabs(X1, X2, . . . , Xk) =
∑

1≤i<j≤k

f(Xi, Yj), (4)

where f(X, Y) =
∑r

i ∥xi − yi∥ for any two X = (x1, . . . , xr), Y = (y1, . . . , yr) ∈ Γ.
The coverage diversity measures the number of distinct elements appearing across solu-

tions, while the absolute-difference diversity quantifies diversity by summing coordinate-wise
differences between solutions. Notice that the latter applies only to solutions representable as
r-tuples, since f requires component-wise comparisons, and it assumes a notion of difference
between elements in E (e.g., r-dimensional integer vectors in [−M, M]r, with M ∈ N).

Each of these two measures gives rise to a corresponding optimization problem, defined in
the same way as Max-Sum Diverse Solutions but with dsum replaced by dcov or dabs. We
refer to these as Max-Cov k-Diverse Solutions and Max-Abs k-Diverse Solutions,
respectively. Our main result for these problems is the following:

▶ Theorem 28. Max-Cov k-Diverse Solutions and Max-Abs k-Diverse Solutions
can be solved in polynomial time if the set of feasible solutions Γ satisfies the three properties
of Theorem 1.

We establish this result by showing that both dcov and dabs satisfy the Cost-Equivalence
and Submodularity lemmas from Section 3. Due to space constraints, the proofs for dcov are
deferred to the full version (see also [7, Thm. 14]). Here, we prove these lemmas for dabs.

Proof of Cost-Equivalence. The following lemma is an immediate consequence of Claim
6, which states that any k-tuple in Γk can be reordered into a left-right ordered form while
preserving element multiplicities.

▶ Lemma 29 (Cost-Equivalence Lemma). Let C ∈ Γk such that dabs(C) = maxS∈Γk dabs(S).
Then there exists Ĉ ∈ Γk

lr such that dabs(Ĉ) = dabs(C).

Proof. Let C ∈ Γk be an arbitrary k-tuple of solutions, and let Ĉ ∈ Γk
lr be its reordering

into left-right order by the algorithm of Claim 6. For a feasible solution X ∈ Γ, let X(ℓ)
denote its ℓ-th component.

Consider the k-tuples C(ℓ) = (X1(ℓ), . . . , Xk(ℓ)) and Ĉ(ℓ) = (X̂1(ℓ), . . . , X̂k(ℓ)), where
Xi ∈ C, X̂i ∈ Ĉ for all i ∈ [k]. These represent the ℓ-th component of each solution in C

and Ĉ, respectively. Now, define the function fℓ : Ek
ℓ → R as:

fℓ(x1, . . . , xk) =
∑

1≤i<j≤k

∥xi − xj∥ .

M. de Berg, A. López Martínez, and F. Spieksma 11:13

By Claim 6, the multiplicity of each element in C(ℓ) is preserved in Ĉ(ℓ), implying that
fℓ(C(ℓ)) = fℓ(Ĉ(ℓ)). Since the absolute-difference diversity measure decomposes as:

dabs(X1, . . . , Xk) =
r∑

ℓ=1
fℓ(X1(ℓ), . . . , Xk(ℓ)),

it follows that dabs(Ĉ) = dabs(C). In particular, this holds for tuples that achieve maximum
diversity. ◀

Proof of Submodularity. In this case, the Submodularity Lemma actually becomes a
Modularity Lemma. First, consider the function f ′

ℓ : Γ2
lr → R defined by f ′

ℓ(X1, X2) =
∥X1(ℓ)−X2(ℓ)∥, where X1 ⪯ X2, ℓ ∈ [r], and X(ℓ) denotes the ℓ-th component of a solution
X ∈ Γ. We can rewrite the absolute difference diversity measure as:

dabs(X1, . . . , Xk) =
r∑
ℓ

∑
1≤i<j≤k

f ′
ℓ(Xi, Xj).

If we can establish that f ′
ℓ(·) is modular in L, then, because the sum of modular functions

is modular, dabs would also be modular. We prove this in the following lemma.

▶ Lemma 30 (Modularity Lemma). The function d̂abs : Γk
lr → N is modular in L∗.

