
Optimal Online Bipartite Matching in Degree-2
Graphs
Amey Bhangale #Ñ

University of California, Riverside, CA, USA

Arghya Chakraborty # Ñ

Tata Institute of Fundamental Research, Mumbai, India

Prahladh Harsha #Ñ

Tata Institute of Fundamental Research, Mumbai, India

Abstract
Online bipartite matching is a classical problem in online algorithms and we know that both the
deterministic fractional and randomized integral online matchings achieve the same competitive
ratio of 1 − 1

e
. In this work, we study classes of graphs where the online degree is restricted to 2.

As expected, one can achieve a competitive ratio of better than 1 − 1
e

in both the deterministic
fractional and randomized integral cases, but surprisingly, these ratios are not the same. It was
already known that for fractional matching, a 0.75 competitive ratio algorithm is optimal. We show
that the folklore Half-Half algorithm achieves a competitive ratio of η ≈ 0.717772 . . . and more
surprisingly, show that this is optimal by giving a matching lower-bound. This yields a separation
between the two problems: deterministic fractional and randomized integral, showing that it is
impossible to obtain a perfect rounding scheme.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online Algorithm, Bipartite matching

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2025.13

Funding Research of the second and third authors supported by the Department of Atomic Energy,
Government of India, under Project Identification No. RTI4001.
Amey Bhangale: Supported by Hellman Fellowship award & NSF CAREER award 2440882.
Arghya Chakraborty: Supported in part by Prof. Mrinal Kumar’s SERB grant CRG/2023/006433.
Prahladh Harsha: Supported in part by the Google India Research Award.

1 Introduction

The problem of Bipartite Matching involves a bipartite graph G = (L, R, E) with vertices
L ∪ R and edges E ⊆ L × R. The objective is to find the largest sized matching in G - in
other words, the largest subset M ⊆ E such that no two edges in M share a common vertex.
This problem has been well studied [25, 4] and polynomial time algorithms are known.

Online Bipartite Matching was first introduced by Karp, Vazirani, and Vazirani [24].
In the online version of the problem, the set L is known in advance, but the vertices in
R arrive one by one. Each time a vertex j ∈ R arrives (along with its edges), we must
make an irreversible decision on whether to match j with one of its neighboring vertices
i ∈ N(j) ⊆ L. In a fractional version, we can assign fractional weights to the edges satisfying
the matching constraints. The competitive ratio of an online matching algorithm is simply
the approximation ratio achieved by the algorithm, that is, the worst-case ratio between the
cost of the matching found by the algorithm and the cost of an optimal matching. Online
Bipartite Matching has found immense applications in real-world problems. AdWords, organ
matching, and online dating are some of the few areas with direct applications.

© Amey Bhangale, Arghya Chakraborty, and Prahladh Harsha;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Algorithms and Computation (ISAAC 2025).
Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 13; pp. 13:1–13:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ameyb@ucr.edu
https://sites.google.com/view/amey-bhangale/home
https://orcid.org/0000-0002-3878-9241
mailto:arghya314@yahoo.com
https://sites.google.com/view/arghya-/home
https://orcid.org/0009-0005-5415-8916
mailto:prahladh@tifr.res.in
https://www.tifr.res.in/~prahladh/
https://orcid.org/0000-0002-2739-5642
https://doi.org/10.4230/LIPIcs.ISAAC.2025.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

13:2 Optimal Online Bipartite Matching in Degree-2 Graphs

The seminal work of Karp, Vazirani, and Vazirani showed that if an unweighted graph
has an optimal matching of size n then no online algorithm can guarantee a matching of size
larger than (1 − 1

e) · n, in expectation. They also gave an algorithm, called RANKING, that
attains the same competitive ratio of (1 − 1

e) on unweighted graphs.
Many variants of this problem have also been studied. The survey by Mehta [27] provides

an excellent overview of the problem and its variants. Among the various generalizations
studied, there is the edge arrival model [20], where the edges arrive in an online fashion
instead of the vertices. Recently, there have been breakthroughs [16, 30, 21, 5] in the setting
where the edges are weighted (one has to make additional assumptions here, as in this case,
no competitive algorithm exists without an additional assumption). Other variants, like
stochastic weights [23, 15], ad words [28, 22, 13], display ads [19, 10, 17], online sub-modular
welfare maximization [26, 9] have been studied. Most of these edge-weighted settings require
either a stochastic input [23, 22] or a free disposal model [18, 16, 30, 5].

For all these matching-related problems, one may consider the polytope of matchings.
Randomized algorithms naturally give rise to a fractional matching in this polytope. Hence,
the problem of fractional matching is of extreme importance and has also been well studied.
The WATER-LEVEL Algorithm [10] is a well-studied deterministic fractional matching
algorithm, attaining a competitive ratio of (1 − 1

e), and this is optimal. Almost all problems
related to matching have this feature, which is that the optimal competitive ratio for
randomized integral algorithms is the same as the optimal competitive ratio for fractional
matching algorithms. Indeed, randomized integral algorithms inherently produce a probability
distribution over matchings, and this probability distribution may be viewed as a fractional
matching.

However, given that the competitive ratio is the same for all these related problems, it
is interesting to ask if the fractional and the randomized integral matchings are inherently
the same problems. Hence, people have tried to obtain integral matchings as a randomized
rounding of fractional matchings [8]. In fact, for the edge weighted case, all the known
algorithms [16, 30, 21, 5], first produce a fractional matching and then use (randomized) Online
Correlated Selection (OCS) algorithm to perform the task of online rounding. Therefore, it
is interesting to ask whether the fractional and randomized integral matching problems are
the same for other variants of matching.

Bounded degree graphs. All the candidate graphs that prove the lower bound of (1 − 1
e)

competitive ratio for randomized integral or fractional matching have the feature that
they contain very high-degree vertices. It is natural to ask whether one can construct
low-degree graphs to obtain the same lower bounds. There have been some works on this
[2, 1, 11, 12, 29, 6, 3]. In this paper, we study graphs where the online vertices have a degree
at most 2. We show that, indeed, algorithms can perform better in this particular setting.
More specifically, we prove the following theorem.

▶ Theorem 1 (Integral Matching). For any graph, G, with n online vertices and degree of
online vertices at most 2, there exists an online randomized integral matching algorithm with
competitive ratio η, and no online algorithm can attain a competitive ratio better than η,

where η := 1 −
∞∑

i=1

1
22i+i−1 ≈ 0.717772.

This is interesting, in contrast to the following known result:

A. Bhangale, A. Chakraborty, and P. Harsha 13:3

▶ Theorem 2 (Fractional Matching). For any graph, G, with n online vertices and degree of
online vertices at most 2, the Water-Level Algorithm (c.f, Algorithm 2) attains a competitive
ratio of 0.75 and no online algorithm can obtain a better competitive ratio.

The analysis of the fractional matching problem has been done in [6], but for the sake of
completeness, we provide an easy proof in Section 5.

It is intriguing that the fractional and the randomized integral matchings seem to be
different problems for this class of graphs, as the optimal competitive ratio differs for the
two different settings.

We use the Primal-Dual analysis used in prior works [7, 16, 5] on online bipartite
matching (described in detail in the following section) for our algorithm. Our main technical
contribution is to set the primal-dual variables in the algorithm’s analysis in a non-trivial
manner, allowing us to prove the optimality of our algorithm.

1.1 Brief overview
In Section 2, we formally define some of the notations that we will use throughout the paper,
the models that we look at, and the online primal-dual framework which is a commonly used
tool in the analysis of online bipartite matching algorithms. Then in Section 4.1, we explicitly
construct a graph, and then use Yao’s principle to prove a lower bound for our problem.
Finally, in Section 4.2 we use the online primal-dual framework to prove the tightness of the
above bound, by analyzing a simple algorithm.

