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—— Abstract

The Planar Separator Theorem, which states that any planar graph G has a separator consisting of

O(4/n) nodes whose removal partitions G into components of size at most 2?", is a widely used tool
to obtain fast algorithms on planar graphs. Intersection graphs of disks, which generalize planar
graphs, do not admit such separators. It has recently been shown that disk graphs do admit so-called
clique-based separators that consist of O(y/n) cliques. This result has been generalized to intersection
graphs of various other types of disk-like objects. Unfortunately, segment intersection graphs do not
admit small clique-based separators, because they can contain arbitrarily large bicliques. This is
true even in the simple case of axis-aligned segments.

In this paper we therefore introduce biclique-based separators (and, in particular, star-based
separators), which are separators consisting of a small number of bicliques (or stars). We prove
that any c-oriented set of n segments in the plane, where ¢ is a constant, admits a star-based
separator consisting of O(y/n) stars. In fact, our result is more general, as it applies to any set of n
pseudo-segments that is partitioned into ¢ subsets such that the pseudo-segments in the same subset
are pairwise disjoint. We extend our result to intersection graphs of c-oriented polygons. These
results immediately lead to an almost-exact distance oracle for such intersection graphs, which has
O(ny/n) storage and O(y/n) query time, and that can report the hop-distance between any two
query nodes in the intersection graph with an additive error of at most 2. This is the first distance
oracle for such types of intersection graphs that has subquadratic storage and sublinear query time
and that only has an additive error.
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1 Introduction

Background. The celebrated Planar Separator Theorem by Lipton and Tarjan [24] states
that any planar graph admits a balanced separator of size O(y/n). More precisely, for any
planar graph G = (V, E) with n nodes there exists a set S C V of size O(y/n) whose removal
partitions G into components of at most 2?” nodes each. This fundamental tool has been
used to develop efficient algorithms for many classic problems on planar graphs.

Geometric intersection graphs — graphs whose nodes correspond to objects in the plane
and that have an edge between two nodes iff the corresponding objects intersect — are a
generalization of planar graphs that have received widespread attention in computational
© Mark de Berg, Bart M.P. Jansen, and Jeroen S.K. Lamme;
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geometry, graph theory, and parametrized complexity. (For an overview of work in the
latter area, we refer the reader to the survey by Xue and Zehavi [28].) Unfortunately,
geometric intersection graphs do not admit balanced separators of sublinear size, because
they can contain arbitrarily large cliques. This led De Berg et al. [11] to introduce so-called
clique-based separators: balanced separators that consist of a small number of disjoint (but
potentially large) cliques instead of a small number of nodes. They proved that any disk
graph — and more generally, any intersection graph of convex fat objects in the plane —
admits a clique-based separator of size O(y/n). Here the size of a clique-based separator
is the number of cliques it consists of. They also showed how to use such clique-based
separators to obtain sub-exponential algorithms for various classic graph problems, including
INDEPENDENT SET, DOMINATING SET, and FEEDBACK VERTEX SET. Recently, De Berg et
al. [12] showed that intersection graphs of pseudo-disks, and intersection graphs of geodesic
disks inside a simple polygon, admit balanced separators consisting of O(n?/3) cliques, and
Aronov et al. [3] proved that intersection graphs of geodesic disks in any well-behaved metric
in the plane admit balanced separators consisting of O(n3/4*¢) cliques.

One may wonder if all geometric intersection graphs have sublinear clique-based separators.
Unfortunately the answer is no, even for intersection graphs of horizontal and vertical line
segments. The problem is that such graphs can contain arbitrarily large bicliques, and K,
does not admit a sublinear clique-based separator. We therefore introduce biclique-based
separators, which are separators consisting of bicliques, and we show that any set of horizontal
and vertical segments admits a balanced separator consisting of a small number of bicliques.
In fact, our result is stronger (as it uses star graphs in the separator, and not just any
biclique) and it applies to a much wider class of intersection graphs, as discussed next.

Our contribution. Let G = (V, E) be an undirected graph with n nodes. A collection
S = {S1,...S;} of (not necessarily induced) disjoint subgraphs from G is called a balanced!
biclique-based separator for G if it has the following properties:

Each subgraph S; is a biclique.

The removal from G of all subgraphs S; and their incident edges partitions G into connected

components with at most %" nodes each.
The size of a biclique-based separator is the number of bicliques it is comprised of. If each
biclique S; € S is a star, then we call S a star-based separator. Note that the subgraphs S; in
a biclique-based separator (or: in a star-based separator) need not be induced subgraphs of G.
This is necessary to be able to handle large cliques. To avoid confusion between our new
separators that are comprised of bicliques and the traditional separators that are comprised
of individual nodes, we will refer to the latter as node-based separators.