Proof. We prove that, for any two C1, C2 ∈ Γ2
lr, the function f ′

ℓ(·) is modular in the lattice
(Γ2

lr,⪯2), where ⪯ is the componentwise order of the poset L of feasible solutions. Since the
sum of modular functions is modular, and dabs can be written as a sum of functions f ′

ℓ(·)
over all ℓ ∈ [r], the modularity of dabs follows.

Let C1 = (X1, X2) and C2 = (Y1, Y2). By definition, the join (∨) and meet (∧) of C1 and
C2 are given by componentwise maximum and minimum. Then, for each ℓ ∈ [r],

f ′
ℓ(C1 ∧ C2) = ∥min(X1(ℓ), Y1(ℓ))−min(X2(ℓ), Y2(ℓ))∥ and

f ′
ℓ(C1 ∨ C2) = ∥max(X1(ℓ), Y1(ℓ))−max(X2(ℓ), Y2(ℓ))∥ .

Consider an arbitrary ℓ ∈ [r]. Because C1 and C2 are each in left-right order, we have:
X1(ℓ) ⪯ X2(ℓ) and Y1(ℓ) ⪯ Y2(ℓ). Consider then the intervals IX = [X1(ℓ), X2(ℓ)] and
IY = [Y1(ℓ), Y2(ℓ)]. Without loss of generality, assume that X2(ℓ) ⪯ Y2(ℓ). There are three
possibilities for the interaction of IX and IY : (i) the intervals are disjoint (i.e., IX ∩ IY = ∅),
they overlap (i.e., IX ∩ IY ≠ ∅), or (iii) one is contained in the other (i.e., IX ⊂ IY). We
now compare the sums f ′

ℓ(C1 ∧C2) + f ′
ℓ(C1 ∨C2) and f ′

ℓ(C1) + f ′
ℓ(C2) in each of these cases.

In cases (i) and (ii), we have that X1(ℓ) ⪯ Y1(ℓ) and X2(ℓ) ⪯ Y2(ℓ). Hence,

f ′
ℓ(C1 ∧ C2) + f ′

ℓ(C1 ∨ C2) = ∥X1(ℓ)−X2(ℓ)∥+ ∥Y1(ℓ)− Y2(ℓ)∥ = f ′
ℓ(C1) + f ′

ℓ(C2),

and thus, modularity is satisfied.
In case (iii), we have Y1(ℓ) ⪯ X1(ℓ) and X2(ℓ) ⪯ Y2(ℓ). Then:

f ′
ℓ(C1 ∧ C2) + f ′

ℓ(C1 ∨ C2) = ∥Y1(ℓ)−X2(ℓ)∥+ ∥X1(ℓ)− Y2(ℓ)∥
= (X2(ℓ)− Y1(ℓ)) + (Y2(ℓ)−X1(ℓ))
= (X2(ℓ)−X1(ℓ)) + (Y2(ℓ)− Y1(ℓ))
= f ′

ℓ(C1) + f ′
ℓ(C2),

which again satisfies modularity.
Therefore, the function f ′

ℓ(·) is modular in (Γ2
lr,⪯2), and the lemma is proved. ◀

By replacing the Cost-Equivalence and Submodularity lemmas of Section 3 with Lemmas
29 and 30 above, the proof of (the second half of) Theorem 28 is complete.

ISAAC 2025

11:14 Diverse Solutions in Lattice-Structured Problems

6 A Simple Framework for Disjoint Solutions

Finally, we consider the special case of diversity where solutions are required to be pairwise
disjoint. Specifically, we consider the problem Max-Disjoint Solutions, defined below,
and outline an algorithm for solving it that bypasses the need for submodular function
minimization, provided that properties 1 and 2 of Theorem 1 are satisfied.

Max-Disjoint Solutions. Given a finite set E of size n, an implicitly defined family Γ of
subsets of E, referred to as feasible solutions, and a membership oracle OΓ for Γ, find a set
C ⊆ Γ such that X ∩ Y = ∅ for all X, Y ∈ C, and |C| is as large as possible.