2 Preliminaries

Throughout this paper, we shall denote by G(d1, d2) the set of graphs that have degree at
most d1 for the offline vertices and degree at most d2 for the online vertices. Note that a
bipartite graph on n online vertices and n offline vertices can be any graph from G(n, n).
We shall focus on G(n, 2) graphs where the online vertices may have a degree at most 2.

We shall use L to refer to the set of offline vertices and R to refer to the set of online
vertices. To make things easier to read, we shall use i, i1, i2 to refer to vertices in L (offline
vertices) and j to refer to vertices in R (online vertices). We shall mostly consider an online
vertex j, arriving with exactly two neighbors i1 and i2, and this is without loss of generality
as given by the following lemma.

▶ Lemma 3. Online Bipartite Matching on graphs in G(n, 2) is equivalent to graphs with
degree of online vertices exactly 2. In other words, a c-competitive randomized algorithm for
one implies a c-competitive randomized algorithm for the other.

Proof. Since G(n, 2) includes graphs with online degrees at most 2, an online algorithm
might perform better on graphs with exactly degree 2. We show that these two cases are
equivalent. We only need to show that if we have a γ-competitive ratio algorithm on graphs
with an online degree of exactly 2, then there is a γ-competitive ratio algorithm on graphs
with an online degree of at most 2.

Fix an arbitrary algorithm A′ with γ-competitive ratio on graphs with an online degree of
exactly 2. From this, we will construct an algorithm A with γ-competitive ratio on G(n, 2).
Fix any graph G = (L, R, E) ∈ G(n, 2). We construct a new graph G′

m = (L′, R′, E′),
parameterized by an integer m, where all online vertices have exactly degree 2. This graph
G′

m consists of m copies of G, where the i-th copy is denoted by Gi = (Li, Ri, Ei) and an
additional vertex ℓ⋆ to adjust the degree of every online vertex in G′

m to exactly two. More

ISAAC 2025

13:4 Optimal Online Bipartite Matching in Degree-2 Graphs

precisely, the set of offline vertices L′ is L1 ∪ L2 ∪ · · · ∪ Lm ∪ {ℓ⋆} while the set of online
vertices R′ is R1 ∪ R2 ∪ · · · ∪ Rm. The edge set E′ is E1 ∪ E2 ∪ · · · ∪ Em ∪ Ẽ where the edges
in Ẽ are defined next.

The arrival sequence of the online vertices in G′
m is as follows: all the m copies of the

first vertex in R, followed by all the m copies of the second vertex in R, and so on. Recall,
each of the copies Gi = (Li, Ri, Ei) are isomorphic to the original graph G = (L, R, E). The
graph G′

m has an additional set Ẽ of the edges as follows: For every v ∈ R1 ∪ R2 ∪ · · · ∪ Rm

with degree 1, we add an edge (v, ℓ⋆) to the graph G′
m.

Now, we run A′ on G′
m for the first m online vertices, followed by the next m online

vertices, and so on. The matching produced by A′ can be viewed as m different matchings on
G, with an additional vertex ℓ⋆ ∈ L. However, at most one of those matchings may contain
ℓ⋆ as part of the matching. The remaining m − 1 matchings must not contain ℓ⋆ and can be
directly viewed as a matching on G. The algorithm A will pick one of these m matchings
uniformly at random. If A happens to pick the matching with ℓ⋆ we give up and do not out
put any matching. Note that A can be generated from A′ in an online fashion, by selecting
one of the m matchings and simulating it. If this matching contains ℓ⋆, we stop at that point
and otherwise we output a feasible matching.

Now, let us bound the competitive ratio of A, assuming that the competitive ratio of A′

is γ. Let us assume that G has an optimal matching of size n′, implying that G′
m will have

an optimal matching of size at least m · n′. Hence A′, with a competitive ratio of γ, should
give us at least γ · m · n′ size, in expectation. However, in this matching produced, we might
have ℓ⋆, which we cannot use in algorithm A. By our construction, we have m collections of
matchings of which one contains ℓ⋆ and the remaining m − 1 of them are used by A. Now, if
we leave aside the particular matching that contains ℓ⋆, we would still have a matching of
size at least γ·m·n′−n′

m in expectation, as produced by A′. The optimal matching in this set is
of size at most n′. Hence the expected competitive ratio of A is at least γ·m·n′−n′

m·n′ = γ·m−1
m ,

which converges to γ as m increases. Hence, by choosing a large m, this conversion ensures
that A attains the same competitive ratio as A′ on G. ◀

2.1 Primal and Dual programs for bipartite matching

At this point, we would like to explain the primal and dual programs for online bipartite
matching. We shall use xi,j to denote whether i is matched to j or not. So, we would want
xi,j to be either 0 or 1, and the size of the matching produced would be the sum of xi,j ,
which we would like to maximize. To ensure that it is a matching, we add the constraints
that for each vertex, there must be at most one edge incident on the vertex.

We shall also use xi :=
∑

j∈R xi,j to denote whether vertex i is matched or not. We shall
also relax this problem as follows :

Maximize
∑
i∈L

∑
j∈R

xi,j =
∑

i∈L xi

subject to :

∀i ∈ L
∑

j∈Nbd(i)

xi,j ≤ 1

∀j ∈ R
∑

i∈Nbd(j)

xi,j ≤ 1

xi,j ≥ 0

Minimize
∑
i∈L

αi +
∑

j∈R

βj

subject to :

∀(i, j) ∈ E, αi + βj ≥ 1

∀i ∈ L, j ∈ R, αi ≥ 0 and βj ≥ 0

A. Bhangale, A. Chakraborty, and P. Harsha 13:5

We have relaxed the xi,j ’s from being {0, 1} valued to instead allow any fraction :
xi,j ∈ [0, 1]. This means that the optimal value of the primal objective can only be larger
now (since the graph is bipartite, the optimal value actually is the same), which means
that the matching size obtained (the competitive ratio) will only be lower, compared to
the primal optimal. Also note that if we are doing a fractional or a randomized matching,
we would want xi,j to represent the fraction that i is matched to j or the probability of i

being matched to j, ensuring that the expected size of matching is
∑

i∈L,j∈R xi,j and the
change/increment in the primal value because of the vertex j is

∑
i∈L xi,j =

∑
i∈L ∆xi.

The dual program represents the vertex cover problem, but we shall not use this fact in
any way. Note the dual constraint αi +βj ≥ 1. If a dual solution is not feasible, meaning that
the solution does not satisfy αi + βj ≥ 1 for all (i, j) ∈ E but instead satisfies αi + βj ≥ γ

for some γ < 1, then we shall call this solution γ-feasible.
In the analysis of our online algorithm, we will keep updating the primal and dual solutions.

We shall use ∆P and ∆D to denote the increase in the primal and dual objectives, respectively.
Similarly, we shall use ∆xi and ∆αi to refer to the increments in the corresponding variables.

The main idea that we use in our algorithms is an online primal-dual method, similar to
the one used in prior work [14, 16]. We always maintain feasible primal and approximately
feasible dual solutions. Whenever primal increases by some amount, we increase the dual by
the same amount, so the primal and dual always have the same value. The primal will be
feasible, so we would obtain an optimal solution if the dual were also feasible. However, we
will be unable to maintain a feasible dual solution; instead, we will maintain an approximate
feasible solution that satisfies the dual constraints with a slack of γ, in other words, be
γ-feasible.