We denote the intersection graph induced by a set V' of n objects in the plane by G*[V].
Thus, the nodes in G*[V] are in one-to-one correspondence with the objects in V' and there
is an edge between two objects u,v € V' iff u intersects v. In Section 2 we prove that a star-
based separator of size O(y/n) exists for the intersection graph of any set V of axis-parallel
segments. (The bound on the size of the separator is tight in the worst case.) In fact, we will
prove that a star-based separator of size O(y/n) exists for any set V of pseudo-segments?
that is partitioned into subsets Vi, ..., V. such that the pseudo-segments from each V; are
disjoint from each other. In other words, each V; is an independent set in G*[V]. We call

L In the sequel we will often omit the adjective balanced and simply speak of separators.
2 A set V of curves in the plane is a set of pseudo-segments if any two curves in V are either disjoint or
intersect in a single point that is a proper crossing (and not a tangency).
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such a set V' a c-colored set of pseudo-segments, and we call V7, ..., V. its color classes; see
Figure 1(left). Note that a set of axis-parallel segments such that no two segments of the
same orientation overlap, is a 2-colored set of pseudo-segments. More generally, a c-oriented
set of line segments such that no two segments from the same orientation intersect, is a
c-colored set of pseudo-segments. Intersection graphs of c-oriented segments are often referred
to as ¢-DIR graphs, and when segments of the same orientation are not allowed to intersect,
they are referred to as PURE ¢-DIR graphs [20, 21]. We show that a star-based separator of
size O(y/n) for a ¢-DIR graph can be computed in O(nlogn) time, if the segments which
induce this graph are given.

In Section 3 we extend our result to the case where V is a set of n constant-complexity
c-oriented simple polygons, that is, a set of polygons without holes such that the set of edges
of all polygons is a c-oriented set. Note that two polygons can intersect without having their
boundaries intersect, namely when one polygon is completely contained in the other polygon
— this is the main difficulty we need to handle when extending our results to polygons. Finally,
in Section 3 we also present a straightforward greedy algorithm that computes a star-based
separator of size O(n?/3 10g2/3 n) for any string graph.

Application to distance oracles. A distance oracle for a (potentially weighted) graph
G = (V,E) is a data structure that can quickly report the distance between two query
nodes s,t € V. Such queries can trivially be answered in O(1) time if we store the distance
between any two nodes in a distance table, but this requires £2(n?) storage. The challenge is
to design distance oracles that use subquadratic storage. Unfortunately, this is not possible
in general: any distance oracle must use (n?) bits of storage in the worst case, irrespective
of the query time [27]. This is even true for distance oracles that approximate distances
to within a factor strictly less than 3. Thus, work on distance oracles concentrated on
special graph classes and, in particular, on planar graphs. More than two decades of research
culminated in an exact distance oracle for weighted planar graphs that uses O(n“‘o(l))
storage and has O(log2 n) query time [9]. For the unweighted case — in other words, if we are
interested in the hop-distance — there is a (1 + €)-approximate distance oracle with O(1/2)
query time and O(n/e?) storage [22]. See the survey by Sommer [26] and the paper by
Charalampopoulos et al. [9] for overviews of the existing distance oracles for various graph
classes.

For geometric intersection graphs, only few results are known. Gao and Zhang [15], and
Chan and Skrepetos [6], provide (14 ¢)-approximate distance oracles with O(nlogn) storage
and O(1) query time for weighted unit-disk graphs. No exact distance oracles that use
subquadratic storage and have sublinear query time are known, even for unweighted unit-disk
graphs. Very recently, Chang, Gao, and Le [8] presented an almost exact distance-oracle
for unit-disk graphs (and, more generally, for intersection graphs of similarly sized, convex,
fat pseudodisks) that uses O(n?~'/18) storage and that can report the distance between
two query nodes, up to an additive error?® of 2, in O(1) time. Another recent result is by
Aronov, De Berg, and Theocharous [3], who presented an almost exact distance oracle that
uses clique-based separators. For intersection graphs of geodesic disks in the plane, their
oracle uses O(n"/**¢) storage, has O(n%/**t¢) query time, and can report the hop-distance
between two query points up to an additive error of 1. For Euclidean disks, the storage
and preprocessing would be O(n+/n) and O(y/n), respectively. As we explain later, their
approach also works with biclique-based separators; the only difference is that the additive

3 In the most recent arxiv version [7] the error has been reduced to 1.
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Figure 1 Left: A 3-colored set of pseudo-segments. Middle: The active fragments created by our
algorithm. Right: The contact graph induced by the active fragments.

error increases from 1 to 2. Thus, we obtain an almost exact distance oracle for intersection
graphs of c-colored pseudo-segments with O(n/n) storage and O(y/n) query time. This is,
to the best of our knowledge, the first almost exact distance oracle for intersection graphs of
non-disk-like objects.

2 A star-based separator for c-colored pseudo-segments

Let V be a c-colored set of pseudo-segments, as defined above. To simplify the terminology,
from now on we simply refer to the pseudo-segments in V' as segments. We assume that the
segments in V are in general position and, in particular, that no three segments meet in a
common point and that no endpoint of one segment lies on another segment. This assumption
is without loss of generality, as it can always be ensured by perturbing the segments slightly.

The construction. Recall that a contact graph is the intersection graph of a set of interior-
disjoint objects. Contact graphs of curves are known to be planar if no four objects meet in
a common point [19, Lemma 2.1]. Our strategy to construct a star-based separator S for
G*[V] consists of the following steps, illustrated in Figure 1 and explained in more detail
later.

Step 1. We partition each segment in V into fragments. Some fragments will be active, while
others will be inactive. This partition will be such that active segments do not cross each
other, although they may touch.

Step 2. Let H be the contact graph on the active segments. We construct a separator Sy
on H, using a suitable weighting scheme on the nodes of H. Because #H is planar,
constructing the separator can be done using the Planar Separator Theorem.

Step 3. We use Sy to construct our star-based separator S for G*[V]. For a fragment f, let
seg(f) € V denote the segment containing f. Intuitively, we want to put a star into S for
each fragment f in the separator Sy;, namely, the star consisting of the segment seg(f) as
well as all other segments intersecting seg(f). For technical reasons, however, we actually
have to put a slightly larger collection of stars into S.

