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Abstract
Given an undirected graph G, the problem of deciding whether G admits a simple and proper
time-labeling that makes it temporally connected is known to be NP-hard (Göbel et al., 1991). In
this article, we relax this problem and ask whether a given degree sequence can be realized as a
temporally connected graph. Our main results are a complete characterization of the feasible cases,
and a recognition algorithm that runs in O(n) time for graphical degree sequences (realized as simple
temporal graphs) and in O(n + m) time for multigraphical degree sequences (realized as non-simple
temporal graphs, where the number of time labels on an edge corresponds to the multiplicity of the
edge in the multigraph). In fact, these algorithms can be made constructive at essentially no cost.
Namely, we give a constructive O(n + m) time algorithm that outputs, for a given (multi)graphical
degree sequence d, a temporally connected graph whose underlying (multi)graph is a realization
of d, if one exists.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Discrete mathematics; Networks → Network design and planning algorithms

Keywords and phrases temporal paths, gossiping, (multi)graphical degree sequences, edge-disjoint
spanning trees, linear time algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2025.17

Related Version Full Version: https://arxiv.org/abs/2504.17743

Funding Arnaud Casteigts: Supported by the Swiss NSF, project RECAPT (200021-236640).
Michelle Döring: German Federal Ministry for Education and Research (BMBF) through the project
“KI Servicezentrum Berlin Brandenburg” (01IS22092).
Nils Morawietz: Supported by the French ANR, project ANR-22-CE48-0001 (TEMPOGRAL).

Proof of statements marked with (⋆) are deferred to the full version.

1 Introduction

The problem of assigning time labels to the edges of a graph in such a way that every vertex
can reach every other vertex by a non-decreasing path (temporal path) is known as the
gossiping problem. Problems of this type were extensively studied in the late 70s - early 90s
(see, e.g. [21, 22]), initially motivated by optimal scheduling of phone calls, where the agents
are represented by vertices and the calls by time-labeled edges (e.g. [17, 6]). Most of the
research in this line consider interactions that are mutually exclusive (an agent cannot have
multiple phone calls at the same time) and non-repetitive (two agents cannot call each other
twice). One of the landmark results in this area was obtained in 1991 by Göbel et al. [16],
who showed that deciding whether a given graph admits such a labeling is NP-complete.

© Arnaud Casteigts, Michelle Döring, and Nils Morawietz;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Algorithms and Computation (ISAAC 2025).
Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 17; pp. 17:1–17:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arnaud.casteigts@unige.ch
https://orcid.org/0000-0002-7819-7013
mailto:michelle.doering@hpi.de
https://hpi.de/friedrich/people/michelle-doering.html
https://orcid.org/0000-0001-7737-3903
mailto:nils.morawietz@uni-jena.de
https://orcid.org/0000-0002-7283-4982
https://doi.org/10.4230/LIPIcs.ISAAC.2025.17
https://arxiv.org/abs/2504.17743
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


17:2 Realization of Temporally Connected Graphs Based on Degree Sequences

The past decade have seen a renewed interest in this type of problems, motivated by the
modeling of various types of dynamic networks, such as wireless networks, social networks,
autonomous vehicles, and transportation scheduling. In today’s terminology, the gossip
problem can naturally be rephrased in terms of temporal graphs. Formally, a temporal graph
is a pair G = (G, λ) where G = (V, E) is the underlying graph (in this work, undirected)
and λ is a mapping that assigns time labels to the edges. Such a labeling is simple if every
edge of G has a single time label, and it is proper if adjacent edges do not share any time
label. The graph G is temporally connected (i.e. in class TC) if there exists a path traversing
edges with non-decreasing times (temporal path) between each ordered pair of nodes. In this
terminology, the gossip problem corresponds to deciding, given a graph G, if there exists a
simple and proper labeling λ such that G = (G, λ) ∈ TC (and finding such a labeling).

A number of similar realizability questions have been considered recently in the temporal
graph literature, focusing on labelings that satisfy additional prescribed properties. For
example, several works investigate whether the labeling can ensure that the fastest temporal
paths between vertices match (or is upper-bounded by) a given matrix of pairwise dura-
tions [24, 12, 27, 26, 28]. Another problem asks that the temporal paths realize a target
reachability relation [11], under various restrictions of the labeling function (see [7, 8] for
discussions on the resulting expressivity). Further studies consider minimizing the number
of labels [1], minimizing reachability times [10], maximizing overall reachability sets [5], or
avoiding temporal cycles [2], to name a few.