We assume that the set Γ of feasible solutions satisfies properties 1 and 2 of Theorem 1.
That is, there is a poset P = (E,≤) that is the disjoint union of r chains (Ei,⪯i), i ∈ [r],
and the set Γ ⊆ E1 × · · · × Er, with componentwise order ⪯, forms a distributive lattice.

The idea behind the algorithm is simple: start by finding the bottom element of the
lattice of feasible solutions (using the Omin oracle below), remove it along with any other
solutions that overlap with it (enabled by the Ods oracle below), and then repeat this process
on the remaining sublattice until no feasible solutions remain. Of course, we want to avoid
working on the lattice directly, as it can be of exponential size. Instead, we assume that the
algorithm has access to the following oracles, or subroutines:

Minimal/Maximal Solution Oracles (Omin and Omax): On input ⟨P,OΓ⟩, the minimal
solution oracle (Omin) returns the bottom element of the distributive lattice (Γ,⪯), while
the maximal solution oracle (Omax) returns its top element; i.e.,

Omin(P,OΓ) =
∧

X∈Γ
X, and Omax(P,OΓ) =

∨
X∈Γ

X.

Disjoint Successors Oracle (Ods): For a feasible solution X ∈ Γ, the subset Γ(X) ⊂ Γ of
disjoint successors of X consists of all feasible solutions that are both disjoint from X

and successors of X with respect to the order ⪯; that is, Γ(X) = {Y | Y ∈ Γ, X ∩ Y =
∅, X ⪯ Y }. Given an input ⟨X, P,OΓ⟩, this oracle returns the subposet of P induced by
the subset of elements of E that appear in the disjoint succesors of X; i.e.,

Ods(X, E,OΓ) = P
[⋃

Γ(X)
]

.

In this general framework, we achieve the following result.

▶ Theorem 31. Max-Disjoint Solutions can be solved in O(n) oracle calls.

In other words, if subroutines Omin, Omax, and Ods could be computed in polynomial
time, we could solve Max-Disjoint Solutions in polynomial time as well. Note that
these subroutines are problem-specific and must be designed and implemented based on the
particular problem defined by P and Γ. This framework has been applied implicitly in prior
work on disjoint minimum s-t cuts [7] and stable matchings [13], where the oracles above run
in near-linear time. Our algorithm extends these ideas to a more general setting – namely,
to problems satisfying properties 1 and 2 of Theorem 1.

Next, we give a formal description of the algorithm and prove its correctness and
complexity, completing the proof of Theorem 31.

Preliminaries. Before we formally describe the algorithm, we require some results and
notation. Throughout, let L denote the distributive lattice (Γ,⪯). We use Xz and Xo to
denote the top and bottom elements of a lattice L, respectively, which are the two elements

M. de Berg, A. López Martínez, and F. Spieksma 11:15

that satisfy Xo ⪯ X ⪯ Xz for all X ∈ Γ. For a feasible solution X ∈ Γ, we use X(ℓ) to denote
the element in the ℓ-th component of X. Note that X(ℓ) ∈ Eℓ. The following observation is
a necessary condition for the existence of disjoint solutions in Γ.

▶ Observation 32. Let e ∈ E be an element of both Xo and Xz. Then e must be present in
every feasible solution in Γ.

Proof. Consider an arbitrary feasible solution X ∈ Γ. Without loss of generality, let e ∈ Eℓ.
By definition of bottom element of L, we have Xo ⪯ X, and thus e ⪯ℓ X(ℓ). On the other
hand, by definition of top element of L, we have X ⪯ Xz, which implies X(ℓ) ⪯ℓ e. By
antisymmetry of the partial order ⪯ℓ, it follows that X(ℓ) = e. Hence, e ∈ X, proving the
fact. ◀

We also make the following observation about the set of disjoint successors of a feasible
solution. With a slight abuse of notation, we use ⪯ to denote to the componentwise ordering
arising from P and any induced suposet.

▶ Observation 33. For any X ∈ Γ, the set Γ(X) of disjoint successors of X satisfies
properties 1 and 2 of theorem 1.