More specifically, we will always maintain the following throughout :

Approximate Dual Feasibility: For any i ∈ L and j ∈ R, αi + βj ≥ γ

Reverse Weak Duality: The objective value of the primal (P) and the objective value
of the dual (D) satisfy that P ≥ D.

This is important because of the following claim.

▷ Claim 4. If the primal solution is feasible and has value P , and if the dual solution
has objective value at most P , while being γ-feasible, then the primal value P is at least γ

fraction of the primal optimal.

Proof. Let M be the primal optimal. By strong duality, it is also the value of the dual
optimal. Since the primal is feasible, P ≤ M . Let the dual solution have value D ≤ P . Since
the dual solution is γ feasible, multiplying all the dual variables by 1

γ gives a feasible dual
solution with value D

γ ≥ M because it is feasible.
Hence D ≤ P ≤ M ≤ D

γ =⇒ γ · M ≤ D ≤ P =⇒ P
M ≥ γ. ◁

3 Techniques

While the algorithm that we suggest is extremely simple, the interesting part is the analysis.
We use the online primal-dual method to prove that the algorithm is optimal. The primal
variables are easy to update, given the algorithm. The tricky part is to update the dual
variables: αi and βj . Indeed, there are other intuitive candidate algorithms for this problem,
which we tried but were unable to analyse using the primal-dual approach.

ISAAC 2025

13:6 Optimal Online Bipartite Matching in Degree-2 Graphs

On arrival of any vertex, j ∈ R, we try to increase the αi’s as much as possible and βj as
little as possible while maintaining γ-competitive ratio. The key observation, in Lemma 9, is
that given the primal variable of a vertex i ∈ L, one can determine a lower bound for the
dual variable αi. Given this observation, it is sufficient to show that as the probability of i

being matched approaches 1, the dual variable αi approaches γ.

4 Randomized Integral Matching

We start with a lower-bound construction first.

4.1 Lower Bound
Recall that η := 1 −

∑∞
i=1

1
22i+i−1 . The following theorem shows that no online algorithm

can achieve a competitive ratio better than η.

▶ Theorem 5. For Online Integral Bipartite Matching, no online algorithm (deterministic
or randomized) can attain a competitive ratio better than η.

Proof. We will use Yao’s principle to prove this. We shall first construct one particular
graph G and then look at the uniform distribution over all graphs that are isomorphic to the
described graph.

Figure 1 The graph for the lower bound, with 8 online and offline vertices with online degree
bounded by 2. The black edges correspond to online vertices in the first phase, the red ones
correspond to the second phase and the green ones correspond to the third phase.

This graph will have n = 2k online and 2k offline vertices for some integer k. We will
describe the graph in phases. There will be k = log n phases in total. The online i-th vertex
will always have an edge to the offline i-th vertex. Since the online vertices will have degree
2, it suffices to explain the other neighbor of the online vertex i. Figure 1 depicts this graph
for k = 3, with 2k = 8 online and offline vertices.

This is where we will use the phases to describe the neighbors. In the first phase, there
will be n

2 online vertices: 1 through n
2 and the i-th vertex would have the other edge to

offline vertex n
2 + i. In the second phase, there will be n

4 online vertices: n
2 + 1 through n − n

4
and the n

2 + i-th vertex would have the other edge to offline vertex n − n
4 + i. In the j-th

phase, there will be n
2j online vertices: n − n

2j−1 + 1 through n − n
2j and the n − n

2j−1 + i-th
vertex would have the other edge to offline vertex n − n

2j + i.

A. Bhangale, A. Chakraborty, and P. Harsha 13:7

Notice that in the j-th phase, when an online vertex arrives, its neighbors’ degree changes
from j − 1 to j.

Now using this graph, G, let us construct a distribution over graphs. We shall consider a
set of all graphs that can be obtained from G, by a permutation of the offline vertices, and
then take a uniform distribution over these graphs. The idea is to use Yao’s principle on this
distribution and study the competitive ratio of deterministic algorithms. We shall compute
the probability of offline vertices being matched, based on the phases. We shall consider any
candidate deterministic algorithm for this.

Consider any offline vertex, u. If there is an online vertex, say v, in the j-th phase, with
u as a neighbor of j, then we shall say that u “appeared” in the j-th phase. Notice that if u

appeared in the j-phase, then u must have appeared in the phases 1, 2, . . . , j − 1 too. For
every offline vertex, u, there will be a unique j such that u appeared in the j-th phase and
then did not appear in any of the phases j + 1, j + 2, . . . again.

Let us first look at offline vertices that appear in the first phase and then never again.
The probability that such a vertex is matched is 1

2 , and there are n
2 such vertices.

Next, for vertices that appear in the second phase and never after that, we shall compute
the probability that they are not matched. Let us consider one such vertex, u. For u not to
be matched, it has to be necessarily unmatched when it appeared in the first phase. This
would happen with probability 1

2 . Also, when u appears in the second phase, the online
vertex, say v, will have another neighbor, say i1. If i1 happened to be matched earlier, in
phase 1, then u will get matched in the second phase. Therefore, for u to be unmatched
i1 must be unmatched and then on the arrival of v the probability that the deterministic
algorithm will leave u unmatched will be 1

2 . Hence the probability that u is unmatched is 1
8 .

For a vertex u that appears in the third phase and never thereafter, the probability that
u is unmatched is 1

2 · 1
8 · 1

8 because this is the case when u was unmatched even after phase
two and i1, the competitor of u in phase three was also unmatched after phase two and in
this case the probability of u being unmatched is 1

2 .
Similarly, for a vertex that appears in the i-th phase and then never thereafter, the

probability that such a vertex is unmatched is 1
22i−1 . Also, there are n

2i such vertices that
appear in the i-th phase and then never thereafter.

Hence, the expected number of vertices unmatched equals

∞∑
i=1

n

22i+i−1 .

Therefore, the competitive ratio will be

1 −
∞∑

i=1

1
22i+i−1 = η ≈ 0.717772. ◀

4.2 Upper Bound

In this section, we will show that the folklore half-half algorithm attains a competitive
ratio of η. We begin by recalling the half-half algorithm, which can be described as
follows. When an online vertex v comes, if it has only one unmatched neighbor, then match
v with the unmatched neighbor. If both the neighbors of v are unmatched, then pick one
uniformly at random and match it with v. The formal description of the algorithm is given
in Algorithm 1.

ISAAC 2025

13:8 Optimal Online Bipartite Matching in Degree-2 Graphs

Algorithm 1 Half-Half Algorithm.

1: procedure A(j, S) ▷ Online vertex j with neighborhood S ⊆ L, |S| ≤ 2
2: if ∀i ∈ S, i is already matched then
3: Do nothing.
4: else
5: if There exists only one i ∈ S, such that i is unmatched then
6: Match i to j.
7: else
8: We have S = {i1, i2} such that i1 and i2 are both unmatched
9: Match j with i1 and i2 with probability half each.

10: end if
11: end if
12: end procedure

4.2.1 Analysis of the half-half algorithm
▶ Theorem 6. The half-half algorithm attains a competitive ratio of η, where:

η := 1 −
∞∑

i=1

1
22i+i−1 = 1 − 1

4 − 1
32 − 1

210 − 1
219 − · · · ≈ 0.717772.

Throughout the rest of the section, we are going to prove this theorem.
The plan is again to use the online Primal-Dual analysis. We will show that on the arrival

of j ∈ R, with neighbors i1, i2 ∈ L, we can update the primal such that the expected size of
the matching produced is at least the value of the primal. Simultaneously we will set up
βj and increment αi1 , αi2 so that the dual conditions are η-feasible. We shall initialize by
setting all the αi’s to 0, and βj will start off as 0 before we do the increments for the dual
variables. We shall describe how to update the dual variables later. First, we will describe
the updates to the primal variables.