Broadly speaking, all these problems, and their non-temporal versions before them, are
part of a long series of realizability questions in graph theory, having their root in the
seminal work of Erdős and Gallai [14] and Havel and Hakimi [20, 18] on whether (and how,
respectively) a given degree sequence can be realized as a (static) graph.

In this work, we return to the roots of realizability questions, studying the temporal analog
of Erdős and Gallai’s problem, namely, whether (and how) a given degree sequence can be
realized as a temporal graph in TC, for both the simple and non-simple cases. This question
is partly motivated by the hardness results of Göbel et al. [16], a natural question being how
to relax the input specification in a way that offers more flexibility (and tractability) for
realization. Another motivation is to investigate whether this format allows for an elegant
and concise characterization of all the feasible cases, a situation that is pretty rare in the
literature on temporal graphs.

Main results. Before stating the results, we recall that a degree sequence d is a non-increasing
list of integers. A degree sequence of length n is graphical if there exist an n-vertex (static)
graph whose vertices have exactly these values as their degrees. Moreover, d is multigraphical
if a multigraph with this degree distribution exists.

Our main result is a complete characterization of the graphical sequences that admit
a realization as a simple and proper temporal graph in TC. We refer to these sequences
as TC-realizable graphical sequences. The characterization, obtained in Section 5, is the
following:

▶ Theorem 5.1. A graphical sequence d = (d1, . . . , dn) with m := 1
2 ·

∑n
i=1 di edges is

TC-realizable if and only if one of the following holds:
m = 2n − 4, d1 < n − 1, and dn ≥ 2
m ≥ 2n − 3 and either (i) n ≤ 2 or (ii) n > 2, dn−1 ≥ 2, and dn ≥ 1.

We also characterize the degree sequences that can be realized as a non-simple and
proper temporal graph in TC, where non-simple means that a same edge can receive multiple
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time labels. Conveniently, non-simple temporal graphs are equivalent to simple temporal
graphs whose underlying graph is a multigraph and where each edge of the multigraph only
receives one label. Thus, the problem amounts to characterizing TC-realizable multigraphical
sequences. The characterization is:

▶ Theorem 5.2. A multigraphical sequence d = (d1, . . . , dn) with m := 1
2 ·

∑n
i=1 di edges is

TC-realizable if and only if one of the following holds:
m = 2n − 4 and dn ≥ 2
m ≥ 2n − 3 and either (i) n ≤ 2 or (ii) n > 2, dn−1 ≥ 2, and dn ≥ 1.

As one can see, both characterizations are close to each other, the set of TC-realizable
multigraphical sequences being of course more general (indeed, TC-realizable graphical
sequences are special cases of these). However, the difference is more important than one
may think by looking only at these theorems, because multigraphical sequences already differ
from graphical sequences. (Both standard characterizations will be recalled in the paper.)

On the algorithmic side, we show that TC-realizable graphical sequences can be recognized
in O(n) time and TC-realizable multigraphical sequences in O(n + m) time. We also give a
constructive O(n + m) time algorithm that outputs a temporal graph satisfying the desired
constraints (if one exists), this algorithm being obviously asymptotically optimal.

The fact that we consider proper labelings is not a limitation. Precisely, if non-proper
labelings are considered, then one may either consider strict (i.e. increasing) or non-strict
(i.e. non-decreasing) temporal paths. In the case of strict temporal paths, we know that non-
proper labelings can always be turned into proper labelings without reducing the reachability
relation [7]. Together with the fact that proper labelings are particular cases of non-proper
labelings, this implies that the feasible cases are the same as in the proper setting. If one
considers non-strict temporal paths instead, then the problem becomes trivial to solve: a
single spanning tree suffices (with the same time label on every edge). Thus, in this case, the
problem reduces to testing if the sequence can be realized as a connected graph, which from
earlier works [25, 23, 15] is the case if and only if m ≥ n − 1 and dn ≥ 1.