Proof. We start with the first property. Let P (X) = [
⋃

Γ(X)] denote the subposet induced
by

⋃
Γ(X). This subposet then consists of the disjoint chains of P but restricted to the

elements appearing in
⋃

Γ(X). By definition of both P (X) and Γ(X), each solution in Γ(X)
must contain exactly one element from each chain in P (X). Hence, property 1 is satisfied.

As for the second property, it is clear that Γ(X) ⊂ Γ. Moreover, because the join (∨)
and meet (∧) operations in L are defined as the componentwise maximum and minimum,
respectively, Γ(X) remains closed under these operations. This means that the poset (Γ(X),⪯)
is a sublattice of L and thus, a distributive lattice. Hence, property 2 is satisfied. ◀

With these results, we are ready to describe and analyze the algorithm.

The algorithm. Given an input ⟨P,OΓ⟩, the algorithm begins by determining the bottom
element Xo and the top element Xz of lattice L by querying the oracles Omin and Omax
with the input ⟨P,OΓ⟩. If these two solutions share an element, the algorithm stops, as
Observation 32 ensures that no disjoint solutions exist. Otherwise, it proceeds by querying
Ods(Xo, P,OΓ) to determine the subposet P (Xo) induced by

⋃
Γ(Xo).

By Observation 33, the set Γ(Xo) satisfies properties 1 and 2 of Theorem 1, with the
poset P (Xo) serving as the corresponding chain decomposition. Let L(Xo) = (Γ(Xo),⪯) be
the associated sublattice of disjoint successors of Xo. The algorithm proceeds by querying
Omin with the input ⟨P (Xo),OΓ⟩ to identify the bottom element X ′

o of L(Xo). Once more, if
X ′

o is disjoint from Xz, the algorithm queries Ods(X ′
o, P (Xo),OΓ) to determine the subposet

P (X ′
o) induced by the set

⋃
Γ(X ′

o) of disjoint successors of X ′
o. This process repeats as long

as Omin continues to return solutions that are disjoint from Xz. Throughout the execution,
the algorithm maintains a set C that stores all solutions found that are disjoint from Xz and
returns this set upon termination. The algorithm is presented below as Algorithm 1.

Correctness. The solutions in the set C = {X1, X2, . . . , Xk} returned by Algorithm 1 are
clearly disjoint by construction, as the poset returned by the oracle Ods at each step is induced
by the set of disjoint successors of the solution identified in the precious step. Moreover, the
set C is, in fact, a left-right ordered tuple. This follows again by construction, as each newly

ISAAC 2025

11:16 Diverse Solutions in Lattice-Structured Problems

Algorithm 1 Max-Disjoint Solutions.

Input: A poset P and a membership oracle OΓ satisfying properties 1 and 2 of Theorem 1.
Output: A maximum cardinality set C of disjoint feasible solutions from Γ.

1: C ← ∅
2: Xz ← Omax(P,OΓ) ▷ Top element of lattice L.
3: X ← Omin(P,OΓ) ▷ Bottom element of lattice L.
4: P (X)← Ods(P, Xo,OΓ) ▷ This defines a new instance.
5: while X ∩Xz = ∅ do
6: C ← C ∪ {X}
7: X ← Omin(P (X),OΓ) ▷ New disjoint solution.
8: P (X)← Ods(P, X,OΓ)
9: C ← C ∪ {X}

10: return C

identified solution is determined from the subset of elements that are chain-successors of
elements included in previously identified solutions. Note that the notion of left-right order
here is strict, meaning that Xi ≺ Xj for any 1 ≤ i < j ≤ k.

To analyze this further, let us go back for a moment to Section 3. Note that the dsum
measure is maximum whenever its input consists of disjoint solutions. Consider then an
arbitrary k-tuple of disjoint feasible solutions, for some k > 0. We know, by Claim 6, that
there exists a k-tuple of disjoint feasible solutions that is in left-right order. In particular,
this is true for a disjoint-solutions tuple of maximum cardinality k∗. Then, as we did in
Section 3, we may restrict our arguments to the set of k∗-tuples that are in left-right order
without loss of generality.

To complete the correctness of Algorithm 1, it remains to show that the tuple returned
by the algorithm is of maximum cardinality k∗.

▶ Lemma 34. Algorithm 1 outputs a longest tuple of disjoint feasible solutions.