To make this strategy work, we need to control the size of the contact graph H. More
precisely, to obtain a star-based separator of size O(y/n), the size of H needs to be O(n).
Thus we cannot, for example, cut each segment into fragments at its intersection points with
all other segments and make all the resulting fragments active. On the other hand, if we
ignore certain parts of the segments by making them inactive, we miss certain intersections
and we run the risk that our final set of stars is no longer a valid separator. Next, we describe
how to overcome these problems by carefully creating the active fragments.
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Figure 2 (i) Defining the region Q(f, f’,g,g’). (ii) Illustration for the proof of Lemma 2.

Step 1: Creating the active fragments. To construct the active fragments that form the
nodes in our contact graph H, we will go over the subsets Vi,...,V, one by one. We denote
the active and inactive fragments created for a subset V; by F; and F;, respectively. For
1 <i<c, we define Fg; := Fy U---UF;, and we define F; similarly.

Handling the first subset V; is easy: we simply define F} := V;. In other words, each
segment in V7 becomes a single fragment, and all these fragments are active.

Now consider a subset V; with ¢ > 1. Each segment v € V; is partitioned into one or more
fragments by cutting it at every intersection point of v with an active fragment f € F_;. Let
X; be the set of fragments thus created. There are two types of fragments in X;: fragments f
that contain an endpoint of the segment v € V; contributing f — there are at least one and
at most two of these fragments per segment v € V; — and fragments that do not contain such
an endpoint. We call fragments of the former type end fragments and fragments of the latter
type internal fragments. Note that an internal fragment has its endpoints on two distinct
active fragments g, ¢’ € F;. We then say that f connects g and ¢'.

Now that we have defined X;, we need to decide which fragments in X; become active.
To avoid making too many fragments active, we will partition X; into equivalence classes,
and we will activate only one fragment from each equivalence class. To define the equivalence
classes we first define, for two internal fragments f, f/ € X; that connect the same pair of
fragments g, ¢’ € F<;, a region Q(f, f',9,9), as follows; see Figure 2(i) for an illustration.

First, suppose that the segments g and ¢’ do not touch each other, as in the left part
of Figure 2(i). Thus, R? \ (g U ¢’) is a single, unbounded region with two holes, namely g
and ¢’. The fragment f connects these two holes, and so R? \ (g U g’ U f) is still a single
unbounded region, but now with one hole. Removing f’ from this region splits it into two

regions, one bounded and one unbounded. We define Q(f, f', g,g’) to be the bounded region.

Now suppose that g and ¢’ touch each other, say at an endpoint of g. We slightly shrink g at
the point where it touches ¢, and then define Q(f, f’,g,g’) as above. Note that in this case
Q(f, f',g,¢") may consist of one or two bounded regions, if we undo the shrinking process;
see the middle and right part in Figure 2(i). We can now define the equivalence classes.

» Definition 1. Let f and f' be two fragments in X;. We say that f and f' are equivalent,
denoted by f = f', if f = f' or the following two conditions hold.
(i) The fragments f and f' are internal and connect the same pair of fragments g,g" € Fe;.
(ii) The region Q(f,f',9,9") enclosed by the fragments f,f',g,9' does not contain an
endpoint of any segment in V.

The following lemma shows that = is indeed an equivalence relation.
» Lemma 2. The relation = defined in Definition 1 is an equivalence relation.

Proof. It is clear that = is reflexive and symmetric. It remains to show that if f; = f; and
fa = f3, then f1 = f3. Let g, ¢’ be the fragments connected by f1, f2, f3. We can assume
that g and ¢’ do not touch; otherwise, as before, we can shrink one of the fragments so that
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the arguments below still apply. It is instructive to view g and ¢’ as being slightly inflated
so that they become closed curves and no longer have two “sides”. We then see that, from a
topological point of view, the situation is always as in Figure 2(ii): two of the fragments,
f;j and fy, are incident to the unbounded face, while the third fragment fj is not. Thus, if
we define Qi := Q(fj, fr,9,9’) and we define Q¢ and Q;, similarly, then Q¢ = Qjr U Q.
This implies that, no matter which of the three fragments f;, fx, f¢ is f2, we always have
Q13 C Q12 U Q23. Since Q12 and Q23 do not contain endpoints of segments in V if f; = fo
and fo = f3, neither does Q13. Thus, f; = f3. <

We now partition X; into equivalence classes according to the relation = defined above.
For each equivalence class, we make an arbitrary fragment f € X; from that class active
and put it into Fj; the other fragments from that equivalence class are made inactive and
put into F;. Note that end fragments are always active, since they do not connect a pair of
fragments from F; and thus cannot be equivalent to any other fragment.

Step 2: Creating the contact graph # and its separator S3;. Let FF:= FyU---UF, be
the set of active fragments created in Step 1, and let F := F; U---U F, be the inactive
fragments. We define H = (F, E3) to be the contact graph of F. More precisely, for two
fragments f, f € F we put the edge (f, f') in Ey iff f and f’ are in contact — that is,
fNf #0 - and they do not belong* to the same segment in V; see Figure 1. Because of
our general position assumption, no three fragments from different segments meet in a point,
and therefore H is planar [19, Lemma 2.1]. From now on, with a slight abuse of notation, we
will not make a distinction between the nodes in H and the corresponding fragments in F.