Updating the Primal variables. According to the algorithm, we can change the primal
variables according to the following rule. We always maintain the primal variables to take
values of the form 1− 1

2p where p ∈ {0, 1, 2, 3, . . .}. If an online vertex j comes with neighbors
{i1, i2}, and the old values of xi1 and xi2 are as follows:

xi1 = 1 − 1
2p1

, xi2 = 1 − 1
2p2

,

then the updated values would be

xi1 = xi2 = 1 − 1
2p1+p2+1 .

With this, the change in the primal value would be

∆P = 2
(

1 − 1
2p1+p2+1

)
−
(

1 − 1
2p1

)
−
(

1 − 1
2p2

)
.

▷ Claim 7. Changing the primal in this way ensures that primal variables are always of
the form 1 − 1

2p , and that the expected increment of matching size is at least the change in
primal.

A. Bhangale, A. Chakraborty, and P. Harsha 13:9

Proof. First of all, it is clear from these updates that the primal variables are always of the
form 1 − 1

2p . Had the events of i1 and i2 being unmatched been independent events, we
could have said

P[i1 is unmatched after j] = P[i2 is unmatched after j]

= 1
2 · P[i1 and i2 were unmatched before j] = 1

2p1+p2+1 .

However, if the events are not independent, then there is only a negative correlation, i.e.,
given that i1 is unmatched, the probability of i2 being unmatched can only decrease. The
proof is as follows. Conditioned on i1 being unmatched, every online vertex, with i1 as its
neighbor, must have been matched to the offline vertex other than i1. Let us call this set of
vertices S. Now, when these offline vertices from S, after being matched, were neighbors of
some online vertex, say v, the online vertex v must have been matched to the other neighbor
of v. We can update our S to include all such vertices that get matched in this manner.
Continuing like this, the set S will consist of all vertices that are matched, conditioned on i1
not being matched. If any online vertex had i2 as its neighbor and a vertex from S as its
other neighbor, i2 must have been matched conditioned on i1 not being matched. Otherwise,
i1 being matched and i2 being matched are independent events. Hence,

P[i1 is unmatched after j] = P[i2 is unmatched after j]

= 1
2P[i1 and i2 were unmatched before j] ≤ 1

2p1+p2+1 .

We have already seen that the change in primal is

∆P = 2
(

1 − 1
2p1+p2+1

)
−
(

1 − 1
2p1

)
−
(

1 − 1
2p2

)
= 1

2p1
+ 1

2p2
− 2

2p1+p2+1 .

Now we can compare this to the expected increase in matching size,

E[Increment in size of matching]
= P[Either i1 or i2 was unmatched on arrival of j]
= P[i1 was unmatched on arrival of j] + P[i2 was unmatched on arrival of j]−

P[Both i1 and i2 were unmatched on arrival of j]

≥ 1
2p1

+ 1
2p2

− 2
2p1+p2+1 .

Thus,

E[Increment in size of matching] ≥ ∆P,

and this proves the claim. ◁

Updating the Dual variables. Now that we have described how the primal variables are
updated, we shall describe how to update the dual variables. As mentioned earlier, we will
always maintain ∆P ≥ ∆D. So, when online vertex j with neighbors i1, i2 arrives, we shall
first compute ∆P and then try to set up αi1 = αi2 . The goal is to set up the α’s as high
as possible, preferably to η, and assign the remainder of ∆P to βj if needed. This will
ensure ∆P ≥ ∆D. We would want αi1 + βj ≥ η and also αi2 + βj ≥ η, while simultaneously
maintaining βj ≥ 0. This would limit us from setting large α’s. It will be convenient to
define the following notation.

ISAAC 2025

13:10 Optimal Online Bipartite Matching in Degree-2 Graphs

▶ Definition 8 (α(k)). We define the quantity α(k) as follows: On arrival of the online vertex
j with neighbors i1 and i2, suppose the primal variables xi1 and xi2 take the value 1 − 1

2k

after the update, then the minimum value that the dual variables αi1 and αi2 are set (while
maintaining η-feasibility and βj ∈ [0, 1]) is the quantity α(k).

What we will show now is that it will always be possible for us to set the dual variables
in order to maintain η-approximate dual feasibility.

We shall first show that for 1 ≤ i ≤ 3, we can set up α(i) to maintain approximate
dual feasibility. After that, we will prove a general statement showing that we can assign
appropriate dual variables for all xi.

Setting α(1). Let us first consider the case when the two neighbors i1, i2 had not appeared
before. In this case, the half-half algorithm will set xi1 = xi2 = 1

2 . Observe that this is the
only case when the xi will be set to 1

2 , and hence the previous values of xi1 , xi2 is 0. So,
∆P = 1. Let us set αi1 = αi2 = α(1) = 1 − η in this case, and βj to 2η − 1. This will ensure
that ∆D = 1 = ∆P (recall, αi1 and αi2 were set to 0 at the beginning). Additionally, the
dual constraints for the edges {i1, j}, {i2, j} are η-satisfied.

Setting α(2). Let the neighbors of j be i1 and i2 with xi1 = 1 − 1
2 and xi2 = 0. Then the

updated xi1 = xi2 = 1− 1
4 and notice that, up to symmetry, this is the only way for the primal

variables to attain xi = 1− 1
4 . In this case, ∆P = 1. Updating αi1 = αi2 = α(2) = 2−2η means

that the increment in αi1 +αi2 is (α(2) −α(1))+(α(2) −0) = ((2−2η)−(1−η))+((2−2η)−0)
because for i1, with xi1 = 0, we had αi1 = 1 − η and for i2 we had αi2 = 0 before the
arrival of j. Hence the total increment in αi1 + αi2 is 3 − 3η. Therefore, assigning βj to
∆P − ∆αi1 − ∆αi2 = 3η − 2 ensures that βj is positive and the increment in primal is equal
to the increment in the dual. Also, for the edges, the dual constraints are η-satisfied since
(2 − 2η) + (3η − 2) = η.

Setting α(3). There are two cases in this case.
1. In the first case, let the neighbors of j be i1 and i2 with xi1 = xi2 = 1 − 1

2 before the
arrival of j. According the the change in primal values, both xi1 and xi2 would be set
to 1 − 1

8 after the update. Therefore, ∆P = 2(1 − 1
8) − 1

2 − 1
2 = 3

4 . Also, αi1 and αi2

used to be α(1) = 1 − η before j arrived. If we update αi1 and αi2 to α(3), then we
can set βj to ∆P − (2α(3) − 2(1 − η)) in order to ensure that the change in dual is at
most the change in primal. However, after the update, the edge corresponding to {i1, j}
must satisfy approximate dual feasibility. Hence, we must have βj + α(3) ≥ η, implying
3
4 − α(3) + 2 − 2η ≥ η. Therefore α(3) ≤ 11

4 − 3η.
2. In the second case, if the two neighbors i1 and i2 had xi1 = 1 − 1

4 and xi2 = 0 (i.e. i2
not having appeared before) even then both xi1 and xi2 would be set to 1 − 1

8 after the
update. It can be checked that in this case, ∆P = 1 and hence we can set αi1 = αi2 = η,
while keeping βj = 0.

Considering both these cases, we can ensure that αi1 , αi2 will certainly be set to at least
11
4 − 3η and hence α(3) = 11

4 − 3η.