Proof. Let CALG = (X1, X2, . . . , Xk) be the k-tuple of disjoint feasible solutions returned
by Algorithm 1. For the sake of contradiction, suppose that C ′ = (Y1, Y2, . . . , Yℓ) is a longest
left-right ordered tuple of disjoint feasible solutions with ℓ > k.

By definition of bottom element, we know that solution X1 = Xo is a predecessor of every
other feasible solution in Γ. This implies that Y1 ∩X1 ̸= ∅; otherwise, we could append X1
to the start of C ′ and obtain a longer tuple of left-right ordered disjoint solutions. Then, we
have X1 ⪯ Y1 ≺ Y2, and we may replace Y1 in C ′ with X1 to generate a new ℓ-tuple C1 of
disjoint solutions.

By Observation 33, and the definition of bottom element, we know that solution X2
found by the algorithm is a predecessor of every feasible solution in Γ(X1); that is, X2 is
a predecessor of every feasible solution disjoint from X1. By the same argument as before,
X2 ∩ Y2 ̸= ∅. We then have X2 ⪯ Y2 ≺ Y3, and we may replace Y2 in C1 with X2 to generate
a new ℓ-tuple C2 of disjoint solutions.

By repeating this procedure k times, we end up with the ℓ-tuple Ck = (X1, X2, . . . , Xk,

Yk+1, . . . , Yℓ) of left-right ordered disjoint solutions. Then, there exists a feasible solution
Yk+1 that is a strict successor of Xk – the last element of tuple CALG. But this implies that
Xk is disjoint with the top element Xz of L, which we know to be false by construction of
CALG. Thus, we get the necessary contradiction. ◀

M. de Berg, A. López Martínez, and F. Spieksma 11:17

Time complexity. The oracles Omin and Ods are called k∗ times, and k∗ is upper bounded
by the length of the shortest chain in P , which, in the worst case, has length O(n). This
completes the proof of Theorem 31.

7 Concluding Remarks

We showed that Max-Cov k-Diverse Solutions can be solved in polynomial time by
reducing it to submodular function minimization on a distributive lattice, provided the
feasible solution set satisfies three structural properties. This gives a general framework for
designing polynomial-time algorithms for diverse variants of combinatorial problems. We
applied it to Minimum s-t Cut, Stable Matching, and Market Clearing Price, and
showed it extends beyond the pairwise-sum measure to the coverage and absolute-difference
measures. We also showed that in the special case where diversity is defined by pairwise
disjointness, the problem can be solved without relying on submodular function minimization.

A natural direction for future work is identifying more problems that satisfy the structural
properties of Theorem 1, and to characterize which diversity measures are compatible with
the framework. It remains open whether the reliance on SFM can be avoided without losing
generality.

References
1 Julien Baste, Lars Jaffke, Tomáš Masařík, Geevarghese Philip, and Günter Rote. Fpt algorithms

for diverse collections of hitting sets. Algorithms, 12(12):254, 2019. doi:10.3390/A12120254.
2 Garrett Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443–454, 1937.
3 Charles Blair. The lattice structure of the set of stable matchings with multiple partners.

Mathematics of operations research, 13(4):619–628, 1988. doi:10.1287/MOOR.13.4.619.
4 Mohammadreza Bolandnazar, Woonghee Tim Huh, S Thomas McCORMICK, and Kazuo

Murota. A note on “order-based cost optimization in assemble-to-order systems”. University
of Tokyo (February, Techical report, 2015.

5 Paul Bonsma. Most balanced minimum cuts. Discrete Applied Mathematics, 158(4):261–276,
2010. doi:10.1016/J.DAM.2009.09.010.

6 Brian A Davey and Hilary A Priestley. Introduction to lattices and order. Cambridge university
press, 2002.

7 Mark de Berg, Andrés López Martínez, and Frits Spieksma. Finding diverse minimum st cuts.
In 34th International Symposium on Algorithms and Computation, 2023.

8 Mark de Berg, Andrés López Martínez, and Frits Spieksma. Finding diverse solutions in
combinatorial problems with a distributive lattice structure, 2025. doi:10.48550/arXiv.2504.
02369.