Technical overview. The characterization of TC-realizable graphs in terms of input graphs
is complicated. Some necessary and sufficient conditions are known from the work of Göbel
et al. [16] (itself based on earlier works in gossip theory [19, 17, 6]), the remaining cases being
NP-hard to decide. A necessary condition for these graphs is to contain two spanning trees
that share at most two edges. If the graphs admit two spanning trees that share at most
one edge, then this is sufficient: the graph is TC-realizable. The case with two shared edges
is further constrained. If the number of edges is exactly 2n − 4, then it is necessary and
sufficient that the two shared edges belong to a central cycle of length 4. Göbel et al. [16]
called such graphs “C4-graphs” (although they do not consist only of a cycle of length 4. To
avoid this confusion, we use the term C4-pivotable graphs instead. A formal definition is given
in Section 2). Otherwise, there may exist feasible cases which are difficult to characterize,
and these cases are precisely the ones making the problem NP-hard. Interestingly, our results
imply that the framework of degree sequences allows one to circumvent these hard cases
entirely.

Our characterization proceeds as follows: First, we note that the characterization of
degree sequences which are realizable as a graph admitting two edge-disjoint spanning trees
is known [25]. Thus, we focus on characterizing the degree sequences that can be realized as
a graph admitting two spanning trees sharing exactly one edge, and, for degree sequences
corresponding to exactly 2n − 4 edges, we characterize the ones admitting a realization
with the above C4-pivotable graph property. Surprisingly, these cases already cover all the
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17:4 Realization of Temporally Connected Graphs Based on Degree Sequences

TC-realizable graphical sequences. Namely, if a graph has strictly more than 2n − 4 edges
and is TC-realizable, then its degree sequence could also be realized as a graph with two
spanning trees sharing at most one edge, falling back on the previous cases. In other words,
a significant by-product of our analysis is that the difficult graphs can safely be ignored in
the framework of degree sequences.

In light of these explanations, the feasible cases stated in Theorem 5.1 correspond
respectively to the following theorems in the paper: A degree sequence is TC-realizable
if and only if it admits (i) a realization which is a C4-pivotable graph (Theorem 4.1) or
(ii) a realization with two spanning trees that share at most one edge (Theorem 3.1). For
multigraphical sequences, we prove the characterization similarly.

All of our proofs are constructive and rely on deconstructing recursively the degree
sequence to a smaller degree sequence, using gadgets that preserve two edge-disjoint spanning
trees in the constructed graph (up to a central component). These constructive proofs can
be implemented efficiently by using a suitable data structure that stores the degree sequence
and the respective graph efficiently. The labeling is then handled separately by a dedicated
procedure that achieves the claimed time using our data structure and extra features offered
by the above structural algorithms.

Temporal graphs are notoriously intractable objects. Most of the results in this young
field are negative and most of the problems turn out to be computationally hard, often due
to the non-symmetric and non-transitive nature of reachability. In this respect, the fact the
feasible cases for TC-realizability admit a characterization that is at the same time compact,
purely structural, and easy to recognize appears to be significant. This situation is clearly
an exception in the landscape of temporal graphs studies.

2 Definitions and Important Existing Results

A temporal graph is a pair G = (G, λ), where G = (V, E) is a standard (in this work,
undirected) graph called the underlying graph of G, and λ : E → 2N is a labeling function that
assigns a non-empty set of time labels to every edge of E, interpreted as availability times.
The labeling function λ can be restricted in various ways. It is called proper if adjacent edges
cannot share a common time label (λ is locally injective), and it is called simple if every edge
has exactly one time label (λ is single-valued). The typical setting of gossiping, including
that of Göbel et al. [16], requires that the labeling is both proper and simple.

A pair (e, t) such that t ∈ λ(e) is a temporal edge of G. A temporal path in G is a
sequence of temporal edges ⟨(ei, ti)⟩ such that ⟨ei⟩ is a path in the underlying graph and ⟨ti⟩
is non-decreasing (such a path is strict if ⟨ti⟩ is increasing). A temporal graph G is temporally
connected (in class TC) if temporal paths exist between all ordered pairs of nodes. Observe
that, beyond modeling mutually exclusive interaction, the proper setting has the technical
advantage of removing the distinction between strict and non-strict temporal paths (indeed,
all the temporal paths in this case are de facto strict), which allows us to rely on a single
definition of TC throughout the paper.