Setting α(k) for k ≥ 4. As we have seen till now, we can set up the α variables so that
approximate dual feasibility is satisfied.

The next lemma gives a strategy for the remaining cases to set the dual variables so that
the Dual is η-feasible.

A. Bhangale, A. Chakraborty, and P. Harsha 13:11

▶ Lemma 9. For every k ≥ 4, there is a fixed α(k) such that whenever the primal variables
are set to 1 − 1

2k , one can set the value of the corresponding dual variables α such that
α ≥ α(k) while ensuring ∆D ≤ ∆P , βj ∈ [0, 1] and the η-approximate dual feasibility. More
specifically, the algorithm sets α(k) to be η whenever k is not of the form 2m − 1 (for some
integer m), otherwise

α(2m−1) ≥
m−1∑
i=1

2m−1−i

(
1

22i−2 − 1
22(2i−2)+2

)
+ 2m−1 − (2m − 1)η.

Before we prove this lemma, let’s first see why this is enough to prove the main theorem.

Proof of Theorem 6. It is easy to see that proving this lemma completes the proof. This is
because, after the arrival of j, i1 and i2 are more likely to be matched and hence xi1 and xi2

increase. We have seen that xi may only take values of the form 1 − 1
2k for some integer k.

For k = 1 to 3, we have explicitly checked that we can always satisfy reverse weak duality
and η-approximate dual feasibility. For any larger value of k, the Lemma 9 tells us that we
will always be able to set up the dual variables while satisfying reverse weak duality and
η-approximate deal feasibility. Hence, we shall always be able to update the dual variables
in this manner, for all k and therefore the Half-half Algorithm would be η-competitive. ◀

We now prove Lemma 9.

Proof of Lemma 9. The proof will be by induction on k. Let us assume that α(k) follows
the lemma up to some k < T .

We will need to check the base cases for k = 4, 5, 6, 7 after which the proof follows by
induction. The calculations are exactly like that for k = 1, 2, 3. We provide a table of values
here for each k. This table describes how the dual variables are set for that particular k. Each
row describes a different initial setting of xi1 and xi2 that can lead to xi1 = xi2 = 1− 1

2k . The
reader may check that these updates satisfy ∆P ≥ ∆D and η-approximate dual feasibility
and satisfy Lemma 9.

For k = 4,

xi1 xi2 ∆P Old αi1 Old αi2 New αi1 = αi2 βj

0 1 − 1
8 1 0 11

4 − 3η η 0
1
2 1 − 1

4
1
2 + 1

4 − 1
8 1 − η 2 − 2η η 0

For k = 5,

xi1 xi2 ∆P Old αi1 Old αi2 New αi1 = αi2 βj

0 1 − 1
16 1 0 η η 0

1
2 1 − 1

8
1
2 + 1

8 − 1
16 1 − η 11

4 − 3η η 0
1
4

1
4

1
4 + 1

4 − 1
16 2 − 2η 2 − 2η η 0

For k = 6,

xi1 xi2 ∆P Old αi1 Old αi2 New αi1 = αi2 βj

0 1 − 1
32 1 0 η η 0

1
2 1 − 1

16
1
2 + 1

16 − 1
32 1 − η η η 0

1
4

1
8

1
4 + 1

8
1

32 2 − 2η 11
4 − 3η η 0

ISAAC 2025

13:12 Optimal Online Bipartite Matching in Degree-2 Graphs

For k = 7,

xi1 xi2 ∆P Old αi1 Old αi2 New αi1 = αi2 βj

0 1 − 1
64 1 0 η η 0

1
2 1 − 1

32
1
2 + 1

32 − 1
64 1 − η η η 0

1
4

1
16

1
4 + 1

16 − 1
64 2 − 2η η η 0

1
8

1
8

1
8 + 1

8 − 1
64

11
4 − 3η 11

4 − 3η 367
64 − 7η 8η − 367

64

For T , we can have three cases: (1) T is of the form 2m − 1 for some m. (2) T is of the
form 2m1 + 2m2 − 1, or (3) T is not of these forms.

Case 3. We note that

α(T) = min
k∈{0,1,2,··· , T −1

2 }

[(
1
2k

+ 1
2T −1−k

− 1
2T −1

)
+ α(k) + α(T −1−k) − η

]
can be achieved by putting the entire ∆P into α without increasing the β. Now, considering
the case we are in, we know that either α(k) or α(T −1−k) is η (inductive hypothesis). Since
the other α already had value more than η − (1 − xi) (this can be seen from the fact that
α(T) converges to η as T tends to ∞ and the total value added to α(T), at any point, is at
most the increment in xi) and observe that ∆P ≥ (1 − xi). Therefore, the alpha can be
increased to η.

Case 1. In this case T = 2m − 1 for some m.

α(2m−1) = min
k∈{0,1,2,··· ,2m−1−1}

(
1
2k

+ 1
22m−k−2 − 1

22m−2

)
+ α(k) + α(2m−k−2) − η

Note that the minimum occurs when k = 2m−1 − 1 (on top of this, we need to show that
∆P − ∆α ≥ 0, so that β can be set to a value in [0, 1]). In this case,

α(2m−1) =
(

1
22m−1−1 + 1

22m−2m−1+1−2 − 1
22m−2

)
+ α(2m−1−1) + α(2m−2m−1+1−2) − η

=
m−1∑
i=1

2m−1−i

(
1

22i−2 − 1
22(2i−2)+2

)
+ 2m−1 − (2m − 1)η.

as required. Now, we need to show that the following quantity is non-negative.

∆P − ∆α =
(

1
22m−1−1 + 1

22m−1−1 − 1
22m−2

)
− 2 ·

(
α(2m−1) − α(2(m−1)−1)

)
.

=
(

1
22m−1−1 + 1

22m−1−1 − 1
22m−2

)
− 2 ·

(
α(2m−1) − α(2(m−1)−1)

)
.

=
(

1
22m−1−2 − 1

22m−2

)
− 2 ·

(
α(2m−1) − α(2(m−1)−1)

)
.

We have the following claim.

▷ Claim 10. The quantity
(

1
22m−1−2 − 1

22m−2

)
− 2 ·

(
α(2m−1) − α(2(m−1)−1)

)
is non-negative

for all values of m ≥ 1.

A. Bhangale, A. Chakraborty, and P. Harsha 13:13

Proof. We first simplify the last term.(
α(2m−1) − α(2(m−1)−1)

)
=
(

m−1∑
i=1

2m−1−i

(
1

22i−2 − 1
22(2i−2)+2

)
+ 2m−1 − (2m − 1)η

)

−

(
m−2∑
i=1

2m−2−i

(
1

22i−2 − 1
22(2i−2)+2

)
+ 2m−2 − (2m−1 − 1)η.

)

= 1
2 ·
(

1
22m−1−2 − 1

22(2m−1−2)+2

)
+ (2m−1 − 2m−2) − (2m − 2m−1)η

+
m−1∑
i=1

(2m−1−i − 2m−2−i)
(

1
22i−2 − 1

22(2i−2)+2

)

= 1
2 ·
(

1
22m−1−2 − 1

22(2m−1−2)+2

)
+ 2m−2 − 2m−1

(
1 −

∞∑
i=1

1
22i+i−1

)

+
m−1∑
i=1

2m−2−i

(
1

22i−2 − 1
22(2i−2)+2

)

= 1
2 ·
(

1
22m−1−2 − 1

22(2m−1−2)+2

)
− 2m−2 + 2m−2

∞∑
i=1

2
22i+i−1

+ 2m−2 ·
m−1∑
i=1

1
2i

·
(

1
22i−2 − 1

22(2i−2)+2

)
.