9 Karolina Drabik and Tomáš Masařík. Finding diverse solutions parameterized by cliquewidth.
arXiv preprint, 2024. arXiv:2405.20931.

10 David Easley, Jon Kleinberg, et al. Networks, crowds, and markets: Reasoning about a highly
connected world, volume 1. Cambridge university press Cambridge, 2010.

11 Fernando Escalante. Schnittverbände in graphen. In Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, volume 38, pages 199–220. Springer, 1972.

12 Fedor V Fomin, Petr A Golovach, Lars Jaffke, Geevarghese Philip, and Danil Sagunov. Diverse
pairs of matchings. Algorithmica, 86(6):2026–2040, 2024. doi:10.1007/S00453-024-01214-7.

13 Aadityan Ganesh, HV Vishwa Prakash, Prajakta Nimbhorkar, and Geevarghese Philip. Disjoint
stable matchings in linear time. In Graph-Theoretic Concepts in Computer Science: 47th
International Workshop, WG 2021, Warsaw, Poland, June 23–25, 2021, Revised Selected
Papers 47, pages 94–105. Springer, 2021. doi:10.1007/978-3-030-86838-3_7.

ISAAC 2025

https://doi.org/10.3390/A12120254
https://doi.org/10.1287/MOOR.13.4.619
https://doi.org/10.1016/J.DAM.2009.09.010
https://doi.org/10.48550/arXiv.2504.02369
https://doi.org/10.48550/arXiv.2504.02369
https://arxiv.org/abs/2405.20931
https://doi.org/10.1007/S00453-024-01214-7
https://doi.org/10.1007/978-3-030-86838-3_7

11:18 Diverse Solutions in Lattice-Structured Problems

14 Rohith Reddy Gangam, Tung Mai, Nitya Raju, and Vijay V Vazirani. A structural and
algorithmic study of stable matching lattices of “nearby” instances, with applications. In
42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.FSTTCS.2022.19.

15 Vijay K Garg. Introduction to lattice theory with computer science applications. John Wiley
& Sons, 2015.

16 Vijay K Garg. Applying predicate detection to the constrained optimization problems. arXiv
preprint, 2018. arXiv:1812.10431.

17 Vijay K Garg. Predicate detection to solve combinatorial optimization problems. In Proceedings
of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, pages 235–245,
2020. doi:10.1145/3350755.3400235.

18 Vijay K Garg and Neeraj Mittal. On slicing a distributed computation. In Proceedings 21st
International Conference on Distributed Computing Systems, pages 322–329. IEEE, 2001.
doi:10.1109/ICDSC.2001.918962.

19 George Gratzer. Lattice theory: First concepts and distributive lattices. Courier Corporation,
2009.

20 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combin-
atorial optimization, volume 2. Springer Science & Business Media, 2012.

21 D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algorithms.
Foundations of computing. MIT Press, 1989. URL: https://books.google.nl/books?id=
2TzhSQAACAAJ.

22 R Halin. Lattices related to separation in graphs. In Finite and Infinite Combinatorics in
Sets and Logic, pages 153–167. Springer, 1993.

23 Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, Yusuke Kobayashi, Kazuhiro Kurita,
and Yota Otachi. A framework to design approximation algorithms for finding diverse solutions
in combinatorial problems. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 3968–3976, 2023. doi:10.1609/AAAI.V37I4.25511.

24 Tesshu Hanaka, Yasuaki Kobayashi, Kazuhiro Kurita, and Yota Otachi. Finding diverse trees,
paths, and more. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 3778–3786, 2021. doi:10.1609/AAAI.V35I5.16495.

25 Egbert Harzheim. Ordered sets, volume 7. Springer Science & Business Media, 2005.
26 Yuni Iwamasa, Tomoki Matsuda, Shunya Morihira, and Hanna Sumita. A general framework

for finding diverse solutions via network flow and its applications. arXiv preprint, 2025.
doi:10.48550/arXiv.2504.17633.

27 Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. Journal of the ACM (JACM), 48(4):761–777,
2001. doi:10.1145/502090.502096.