We now wish to create a separator Sy for H. In Step 3 we will use Sy to create a
separator S for G*[V]. To ensure that S will be balanced, we will put weights on the nodes
in H and use a weighted version of the Planar Separator Theorem, as described next.

For each segment s € V', we designate one of its end fragments — recall that end fragments
are always active — as its representative fragment. We give all representative fragments
a weight of %, and all other fragments a weight of 0. Note that the total weight of the
fragments in F' is 1. We apply the weighted separator theorem given below to H. This gives
us a separator Sy, and parts Ay, By C F'\ Sy such that there are no edges between Ay
and By.

» Lemma 3 (Theorem 4 in [24]). Let G be a non-negatively weighted planar graph containing
n nodes whose weights sum up to at most 1. The node set Vg can be partitioned into a
separator S, and sets A and B such that |S| = O(y/n), no edge connects A and B, and the
total weight of the nodes in A, as well as the total weight of the nodes in B, is at most %

Step 3: Creating the star-based separator S for G*[V]. Using the separator Sy created
in Step 2, we now create our star-based separator S for the intersection graph G*[V]. We do
this by putting one or three stars into S for each fragment f € Sy, as follows. For a segment
s € V, define star(s) to be the subgraph of G*[V] consisting of s and all its incident edges.
Thus, the nodes in star(s) are the segment s itself plus the segments s’ € V' that intersect s.
If f € Sy is an end fragment then we put star(seg(f)) into S.
If f € Sy is an internal fragment then let g,¢’ € F be the pair of active fragments
connected by f. We put star(seg(f)), star(seg(g)), and star(seg(g')) into S.

4 Since we do not put an edge between fragments belonging to the same segment, even if these fragments
touch, H is formally speaking not a contact graph, but we permit ourselves this abuse of terminology.
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Note that multiple copies of the same star can be added to S. We remove these duplicates
to ensure that all star graphs in S have unique centers. It can still be the case that several
stars in S contain the same node. To make the stars pairwise disjoint, we therefore remove
non-center nodes until every node appears in at most one star in S.

The analysis. We now show that the construction described above yields a balanced
separator of the required size. This requires proving two things: the separation property,
namely that the removal of S partitions G*[V] into components of size at most %”, and the
size property, namely that S consists of O(y/n) stars.

Proving the separation property. To prove the separation property, it suffices to show that
V'\ S can be partitioned® into subsets A and B such that |A| < 2 and |B| < 2, and such
that no segment in A intersects any segment in B.

We define the sets A and B as follows. For each segment v € V' not contained in a star
in S we look at its representative fragment f,. Note that f, must be contained in either A
or By, since f, € Sy would imply that v is contained in a star in S. If f, € Ay then we
add v to A, else we add v to B. The value % can be at most the total weight of fragments
in Ay, and a similar statement holds for B. Hence, the next observation follows from the
fact that S is a balanced separator.

> Observation 4. |A| < 2 and |B| < 2.

The more challenging part is to show that no segment in A intersects any segment in B.

We will need the following lemma. Recall that the segment set V is partitioned into color
classes Vi, ..., V., which we handled one by one to create the set F' of active fragments.

» Lemma 5. Let v € V;\ S and let f be an active fragment. Suppose one of the following
conditions holds:
(i) f € F<; and v intersects f,
(ii) seg(f) =wv, or
(iii) f is equivalent to an inactive fragment [’ such that seg(f') = v.
Then f € Ay ifve A, and f € By if v € B.

Proof. We prove the lemma under the assumption that v € A; the proof for v € B is

analogous. Let f, be the representative fragment of v. Because v € A, we have f, € Ay.

We will define sets 71, Z5, Z3 that contain the active fragments for which conditions (i), (ii),
and (iii) hold, respectively, and then argue that the lemma holds for each of the three sets.

Let f] be the other end fragment of v, and let Z; = {g1,...,gx} be the ordered set of
fragments from F; that we cross as we trace v from f, to f; see Figure 3. It is possible that
f does not exist, in this case Z; is empty. Note that every pair g;, gj+1 € Z1 is connected by

an active or inactive fragment of v, which we denote by f;. We now define Z5, Z3 as follows.

Z, contains the fragments f; that are active plus the end fragments f, and (if it exists)
fi. Thus, Zs simply contains all active fragments of v.

Z3 contains, for each inactive fragment f;, the unique equivalent active fragment fj’- € F;.

It is easily checked that the sets Z7, Zs5, Z3 indeed contain exactly those fragments for which
conditions (i), (ii), and (iii) hold, respectively. We will now prove that all fragments in
741U Zy U Z3 are in Agy. To this end, observe that the fragments in Z; U Z5 U Z3 correspond

5 Formally, we should have written V' \ U S instead of V'\ S, since Sy is a set of stars and not a set of
nodes, but we prefer the simpler (though technically incorrect) notation.
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fi fa f5
fo m fo
s S
g g2 g3 g4

Figure 3 The various fragments used in the proof of Lemma 5. Note that the segments seg(f1)
and seg(f3) are not drawn in their entirety. The path in H from f, to f, is also shown.

g g g
, fa - foo fa
fo) oL/~ fa) (5 P ’\
q g ’ g

Figure 4 Left: The segment b has an endpoint in Q). Middle: The segment b intersects a twice.
Right: The segment b intersects f,. All of these cases lead to a contradiction.

to nodes in H that form a path 7 starting at f, and ending at f/, as illustrated in Figure 3.
Recall that f, € Ay. Now assume for a contradiction that there is a fragment f € Z1UZ,UZ3
that is in By U Sy . Because there are no edges between Ay and By, this means there must
be a fragment f* on the subpath of 7 from f, to f that is an element of the separator Sy.
If f* € Z1 U Zy then v € star(seg(f*)), which contradicts that v € A. Otherwise f* € Z3
and f* connects two fragments g;, g;4+1 € Z1. Since f* € Sy, this implies that star(seg(g;))
is a star in S. Because v € star(seg(g;)), this again contradicts that v € A. <

We can now prove that G*[V] does not contain edges between nodes in A and nodes in B.
» Lemma 6. No segment a € A intersects any segment b € B.