Now,

2
(
α(2m−1) − α(2(m−1)−1)

)
=
(

1
22m−1−2 − 1

22(2m−1−2)+2

)
− 2m−1 + 2m−1

∞∑
i=1

2
22i+i−1

+ 2m−1 ·
m−1∑
i=1

1
2i

·
(

1
22i−2 − 1

22(2i−2)+2

)

=
(

1
22m−1−2 − 1

22m−2

)
− 2m−1 + 2m−1

∞∑
i=1

2
22i+i−1

+ 2m−1 ·
m−1∑
i=1

1
2i

·
(

1
22i−2 − 1

22(2i−2)+2

)
.

Therefore,

∆P − ∆α = 2m−1 − 2m−1
∞∑

i=1

2
22i+i−1 − 2m−1 ·

m−1∑
i=1

1
2i

·
(

1
22i−2 − 1

22(2i−2)+2

)

= 2m−1

(
1 −

∞∑
i=1

2
22i+i−1 −

m−1∑
i=1

1
2i

·
(

1
22i−2 − 1

22(2i−2)+2

))

= 2m−1

(
1 −

∞∑
i=1

2
22i+i−1 −

m−1∑
i=1

(
2

22i+i−1 − 1
2(2i+1+i−2)

))
.

ISAAC 2025

13:14 Optimal Online Bipartite Matching in Degree-2 Graphs

Now, we simplify the last summation as follows

m−1∑
i=1

(
2

22i+i−1 − 1
2(2i+1+i−2)

)
=

m−1∑
i=1

(
2

22i+i−1 − 1
2(2(i+1)+(i+1)−3)

)

=
m−1∑
i=1

(
2

22i+i−1 − 4
2(2(i+1)+(i+1)−1)

)

= 2
22 −

m−1∑
i=2

2
22i+i−1 − 4

2(2m+m−1)

Hence,

∆P − ∆α = 2m−1

(
1 −

∞∑
i=1

2
22i+i−1 −

m−1∑
i=1

(
2

22i+i−1 − 1
2(2i+1+i−2)

))

= 2m−1

(
1 −

∞∑
i=1

2
22i+i−1 − 2

22 +
m−1∑
i=2

2
22i+i−1 + 4

2(2m+m−1)

)

= 2m−1

(
1 − 2

22 −
∞∑

i=m

2
22i+i−1 − 2

22 + 4
2(2m+m−1)

)

= 2m−1

(
4

2(2m+m−1) −
∞∑

i=m

2
22i+i−1

)
≥ 0.

◁

Given the claim, we can see that ∆P − ∆α ≥ 0, allowing us to set βj ≥ 0. ◀

Case 2. In the case when T is of the form 2m1 + 2m2 − 1 (where m1 > m2), we will try to
find out α(T) using α(2m1 −1) and α(2m2 −1). For all other instances in which we end up with
α(T), at least one of the offline vertices will already have α set to η so like case 1, we are in
good shape. Hence we just need to consider the case when one offline vertex, say i1, had xi1

at 1 − 1
22m1 −1 and the other vertex, i2, had xi2 at 1 − 1

22m2 −1 .
First of all, we note that

∆P = 1
22m1 −1 + 1

22m2 −1 − 2
22m1 +2m2 −1 .

The plan is to put all the ∆P into both the α values and confirm that indeed we can
make both the α values equal to η, without incrementing the β.

This can be achieved iff ∆P is at least 2η − α(2m1 −1) − α(2m2 −1). The following claim
precisely shows this.

▷ Claim 11. ∆P ≥ 2η − α(2m1 −1) − α(2m2 −1).

Proof. We show that ∆P − 2η + α(2m1 −1) + α(2m2 −1) is non-negative as follows.

∆P − 2η + α(2m1 −1) + α(2m2 −1)

= 1
22m1 −1 + 1

22m2 −1 − 2
22m1 +2m2 −1 +

m1−1∑
i=1

2m1−1−i

(
1

22i−2 − 1
22(2i−2)+2

)
+

m2−1∑
i=1

2m2−1−i

(
1

22i−2 − 1
22(2i−2)+2

)
+ 2m1−1 + 2m2−1 − (2m1 + 2m2)η

A. Bhangale, A. Chakraborty, and P. Harsha 13:15

= 1
22m1 −1 + 1

22m2 −1 − 2
22m1 +2m2 −1 + 2m1−1 + 2m2−1 − (2m1 + 2m2)η+

2m1−1

(
1
2 −

m1−1∑
i=2

2
22i+i−1 − 4

2(2m1 +m1−1)

)
+

2m2−1

(
1
2 −

m1−1∑
i=2

2
22i+i−1 − 4

2(2m1 +m1−1)

)

= − 1
22m1 −1 − 1

22m2 −1 − 2
22m1 +2m2 −1 +

2m1−1

(
1 − 2 + 2

∞∑
i=1

1
22i+i−1 + 1

2 −
m1−1∑

i=2

2
22i+i−1

)
+

2m2−1

(
1 − 2 + 2

∞∑
i=1

1
22i+i−1 + 1

2 −
m2−1∑

i=2

2
22i+i−1

)

= − 1
22m1 −1 − 1

22m2 −1 − 2
22m1 +2m2 −1 + 2m1−1

(∞∑
i=m1

2
22i+i−1

)
+

2m2−1

(∞∑
i=m2

2
22i+i−1

)
≥ 0 ◁

5 Fractional Matching

In this section, we prove a lower bound on the competitive ratio of any algorithm for fractional
matching and then give an online algorithm that achieves the best attainable competitive
ratio.

5.1 Lower Bound

▶ Theorem 12. No online algorithm can attain a competitive ratio better than 0.75 for online
fractional bipartite matching.

Proof. Consider a graph with two offline vertices i1 and i2. The first online vertex will have
edges to both i1 and i2 while the second online vertex will have an edge to only one of the
vertices. The optimal matching is of size 2 but one can see that no online algorithm can
attain a competitive ratio better than 0.75 using this graph. ◀

5.2 Upper Bound

For the fractional matching, we shall consider the water-level algorithm which was an optimal
algorithm for the case without the degree bound.

ISAAC 2025

13:16 Optimal Online Bipartite Matching in Degree-2 Graphs

Algorithm 2 Water-Level Algorithm.

1: procedure A(j, S) ▷ Online vertex j with neighborhood S ⊆ L, |S| ≤ 2
2: Find ℓ such that

∑
i∈S max{0, ℓ − xi}=1

3: if ℓ ≤ 1 then
4: Vertex j can be completely matched.
5: For all i ∈ S with xi < ℓ, set xi = ℓ

6: else
7: All the neighbors of j can be completely matched, but j can only be partially

matched.
8: For all i ∈ S set xi = 1
9: end if

10: end procedure

We show that the same algorithm gives the optimal algorithm for the degree 2 case.

▶ Theorem 13. Water-level algorithm attains a competitive ratio of 0.75 when the vertices
have a degree at most 2.

Proof. We shall use the primal-dual analysis for this. The main idea is to maintain the
value of the fractional matching produced by water level and simultaneously maintain dual
variables.

We already know how the primal variables are updated by water level, given the algorithm.
We will now explain how the dual variables will be updated to maintain reverse weak duality
and weak dual feasibility.

Let us define xi :=
∑

j∈R xi,j . The variable xi denotes how much the vertex i is matched.
We will maintain the αi’s such that, given xi, we will know exactly what αi is. Thus, we will
know how much αi increases by considering how much xi was incremented by water level.
Given the increments in αi’s, we will know what value to set βj because we will maintain
that the primal and dual objectives will always be the same. So, the dual objective will be
increased by the same amount as the primal, which is the amount of matching done by the
water level algorithm on the arrival of online vertex j.