28 Donald Ervin Knuth. Stable marriage and its relation to other combinatorial problems: An
introduction to the mathematical analysis of algorithms, volume 10. American Mathematical
Soc., 1997.

29 Soh Kumabe. Max-distance sparsification for diversification and clustering. arXiv preprint,
2024. doi:10.48550/arXiv.2411.02845.

30 George Markowsky. An overview of the poset of irreducibles. Combinatorial And Computational
Mathematics, pages 162–177, 2001.

31 Bernd Meyer. On the lattices of cutsets in finite graphs. European Journal of Combinatorics,
3(2):153–157, 1982. doi:10.1016/S0195-6698(82)80028-0.

32 Neeldhara Misra, Harshil Mittal, and Ashutosh Rai. On the parameterized complexity of
diverse sat. In 35th International Symposium on Algorithms and Computation (ISAAC
2024), pages 50:1–50:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:
10.4230/LIPIcs.ISAAC.2024.50.

https://doi.org/10.4230/LIPIcs.FSTTCS.2022.19
https://arxiv.org/abs/1812.10431
https://doi.org/10.1145/3350755.3400235
https://doi.org/10.1109/ICDSC.2001.918962
https://books.google.nl/books?id=2TzhSQAACAAJ
https://books.google.nl/books?id=2TzhSQAACAAJ
https://doi.org/10.1609/AAAI.V37I4.25511
https://doi.org/10.1609/AAAI.V35I5.16495
https://doi.org/10.48550/arXiv.2504.17633
https://doi.org/10.1145/502090.502096
https://doi.org/10.48550/arXiv.2411.02845
https://doi.org/10.1016/S0195-6698(82)80028-0
https://doi.org/10.4230/LIPIcs.ISAAC.2024.50
https://doi.org/10.4230/LIPIcs.ISAAC.2024.50

M. de Berg, A. López Martínez, and F. Spieksma 11:19

33 Neeraj Mittal and Vijay K Garg. Computation slicing: Techniques and theory. In Distributed
Computing: 15th International Conference, DISC 2001 Lisbon, Portugal, October 3–5, 2001
Proceedings 15, pages 78–92. Springer, 2001. doi:10.1007/3-540-45414-4_6.

34 Kazuo Murota. Discrete Convex Analysis. Society for Industrial and Applied Mathematics,
2003. doi:10.1137/1.9780898718508.

35 Jean-Claude Picard and Maurice Queyranne. On the structure of all minimum cuts in a network
and applications. Math. Program., 22(1):121, December 1982. doi:10.1007/BF01581031.

36 Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in strongly
polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000. doi:
10.1006/JCTB.2000.1989.

37 Lloyd S Shapley and Martin Shubik. The assignment game I: The core. International Journal
of game theory, 1(1):111–130, 1971.

38 Yuto Shida, Giulia Punzi, Yasuaki Kobayashi, Takeaki Uno, and Hiroki Arimura. Finding
diverse strings and longest common subsequences in a graph. In 35th Annual Symposium on
Combinatorial Pattern Matching (CPM 2024), pages 27:1–27:19. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2024. doi:10.4230/LIPIcs.CPM.2024.27.

39 Marilda Sotomayor. The lattice structure of the set of stable outcomes of the multiple
partners assignment game. International Journal of Game Theory, 28:567–583, 1999. doi:
10.1007/S001820050126.

40 Richard P Stanley. Enumerative combinatorics: Volume 1, 2011.

ISAAC 2025

https://doi.org/10.1007/3-540-45414-4_6
https://doi.org/10.1137/1.9780898718508
https://doi.org/10.1007/BF01581031
https://doi.org/10.1006/JCTB.2000.1989
https://doi.org/10.1006/JCTB.2000.1989
https://doi.org/10.4230/LIPIcs.CPM.2024.27
https://doi.org/10.1007/S001820050126
https://doi.org/10.1007/S001820050126

	1 Introduction
	2 Preliminaries
	3 The Reduction to SFM
	4 Applications of the Framework
	4.1 Minimum s-t Cuts
	4.2 Stable Matchings
	4.3 Market Clearing Price Vectors

	5 Other Diversity Measures
	6 A Simple Framework for Disjoint Solutions
	7 Concluding Remarks