Proof. Assume for a contradiction that a € A and b € B intersect. Let f, Ca and f, Cb

be the fragments containing the intersection point. We distinguish three cases.
Both f, and fy, are active. Then f, and f, satisfy condition (ii) of Lemma 5, and so
fa € Ay and fy, € By. Because f, and f;, are active and intersect, (fq, fp) is an edge
in H. But then S would not be a proper separator, and we reach a contradiction.
Both f, and fy, are inactive. Let f, € F; and f, € Fj, and assume without loss of
generality that 7 < j. Because a and b intersect and segments from the same color class
are disjoint, we cannot have ¢ = j. Hence, i < j. Because f, is inactive, it must be an
internal fragment that connects some fragments g,¢’ € F.; C F.;. Thus, g, ¢ satisfy
condition (i) of Lemma 5, with a playing the role of v, which implies that g, ¢’ € Az. Let
fI € F; be the active fragment that is equivalent to f,. Then f/ satisfies condition (iii)
from Lemma 5 and so f! € Ay. The fragments f,, f., g, ¢" enclose some region Q. The
segment b intersects f, so it is partly contained in @Q; see Figure 4 for an illustration
of the possibilities for f, entering ). It cannot have an endpoint in @, because f, and
fl are equivalent. Segment b cannot intersect f, twice, because V is a collection of
pseudo-segments. It follows that b must intersect f,, g or ¢’. Now observe that f,, g
and ¢’ are all fragments in F«;. This implies that the fragment that intersects b satisfies
condition (i) from Lemma 5, with b playing the role of v. But then the intersected
fragment would be in By, contradicting that Ay, and By are disjoint.
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One of the fragments fq, fy is active and one is inactive. Assume wlog that f, is inactive
and fy is active. Let f, € F; and f, € F;. Because a and b intersect, we have i # j. If
i < j then the arguments from the previous case can be used to obtain a contradiction —
indeed, these arguments did not use that f;, is inactive. If 4 > j then f, € F.;. Also note
that a intersects f,. But then f, satisfies condition (i) from Lemma 5, with a playing the
role of v. It follows that f, € A, which contradicts that Ay and By are disjoint.

We have reached a contradiction in each case, thus proving the lemma. |

Proving the size property. Because we add at most three stars to S per fragment in Sy, it
suffices to bound the size of Sy to prove the size property. From Lemma 3 it follows that
|S#| = O(y/|F|). The next lemma bounds |F|.

» Lemma 7. |F| = O(n - 4°), where ¢ is the number of color classes in V.

Proof. We first bound |F;|, the number of active fragments created for the segments in V;,
in terms of the number of active fragments created for V;.

> Claim. For 1 <4 < ¢ we have |F;| <2-|V;|+3- (|F<i| +2n+ 1) — 6.

Proof. The set F; contains at most 2 - |V;| end fragments. The internal fragments in F;
connect two fragments from F.;. We denote the set of these internal fragments by F,™.
Now consider the multi-graph G defined as follows.

For each fragment in F;, we add a node to G.

For each fragment in F;* we add an edge to G between the fragments from F; that it

connects.

For each endpoint of a segment in V5; we add a singleton node to G. (Observe that the

endpoints of segments in V_; lie on an end fragment in F.;, which is already a node

inG.)
Now consider the obvious drawing of G, where the nodes are drawn as fragments of F.; or as
points, and the edges are drawn as fragment in F;*. Recall that two active fragments can
touch, but they never cross. By continuously shrinking the fragments in Fi¢; and deforming
the fragments of F,"* appropriately, we can therefore create a plane drawing of G. That
is, we can create a drawing of G in which the nodes are points and the edges are pairwise
disjoint curves connecting their endpoints. See Figure 5 for an example of this deformation.
For reasons that will become clear shortly, we augment G with one additional singleton node
Uso, Which we place in the unbounded face of G.

The graph G is a multi-graph because F;™ can contain multiple fragments connecting
the same pair of fragments f, f’ € F;. Let g,¢' € F; ™ be two such fragments. The reason
that we added both g and ¢’ to F; " is that g and ¢’ were not equivalent. Hence, the region
Q(f, f',g9,9') contains an endpoint belonging to some segment v € V. The deformation
process that turns each node the drawing of G into a point can be done in such a way that
this property is maintained. Thus, after the deformation we have a plane drawing of G in
which for any two edges g, ¢’ that connect the same pair of nodes, there is a node inside the
deformed region Q(f, f’, g,¢’). Because of the additional node u+,, we are also guaranteed to
have at least one node outside this region. A plane multi-graph with this property is called a
thin graph. It is known [1, Lemma 5] that the standard inequality (# edges) < 3-(# nodes) —6
that holds for planar graphs (with at least three vertices) also holds for thin graphs. Hence,

|F < 3(|Fei| +2n+ 1) — 6. <
Note that |Fi| = |Vi| and |V;| < n for all i. Hence, the claim above gives us the recurrence
|F<i| < 4|F<i| +8n— 3 with [F<;| < n. This gives [F;| < (2 + 8253) .47 — %. Plugging
in i = ¢ gives |F| = |F¢.| = O(n - 4°), which proves the lemma. <
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\/

Figure 5 Left: Fragments in V; are green, fragments in F;™ are dark gray, and endpoints of
segments in V5; are blue. Right: The plane multigraph created for the example on the left.