Hence, first, we will describe how to maintain the αi’s.

0.50 1

0.25

0.75

1

xi −−−−−→

αi

(0.5, 0.25)

(1, 0.75)x

For the first half fraction of the matching, for any vertex i ∈ L, if a fractional matching
of size p is done between i and j ∈ R, then we shall increment αi by p/2 and βj by p/2.
Whereas, if u is already matched more than 0.5, then for a matching of size x, we shall
increment αi by x, and we shall not increment βj at all.

A. Bhangale, A. Chakraborty, and P. Harsha 13:17

Firstly, note that we never decrease any dual variables. So if some dual constraint is
satisfied at a given time then it will certainly be satisfied in the future. We shall now see
that whenever a new vertex j ∈ R arrives, both the newly introduced edges (i1, j) and (i2, j)
satisfy approximate dual feasibility. This will complete the proof.

In order to observe the approximate dual feasibility, we shall look at a few cases based on
how much i1 and i2 were matched right before the arrival of j.

1. i1 and i2 are completely unmatched.
Notice that in this case, the water-level algorithm will match j half to i1 and a half to
i2, and the primal increases by 1. Let us see how the dual variables are updated. Since
xi1 and xi2 are both at 0.5 we will have αi1 = αi1 = 0.25 which adds 0.5 to the dual
objective. Hence, we can add 0.5 to βj .
Therefore αi1 + βj = αi2 + βj = 0.75

2. i1 is xi1 fraction matched and i2 is completely unmatched
We will assume that i1 is xi1 fraction matched where xi1 ̸= 0. First, we note that the
water-level algorithm maintains that if xi1 ̸= 0, then we must have xi1 ≥ 0.5. In other
words, if a vertex i ∈ L starts getting matched, it will be matched at least till the half-level
mark. Hence we may assume xi1 ≥ 0.
In this case, water-level algorithm will first match xi1 fraction of vertex i2 to j and then
1−xi1

2 to i1 and 1−xi1
2 to i2. This will mean that 1+xi1

2 will be the updated value of xi1

and xi2 after vertex j is matched fractionally.
Hence, after the matching αi1 = αi2 = 0.25 + xi1

2 and βj = 0.25. Therefore αi1 + βj =
αi2 + βj = 0.5 + xi1

2 ≥ 0.75 since xi1 was greater than 1
2 .

Note that the case where i1 is completely unmatched but i2 is partially matched is
symmetric.

3. i1 is xi1 fraction matched and i2 is xi2 fraction matched
In this last case, when both i1 and i2 were partially matched to begin with (hence, at
least half matched as stated earlier), we can see that the water-level algorithm would
end up matching i1 and i2 to j - whatever fraction of i1 and i2 was still unmatched.
After this, we will have xi1 = xi2 = 1 and therefore αi1 = αi2 = 0.75 and therefore
αi1 + βj = αi2 + βj = 0.75. ◀

6 Conclusion

An interesting open problem is finding the right competitive ratios for the integral online
bipartite matching for (online) degree d unweighted graphs. If we denote the competitive
ratios by F(d), for fractional, and I(d), for integral, respectively, then we have shown that
I(2) = 0.717772 Given that F(2) = 0.75, it would be interesting to find the values of
I(d) when d ≥ 3 and compare them with F(d) especially given that we know both I(d) and
F(d) approach 1 − 1

e as d approaches infinity. We conjecture that F(d) and I(d) will be
different for all d ≥ 2.

It is also interesting to ask the more general question: given an algorithm that computes
fractional solutions for a given class of graphs, how well can we round a fractional solution
into a randomized integral solution?

References
1 Susanne Albers and Sebastian Schubert. Online ad allocation in bounded-degree graphs. In

Kristoffer Arnsfelt Hansen, Tracy Xiao Liu, and Azarakhsh Malekian, editors, Proc. 18th
International Conference on Web and Internet Economics (WINE), volume 13778 of LNCS,
pages 60–77. Springer, 2022. doi:10.1007/978-3-031-22832-2_4.

ISAAC 2025

https://doi.org/10.1007/978-3-031-22832-2_4

13:18 Optimal Online Bipartite Matching in Degree-2 Graphs

2 Susanne Albers and Sebastian Schubert. Tight bounds for online matching in bounded-degree
graphs with vertex capacities. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz
Herman, editors, Proc. 30th Annual European Symp. of Algorithms (ESA), volume 244 of
LIPIcs, pages 4:1–4:16. Schloss Dagstuhl, 2022. doi:10.4230/LIPICS.ESA.2022.4.

3 Yossi Azar, Ilan Reuven Cohen, and Alan Roytman. Online lower bounds via duality. In
Philip N. Klein, editor, Proc. 28th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 1038–1050, 2017. doi:10.1137/1.9781611974782.66.

4 Claude Berge. Two theorems in graph theory. PNAS, 43(9):842–844, 1957. doi:10.1073/
pnas.43.9.842.

5 Guy Blanc and Moses Charikar. Multiway online correlated selection. In Jelani Nelson, editor,
Proc. 63rd IEEE Symp. on Foundations of Comp. Science (FOCS), pages 1277–1284, 2022.
doi:10.1109/FOCS52979.2021.00124.

6 Niv Buchbinder, Kamal Jain, and Joseph (Seffi) Naor. Online primal-dual algorithms for
maximizing ad-auctions revenue. In Lars Arge, Michael Hoffmann, and Emo Welzl, editors,
Proc. 15th Annual European Symp. of Algorithms (ESA), volume 4698 of LNCS, pages 253–264.
Springer, 2007. doi:10.1007/978-3-540-75520-3_24.

7 Niv Buchbinder and Joseph (Seffi) Naor. The design of competitive online algorithms via
a primal-dual approach. Found. Trends Theor. Comput. Sci., 3(2-3):93–263, 2009. doi:
10.1561/0400000024.

8 Niv Buchbinder, Joseph (Seffi) Naor, and David Wajc. Lossless online rounding for online
bipartite matching (despite its impossibility). In Nikhil Bansal and Viswanath Nagarajan,
editors, Proc. 34th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 2030–
2068, 2023. doi:10.1137/1.9781611977554.CH78.

9 Deeparnab Chakrabarty and Gagan Goel. On the approximability of budgeted allocations and
improved lower bounds for submodular welfare maximization and GAP. SIAM J. Comput.,
39(6):2189–2211, 2010. (Preliminary version in 49th FOCS, 2008). doi:10.1137/080735503.

10 Denis Xavier Charles, Max Chickering, Nikhil R. Devanur, Kamal Jain, and Manan Sanghi. Fast
algorithms for finding matchings in lopsided bipartite graphs with applications to display ads.
In David C. Parkes, Chrysanthos Dellarocas, and Moshe Tennenholtz, editors, Proc. 11th ACM
Conf. Electronic Commerce (EC), pages 121–128. ACM, 2010. doi:10.1145/1807342.1807362.

11 Ilan Reuven Cohen and Binghui Peng. Primal-dual schemes for online matching in bounded
degree graphs. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz
Herman, editors, Proc. 31st Annual European Symp. of Algorithms (ESA), volume 274 of
LIPIcs, pages 35:1–35:17. Schloss Dagstuhl, 2023. doi:10.4230/LIPICS.ESA.2023.35.

12 Ilan Reuven Cohen and David Wajc. Randomized online matching in regular graphs. In Artur
Czumaj, editor, Proc. 29th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
960–979, 2018. doi:10.1137/1.9781611975031.62.