We can now state the gossiping problem as follows: We are given an undirected
(multi)graph G and the question is whether there exists a simple and proper labeling
of G such that the resulting temporal graph is temporally connected (i.e., in TC).

The original realizability question of Erdős and Gallai asks the following question:

Degree Sequence Realization
Input: A degree sequence d = (d1, . . . , dn).
Question: Does there exist a graph G = (V, E) with V = {v1, . . . , vn} such that vi

has degree di?
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When the answer is yes, the degree sequence d is called graphical and G is called a
realization of d. If multiedges are permitted in G and if there is a multigraph that realizes d,
then the sequence is instead called multigraphical [9]. In this work, we study the following
temporal version of the problem:

Degree Sequence TC Realization
Input: A degree sequence d = (d1, . . . , dn).
Question: Does there exist a realization G = (V, E) of d and a labeling λ such that
(G, λ) ∈ TC?

Next, we state important existing results on (multi)graphical degree sequences and
TC-realizable graphs and derive immediate consequences that we use throughout the paper.

Graphical Degree Sequences.

▶ Theorem 2.1 (Graphical Characterization [14, 29]). A degree sequence d = (d1, . . . , dn) is
graphical if and only if

(i)
n∑

i=1
di is even, and (ii) for each r ∈ [1, n − 1] :

r∑
i=1

di ≤ r · (r − 1) +
n∑

i=r+1
min(r, di).

Based on this characterization, we obtain the following sufficient condition under which
degree sequences with few edges are graphical.

▶ Corollary 2.2 (⋆). Let d = (d1, . . . , dn) be a degree sequence with
∑n

i=1 di being even,∑n
i=1 di ≤ 4(n − 1), n > 4, d1 ≤ n − 1, and dn ≥ 2. Then d is graphical if d4 ≥ 3.

We will make use of this corollary several times in this work to easily argue that specific
degree sequences are graphical. Similarly, we also obtain the following sufficient condition.

▶ Corollary 2.3. Let d = (d1, . . . , dn) be a degree sequence with
∑n

i=1 di = 4(n − 1) − 2,
n > 4, d1 ≤ n − 1, dn−1 ≥ 2, and dn ≥ 1. Then d is graphical if d4 ≥ 3.

The following algorithm constructs a graph from a graphical degree sequence.

▶ Definition 2.4 (Graphical Laying Off Process [18]). Let d = (d1, . . . , dn) be a graphical
sequence. The laying off procedure consists of connecting the vertex vi to the first di vertices,
excluding vi. The resulting residual sequence is given by:

(d1 − 1, . . . , ddi
− 1, ddi+1, . . . , di−1, di+1, . . . , dn) if di < i,

(d1 − 1, . . . , di−1 − 1, di+1 − 1, . . . , ddi+1 − 1, ddi+2, . . . , dn) if di ≥ i.

The next lemma implies that the laying off process can be used iteratively to build a realization
for a graphical degree sequence.

▶ Lemma 2.5 ([13, 18]). If d = (d1, . . . , dn) is a graphical sequence, then the residual
sequence after laying off any entry is also graphical.

Multigraphical degree sequences.

▶ Theorem 2.6 (Multigraphical Characterization [18]). A degree sequence d = (d1, . . . , dn) is
multigraphical if and only if

(i)
∑n

i=1 di is even, and (ii) d1 ≤
n∑

i=2
di.

ISAAC 2025



17:6 Realization of Temporally Connected Graphs Based on Degree Sequences

For multigraphical sequences there also exists a “laying off” process which is similar to
Definition 2.4, but more flexible. Contrary to the graphical case, where a whole degree is
laid off, in the multigraphical case, only a single edge is laid off.

▶ Theorem 2.7 (Multigraphical Laying Off Process [4]). Let d = (d1, . . . , dn) be a multi-
graphical degree sequence with dn > 0. Then, for each j, 2 ≤ j ≤ n, the degree sequence
(d1 − 1, d2, . . . , dj−1, dj − 1, dj+1, . . . , dn) is multigraphical (after reordering).