Since ¢, the number of color classes, is a constant, we obtain the following corollary.
» Corollary 8. The separator S contains O(y/n) star graphs.

So far we have considered input sets V' where the segments are unweighted. To create a
separator for c-oriented polygons, which we will do in the next section, we need a separator
for weighted segments. Fortunately it is straightforward to adapt the construction described
above to the weighted setting — we only need to change the weighting scheme we used in Step 2
of the construction. More precisely, instead of assigning a weight % to the representative
fragment of a segment v, we assign weight(v)/ >, o, weight(u) to the representative.

» Remark. It is well known that grid graphs do not admit node-based separators of size
o(y/n). Because nodes in grid graphs have constant degree, bicliques in grid graphs have
constant size. Hence, grid graphs do not admit biclique-based separators of size o(y/n). Grid
graphs are bipartite and planar, which implies that they are PURE-2-DIR graphs [18]. We
conclude that even PURE-2-DIR graphs do not admit biclique based separators of size o(y/n).

Computation time. If we assume that the appropriate elementary operations on the
pseudo-segments — computing the intersection point of two pseudo-segments, for instance, or
determining if a point lies inside some region Q(f, f’, g,¢’) — can be performed in O(1) time,
that then a brute-force implementation of the algorithm presented above runs in polynomial
time. More interestingly, for c-oriented line segments, the algorithm can be implemented to
run in O(nlogn) time, as shown in the full version of this paper. We obtain the following
theorem.

» Theorem 9. Let V be a c-colored set of n mon-negatively weighted pseudo-segments, where
¢ is a fized constant, whose total weight is at most 1. Then the intersection graph G*[V] has
a star-based separator S of size O(y/n) such that V' \ S can be partitioned into subsets A, B
of weight at most % with no edges between them. The bound on the size of the separator is
tight, even for azis-parallel segments. In the special case where V is a set of c-oriented line
segments, the separator S and parts A, B can be computed in O(nlogn) time.

Application to distance oracles. Arikati et al. [2] presented a simple distance oracle for
planar graphs, using node-based separators. Aronov, De Berg, and Theocharous [3] observed
that the approach can be adapted to work with clique-based separators, as follows. Let
G = (V, E) be the graph for which we want to construct a distance oracle.
Construct a clique-based separator S for G, and let A, B C V' \ S be the two parts of the
partition given by S. For each node v € V' and each clique C' € S, store the distance
d(v,C) := min{d(v,u) : u € C'}, where d(u,v) denotes the hop-distance from s to ¢ in G.
Recursively construct distance oracles for the subgraphs induced by the parts A and B.
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Now suppose we want to answer a distance query with nodes s,t € V. Let d* := min{d(s,C)+
d(t,C): C € S}. If s and ¢ do not lie in the same part — that is, we do not have s,t € A or
s,t € B — then we report d*. Otherwise, s and ¢ lie in the same part of the partition, say A.
Then we report the minimum of d* and the distance we obtain by querying the recursively
constructed oracle for A.

This distance oracle uses O(n - s(n)) storage, where s(n) is the size of the separator, and
it has O(s(n)) query time, assuming s(n) = Q(n”) for some constant 3 > 0. The reported
distance is either the exact distance d(s,t), or it is d(s,t) — 1. The additive error of 1 is
because we do not know if s and ¢t can reach the same node of some clique C' with paths of
length d(s,C) and d(t, C), respectively — we may have to use an edge inside C' to connect
these paths. We observe that the same approach can be used in combination with star-based
(or biclique-based) separators. The only difference is that we now get an additive error of at
most 2, because we may need two additional edges inside a star (or biclique) in the separator.
We obtain the following result.

» Corollary 10. Let V' be a c-colored set of pseudo-segments, where ¢ is a fized constant.
There is an almost-exact distance oracle for G*[V] that uses O(ny/n) storage and can report
the hop-distance between any two nodes s,t € V', up to an additive error of 2, in O(\/n) time.

3 Extension to c-oriented polygons and string graphs

c-Oriented polygons. Let P = {P,...,P,} be a collection of c-oriented simple polygons,
each with a constant number of edges, where c is a fixed constant. The idea is to create
a weighted collection V' of segments to which we can apply Theorem 9, and then use the
resulting separator Sy to construct a separator S for G*[P]. The set V is created as follows.
First, we add each side of every polygon P; € P to V. For each polygon P;, we pick an
arbitrary side as its representative side, which we give weight %; other sides of P; are
given weight 0.
Second, to handle the containment of polygons within other polygons, we add so-called
containment segments to V. These segments will always have weight 0. Let ¢ be an
orientation that is not used by any segment in V. For each polygon P; let C; C P be
the set of polygons that fully contain P;. Take a point z; € P;, and let p; be a ray
emanating from x; and with orientation ¢. For each P; € C;, let y; be the point where p;
leaves P; for the first time. Define 2} to be the last such point y;-. We now add z;z;}
as a containment segment to V. Note that the containment segment x;z/ intersects the
boundaries of all polygons in C;. Moreover, x;z; is completely contained in Pj-. Figure 6
shows examples of containment segments.