13 Nikhil R. Devanur and Thomas P. Hayes. The adwords problem: online keyword matching
with budgeted bidders under random permutations. In John Chuang, Lance Fortnow, and
Pearl Pu, editors, Proc. 10th ACM Conf. on Electronic Commerce (EC), pages 71–78. ACM,
2009. doi:10.1145/1566374.1566384.

14 Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized primal-dual analysis
of RANKING for online bipartite matching. In Sanjeev Khanna, editor, Proc. 24th Annual
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 101–107, 2013. doi:10.1137/1.
9781611973105.7.

15 Tomer Ezra, Michal Feldman, Nick Gravin, and Zhihao Gavin Tang. Online stochastic
max-weight matching: Prophet inequality for vertex and edge arrival models. In Péter Biró,
Jason D. Hartline, Michael Ostrovsky, and Ariel D. Procaccia, editors, Proc. 21st ACM Conf.
Economics and Comput. (EC), pages 769–787. ACM, 2020. doi:10.1145/3391403.3399513.

16 Matthew Fahrbach, Zhiyi Huang, Runzhou Tao, and Morteza Zadimoghaddam. Edge-weighted
online bipartite matching. J. ACM, 69(6):45:1–45:35, 2022. (Preliminary version in 61st FOCS,
2020). doi:10.1145/3556971.

https://doi.org/10.4230/LIPICS.ESA.2022.4
https://doi.org/10.1137/1.9781611974782.66
https://doi.org/10.1073/pnas.43.9.842
https://doi.org/10.1073/pnas.43.9.842
https://doi.org/10.1109/FOCS52979.2021.00124
https://doi.org/10.1007/978-3-540-75520-3_24
https://doi.org/10.1561/0400000024
https://doi.org/10.1561/0400000024
https://doi.org/10.1137/1.9781611977554.CH78
https://doi.org/10.1137/080735503
https://doi.org/10.1145/1807342.1807362
https://doi.org/10.4230/LIPICS.ESA.2023.35
https://doi.org/10.1137/1.9781611975031.62
https://doi.org/10.1145/1566374.1566384
https://doi.org/10.1137/1.9781611973105.7
https://doi.org/10.1137/1.9781611973105.7
https://doi.org/10.1145/3391403.3399513
https://doi.org/10.1145/3556971

A. Bhangale, A. Chakraborty, and P. Harsha 13:19

17 Jon Feldman, Monika Henzinger, Nitish Korula, Vahab S. Mirrokni, and Clifford Stein. Online
stochastic packing applied to display ad allocation. In Mark de Berg and Ulrich Meyer, editors,
Proc. 18th Annual European Symp. of Algorithms (ESA), Part I, volume 6346 of LNCS, pages
182–194. Springer, 2010. doi:10.1007/978-3-642-15775-2_16.

18 Jon Feldman, Nitish Korula, Vahab S. Mirrokni, S. Muthukrishnan, and Martin Pál. Online ad
assignment with free disposal. In Stefano Leonardi, editor, Proc. 5th International Workshop
on Internet and Network Economics (WINE), volume 5929 of LNCS, pages 374–385. Springer,
2009. doi:10.1007/978-3-642-10841-9_34.

19 Jon Feldman, Aranyak Mehta, Vahab S. Mirrokni, and S. Muthukrishnan. Online stochastic
matching: Beating 1− 1

e
. In Daniel A. Spielman, editor, Proc. 50th IEEE Symp. on Foundations

of Comp. Science (FOCS), pages 117–126, 2009. doi:10.1109/FOCS.2009.72.
20 Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and David Wajc.

Online matching with general arrivals. In David Zuckerman, editor, Proc. 60th IEEE Symp. on
Foundations of Comp. Science (FOCS), pages 26–37, 2019. doi:10.1109/FOCS.2019.00011.

21 Ruiquan Gao, Zhongtian He, Zhiyi Huang, Zipei Nie, Bijun Yuan, and Yan Zhong. Improved
online correlated selection. In Nisheeth Vishnoi, editor, Proc. 62nd IEEE Symp. on Foundations
of Comp. Science (FOCS), pages 1265–1276, 2021. doi:10.1109/FOCS52979.2021.00123.

22 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In Shang-Hua Teng, editor, Proc. 19th Annual ACM-SIAM Symp.
on Discrete Algorithms (SODA), pages 982–991, 2008. URL: http://dl.acm.org/citation.
cfm?id=1347082.1347189.

23 Bernhard Haeupler, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Online stochastic
weighted matching: Improved approximation algorithms. In Ning Chen, Edith Elkind,
and Elias Koutsoupias, editors, Proc. 7th International Workshop on Internet and Net-
work Economics (WINE), volume 7090 of LNCS, pages 170–181. Springer, 2011. doi:
10.1007/978-3-642-25510-6_15.

24 Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for on-line
bipartite matching. In Harriet Ortiz, editor, Proc. 22nd ACM Symp. on Theory of Computing
(STOC), pages 352–358, 1990. doi:10.1145/100216.100262.

25 Harold W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955. doi:10.1002/nav.3800020109.

26 Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. Games Econ. Behav., 55(2):270–296, 2006. doi:10.1016/J.GEB.2005.02.
006.

27 Aranyak Mehta. Online matching and ad allocation. Found. Trends Theor. Comput. Sci.,
8(4):265–368, 2013. doi:10.1561/0400000057.

28 Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. Adwords and
generalized online matching. J. ACM, 54(5):22, 2007. (Preliminary version in 46th FOCS,
2005). doi:10.1145/1284320.1284321.

29 Joseph (Seffi) Naor and David Wajc. Near-optimum online ad allocation for targeted advertising.
ACM Trans. Economics and Comput., 6(3-4):16:1–16:20, 2018. (Preliminary version in 16th
EC, 2015). doi:10.1145/3105447.

30 Yongho Shin and Hyung-Chan An. Making three out of two: Three-way online correlated
selection. In Hee-Kap Ahn and Kunihiko Sadakane, editors, Proc. 32nd International Sym-
posium on Algorithms and Computation (ISAAC), volume 212 of LIPIcs, pages 49:1–49:17.
Schloss Dagstuhl, 2021. doi:10.4230/LIPICS.ISAAC.2021.49.

ISAAC 2025

https://doi.org/10.1007/978-3-642-15775-2_16
https://doi.org/10.1007/978-3-642-10841-9_34
https://doi.org/10.1109/FOCS.2009.72
https://doi.org/10.1109/FOCS.2019.00011
https://doi.org/10.1109/FOCS52979.2021.00123
http://dl.acm.org/citation.cfm?id=1347082.1347189
http://dl.acm.org/citation.cfm?id=1347082.1347189
https://doi.org/10.1007/978-3-642-25510-6_15
https://doi.org/10.1007/978-3-642-25510-6_15
https://doi.org/10.1145/100216.100262
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1016/J.GEB.2005.02.006
https://doi.org/10.1016/J.GEB.2005.02.006
https://doi.org/10.1561/0400000057
https://doi.org/10.1145/1284320.1284321
https://doi.org/10.1145/3105447
https://doi.org/10.4230/LIPICS.ISAAC.2021.49

	1 Introduction
	1.1 Brief overview

	2 Preliminaries
	2.1 Primal and Dual programs for bipartite matching

	3 Techniques
	4 Randomized Integral Matching
	4.1 Lower Bound
	4.2 Upper Bound
	4.2.1 Analysis of the half-half algorithm

	5 Fractional Matching
	5.1 Lower Bound
	5.2 Upper Bound

	6 Conclusion