(Multi)graphical sequences admitting two edge-disjoint spanning trees. The characteri-
zation of sequences admitting a realization with k edge-disjoint spanning trees is identical for
graphical and multigraphical sequences. For graphical sequences, it was proven constructively
by Kundu for k = 2 [25] and extended to general k by Kleitman and Wang [23]. The
multigraphical case was shown non-constructively by Gu, Hai, and Liang [15]. While we
focus on the case k = 2, we state the full characterization below.

▶ Theorem 2.8 ([25, 23, 15]). A (multi)graphical sequence d = (d1, . . . , dn) with n ≥ 2
admits a (multigraphical) realization with k ∈ N edge-disjoint spanning trees if and only if

(i) dn ≥ k, and (ii)
n∑

i=1
di ≥ 2 · k(n − 1).

TC-realizable graphs. Finally, we provide an overview on some known necessary and
sufficient conditions of TC-realizable (multi)graphs.

▶ Lemma 2.9 ([17]). Let G be a TC-realizable (multi)graph on n vertices. Then G has at
least 2n − 4 edges.

▶ Lemma 2.10 ([3]). Let G be a (multi)graph with two spanning trees that share at most
one edge. Then G is TC-realizable.

▶ Definition 2.11 (Reformulation of Göbel et al. [16]). A graph G on n vertices and 2n − 4
edges is a C4-pivotable graph if G contains an induced cycle Cof length 4 (called a central
cycle) and two spanning trees that share exactly two edges, where both shared edges are
from C.

This definition is equivalent to the one provided by Göbel et al. [16], since no tree can
contain more than three edges of the central cycle, and due to the number of edges, each
edge of the cycle is contained in at least one of the two spanning trees.

▶ Lemma 2.12 ([16]). Let G be a graph with n vertices and 2n − 4 edges. Then G is
TC-realizable if and only if G is a C4-pivotable graph.

Even though it is not explicitly stated [16], the following generalization of C4-pivotable
graphs to multigraphs also is TC-realizable by the same labeling procedure used for C4-
pivotable graphs.1

▶ Definition 2.13. A multigraph G on n vertices and 2n−4 edges is a C4-pivotable multigraph
if G contains an induced cycle C of length 4 (called a central cycle) and two spanning trees
that share exactly two edges, where both shared edges are from C.

Here, an induced cycle in a multigraph G has the additional property that each edge of C

exists exactly once in G. Note that a C4-pivotable graph is also a C4-pivotable multigraph.

▶ Corollary 2.14. Let G be a C4-pivotable multigraph. Then G is TC-realizable.

1 We will recall this labeling procedure in the full version.
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dn−1 ≥ 2 and

dn ≥ 1?

yes

no × Lem 3.2

dn

Lem 3.5

≥ 2

= 1

∑n
i=1 di

≥ 4(n− 1)

= 4(n− 1)− 2

Thm 2.8

dn

Lem 3.6

Lem 3.8
= 2

= 3

Figure 1 A guideline for the individual steps for the proof of Theorem 3.1.

3 Realizations with Two Spanning Trees Sharing at Most one Edge

In this section, we establish the following characterization of sequences that allow for a
realization with two spanning trees that share (at most) one edge.

▶ Theorem 3.1. Let d = (d1, . . . , dn) be a graphical sequence. Then, d admits a realization
with two spanning trees that share at most one edge if and only if

∑n
i=1 di ≥ 4(n − 1) − 2

and (i) n ≤ 2 or (ii) n > 2, dn−1 ≥ 2, and dn ≥ 1.

First, we consider the special cases of n ≤ 2. To this end, note that {(0), (0, 0), (1, 1)} are
exactly the graphical sequences of length at most 2. Each of these sequences has a unique
realization and (0, 0) is the only sequence for which the unique realization is not connected.
Hence for d = (0, 0), there is no realization with two spanning trees that share at most
one edge and

∑
d = 0 < 2 = 4(n − 1) − 2. For d ∈ {(0), (1, 1)},

∑
d ≥ 4(n − 1) − 2 and

there is no realization with two spanning trees that share at most one edge. This proves the
equivalence for part (i) of Theorem 3.1.

By the above, we may assume n > 2 and proceed to show the forward direction for part
(ii) of Theorem 3.1. Figure 1 provides a guideline for the steps of the proof of this case.