Clearly, we can partition V into color classes V7, ..., V.1 based on the orientation of the
segments. We let V; contain the segments of orientation ¢, which will be important later.
The total weight of the segments is 1, so we can apply Theorem 9. Let Sy be the resulting
separator for G*[V], and let Ay and By be the two parts of weight at most % into which
Sy splits V'\ Sy,. We construct a separator S and parts A, B for G*[P] as follows.

For each star in Sy we consider its center v. If v is a side of a polygon P; € P then we
add star(P;) to S, where star(P;) is the subgraph of G*[P] consisting of P; and its incident
edges. If v is a containment segment x;x} that we generated for polygon P; € P, then let
P; be the polygon enclosing P; such that z; € 9P;. We add star(P;) to Sp. As before, we
remove duplicate stars and we remove polygons from stars to ensure that each polygon is
in at most one star. To create the parts A, B, we consider the representative sides of the
polygons P; € P that are not in a star in S. If the representative side is in Ay, then we put
P; in part A; otherwise we put P; in part B.
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Figure 6 Left: The dashed line is the containment segment for the red polygon. Middle: The
containment segment for the red polygon intersects a polygon which does not contain the red polygon,
this is allowed. Right: The containment segment stops after intersecting the boundary of every
polygon which contains the red polygon. Extending the containment segment could lead to further
intersections with the green polygon. However, only the first intersection between the containment
segment and a polygon are considered in the construction.

The analysis. Proving the size property, namely that |S| = O(y/n), is easy. Indeed, we put
O(1) sides and one containment segment per polygon into V. Hence, |V| = O(n) and thus
|S] = |Sv| = O (y/n). It remains to prove the separation property.

Since the total weight of Ay and of By are both at most % and each representative side
has weight 1, it follows that [A| < % and |B| < Z*. Next, we prove that there are no edges
from A to B in G*[P]. We need the following lemma.

» Lemma 11. Consider a polygon P, € P. If P, € A (resp. P; € B), then all sides of P; are
in Ay (resp. By ).

Proof. First consider the case P; € A. Suppose for a contradiction that not all sides of P;
are in Ay. Hence, P; has a side s € Sy or a side s’ € By. We claim that in the latter case
P; must also have a side s € Sy . To see this, consider the representative side s; of P;. Note
that s; € Ay since we put P; into A. Also note that there is a path in G*[V] connecting s’
to s; — the nodes on this path correspond to the sides of P; that we encounter as we traverse
OP; from s’ to s; in, say, clockwise order. Since s; € Ay and s’ € By, one of the nodes on
this path must be in Sy and be a side of P;. This establishes our claim.

It remains to prove that if P; has a side s in Sy, then P, € S. If s is the center of a
star in Sy, then by construction P; is the center of a star in S. If s is a non-center node
in some star(s’) € Sy we distinguish two cases. If s’ is a side of some polygon P;, then P;
intersects P, and S contains star(P;). Consequently, P; is a non-center node in star(F;),
thus P; € S. If s’ is a containment segment z;z/; where z; lies on some polygon Py, then
Py, intersects P; because z;7’; is fully contained in Py. Because star(s’) € Sy it follows that
star(Py) € S, and thus P; € S. We have reached a contradiction in all cases. We conclude
that all sides of P; are in Ay .

Now consider the case P; € B. We can follow the proof for the case P; € A if the
representative side s; of P; is in By . This must indeed be the case: we cannot have s; € Ay
because then we would have put P; into A, and s; cannot be a node in a star in Sy because
then P; would have been in a star in S, as has been shown above. Hence, the lemma is also
true if P; € B. <

We can now prove that there are no edges from A to B in G*[P].

» Lemma 12. No polygon P, € A intersects any polygon P, € B.
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Proof. Suppose for a contradiction that P, and P, intersect. We distinguish two cases.
The boundaries of P, and P, intersect. Let s and s’ be the sides of P, and P, that
intersect. Because P, € A we have s € Ay by Lemma 11. Similarly, we have s’ € By .
But this contradicts that Sy is a separator for G*[V] with parts Ay, By.

The boundaries of P, and P, do not intersect. Assume wlog that P, C P,. Consider the
containment segment s = x,x,,. By construction of the containment segments, polygon P
has a side s’ that intersects s. Recall that the containment segments were put into the
set V1 that was handled first by the algorithm from the previous section. Hence, there
will be a fragment f € F that is identical to s. Let 7 > 1 be such that s’ € V;. Then
f satisfies condition (i) of Lemma 5, with s’ playing the role of v. Since s’ is a side of
P, € B, we have s’ € By by Lemma 11. Thus, Lemma 5 implies that s = f € By.

Similarly there exists a side s” that is part of P, that intersects s. From Lemma 11
it follows s” € Ay. It must be that s” € V; for some j > 1. Then f also satisfies
condition (i) of Lemma 5 with s playing the role of v, so that s = f € Ay. But then the
sets Ay and By are not disjoint, which contradicts that Sy is a separator. <

Putting everything together, we obtain the following theorem. The runtime guarantee for
computing the separator is proven in the full version.

» Theorem 13. Let P be a set of n constant-complexity c-oriented polygons in the plane.
Then the intersection graph G*[P] has a star-based separator of size O(\/n), which can be
computed in O(nlogn) time. Moreover, there is an almost exact distance oracle for G*[V]
that uses O(n+/n) storage and that can report the hop-distance between any two nodes s,t € P,
up to an additive error of 2, in O(y/n) time.

» Remark. The theorem above is stated for n constant-complexity c-oriented polygons.
However, it also holds in a more geneal setting, namely for a collection P of polygons with
n edges in total. We can then find a separator of size O(y/n) and parts A, B such that the
number of polygons in A and B is at most @ Alternatively, we can guarantee that the
total number of edges of the polygons in A (and similarly for B) is at most 27" Finally, the

theorem also works in a weighted setting.

String graphs. A string graph is the intersection graph of a set V of curves in the plane [14]
— no conditions are put on the curves and, in particular, any two curves in V can intersect
arbitrarily many times. (But note that there is still at most one edge between the corres-
ponding nodes in G*[V].) It is known that for any set U of connected regions in the plane,
there is a set V of strings such that G*[U] and G*[V] are isomorphic [23]. Thus, string
graphs are the most general type of intersection graphs of connected regions in the plane.

Matousek [25] proved that any string graph with n nodes and m edges has a (node-based)
separator of size O(y/mlogm).% Using this result we can obtain a star-based separator of
sublinear size for a string graph G*[V] using the following simple two-stage process.

Stage 1: As long as there is a node v € V of degree at least nl/?’/ logw3 n, remove star(v)
from G*[V] and add it to the separator. This puts at most O(n?/3log?/®n) stars into
the separator.

Stage 2: Construct a node-based separator on the remaining string graph, using Matouseks
method [25] and put these nodes as singletons into the separator. Since the maximum
degree after Stage 1 is O(n/3/1og?/® n), the remaining graph has O(n*/3/1og®/3 n) edges.

5 A paper by Lee [23] claims that a separator of size O(,/m) exists for string graphs, but Bonnet et
al. [29] note that there is an error in this paper. It is not yet known if the proof can be repaired.
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Hence, in Stage 2 we put O (, /logj%n -log (IOZ;I%’H)) =0 (n% 10g§ n) stars into the

separator.
By using the star-based separator exactly as in Section 2, this yields the following.

» Proposition 14. Let V' be a set of n strings in the plane. Then the string graph G*[V] has
a star-based separator of size O(n?/3 logz/3 n). Moreover, there is an almost exact distance
oracle for G*[V] that uses O(n/3log®®n) storage and that can report the hop-distance
between any two nodes s,t € V', up to an additive error of 2, in O(nQ/3 10g2/3 n) time.

Recall that the distance oracle of Aronov, De Berg and Theocharous [12] for geodesic disks
in the plane has O(n7/4+¢) storage and O(n3/4*¢) query time. Thus the distance oracle in
Proposition 14 is more general (as it can handle any string graph), has better storage, and
better query time. The only downside is that the additive error in our distance oracle is at
most 2, while for their oracle it is at most 1.

» Remark. One may wonder if any graph, and not just any string graph, admits a sublinear
star-based separator, but this is not the case. For example, 3-regular expanders do not
admit sublinear node-based separators [13] and working with star-based separators instead
of node-based separators does not help in constant-degree graphs.

4 Concluding remarks

Motivated by the fact that intersection graphs of non-fat objects may not admit sublinear node-
based or clique-based separators, we introduced a biclique-based and star-based separators.
We proved that the intersection graph of any c-colored set of pseudo-segments has a star-based
separator of size O(y/n), and extended the result to c-oriented polygons. We also presented a
straightforward algorithm to compute a star-based separator of size O(n2/31log?/3 n) for any
string graph. These results lead to almost exact distance oracles with subquadratic storage
and sublinear query times. To the best of our knowledge, such distance oracles did not yet
exist — not even for intersection graphs of axis-parallel line segments.

Our work raises several questions. Can we improve the size of star-based separators for
string graphs from O(n%31og?*n) to O(y/n)? If not, can we perhaps do so for c-colored
sets of strings, or for arbitrary sets of line segments? It is also interesting to explore other
applications of biclique-based separators, besides distance oracles, and to see if the bounds we
obtained for distance oracles can be improved. While clique-based separators have been used
to design subexponential algorithms for problems such as ¢-COLORING [12] and DOMINATING
SET [11], it is unlikely that our biclique-based separator will yield new results for these
problems. This is due to existing 22(") conditional lower bound (under ETH) for ¢-COLORING
and DOMINATING SET on 2-DIR and segment intersection graphs, respectively [5]. Instead,
problems whose main difficulty lies in finding (hop-)distances — computing the diameter in
subquadratic time [8] is an example — would be interesting to consider.

Recent work on the (weighted) INDEPENDENT SET problem on restricted graph classes
has exploited properties that can be interpreted through the lens of star-based separators [16,
§1.4]. Tt is known that for every constant ¢, the family of graphs that does not contain an
induced path of length ¢t admits balanced separators that consist of the neighborhoods of ¢ — 1
vertices (cf. [17, Thm. 1.2]). Hence, such graphs have star-based separators of constant size.
This property has been used to develop quasi-polynomial-time approximation schemes for
weighted INDEPENDENT SET on Pj-free graphs [10, 17], as well as exact subexponential-time
algorithms for unweighted INDEPENDENT SET on P;-free graphs [4]. Can our star-based
separators of size O(y/n) also be used to obtain new algorithms for restricted input families?
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