▶ Lemma 3.2 (⋆). Let d = (d1, . . . , dn) be a graphical sequence with n > 2. If d admits a
realization with two spanning trees that share at most one edge, then

∑n
i=1 di ≥ 4(n − 1) − 2,

dn−1 ≥ 2, and dn ≥ 1.

Realizability. Now, we consider the backward direction for part (ii) of Theorem 3.1. That
is, we will show the following.

▶ Lemma 3.3. Let d = (d1, . . . , dn) be a graphical sequence with
∑n

i=1 di ≥ 4(n − 1) − 2,
n > 2, dn−1 ≥ 2, and dn ≥ 1. Then d admits a realization with two spanning trees that share
at most one edge.

First, recall Theorem 2.8, for which the following is a corollary.

▶ Corollary 3.4 ([23]). Let d = (d1, . . . , dn) be a graphical sequence with
∑n

i=1 di ≥ 4(n − 1),
n > 2, and dn ≥ 2. Then d admits a realization that has two edge-disjoint spanning trees.

Hence, it remains to consider (i)
∑

d ≥ 4(n − 1) − 2, dn−1 ≥ 2, and dn = 1, and
(ii)

∑
d = 4(n − 1) − 2 and dn ≥ 2. We first consider the former.

▶ Lemma 3.5 (⋆). Let d be a graphical sequence with
∑n

i=1 di ≥ 4(n − 1) − 2, n > 2,
dn−1 ≥ 2, and dn = 1. Then d has a realization with two spanning trees that share one edge.

Now, we consider
∑

d = 4(n − 1) − 2 and dn ≥ 2. Note that these sequences are guaranteed
to fulfill dn ∈ {2, 3}, as otherwise,

∑
d ≥ 4n > 4(n−1)−2. We first prove the case of dn = 3

in Lemma 3.6, which is needed for the subsequent case dn = 2 in Lemma 3.8.

ISAAC 2025
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(3, 3, 3, 3, 3, 3) (4, 3, 3, 3, 3, 3, 3) (5, 3, 3, 3, 3, 3, 3, 3)

Figure 2 Realizations of the degree sequences d6 = (3, 3, 3, 3, 3, 3), d7 = (4, 3, 3, 3, 3, 3, 3),
and d8 = (5, 3, 3, 3, 3, 3, 3, 3) with two spanning trees T1 (solid orange edges) and T2 (dashed blue
edges) that share exactly one edge, shown from left to right.

▶ Lemma 3.6. Let d = (d1, . . . , dn) be a graphical sequence with
∑n

i=1 di = 4(n − 1) − 2
and dn = 3. Then d admits a realization with two spanning trees that share one edge.

Proof. We will show that n ≥ 6 in this case. To this end, we provide a lower bound on the
number of entries of value 3 in d.

▷ Claim 3.7 (⋆). Let ℓ be the smallest index of [1, n] for which dℓ = 3. Then, the number of
entries of value 3 in d is 6 +

∑ℓ−1
i=1(di − 4).

Note that this implies that d1 < n−1, as otherwise, d would contain at least n−1−4+6 > n

entries of value 3. We distinguish between d2 = 3 and d2 ≥ 4.
Firstly, consider the case that d2 = 3. Note that this implies by Claim 3.7 that d1 = n−3,

since
∑

d = 4(n − 1) − 2. In other words, for each n ≥ 6, there is exactly one degree
sequence dn := (dn

1 , . . . , dn
n) of length n with dn

2 = dn
n = 3 fulfilling

∑
dn = 4(n − 1) − 2.

Realizations with two spanning trees that share one edge for the three sequences d6, d7,
and d8 are depicted in Figure 2. Now, consider n ≥ 9. Recall that d1 = n − 3 and di = 3
for each i ∈ [2, n]. Moreover, recall that d6 = (3, 3, 3, 3, 3, 3) has a realization G′ with two
spanning trees T ′

1 and T ′
2 that share exactly one edge (see Figure 2). Let v1 be an arbitrary

vertex of degree 3 in G′. We obtain a graph G by adding a cycle C of length d1 − 3 = n − 6
to G′ and adding the edge v1x to G′ for each vertex x of the cycle C. Note that G is a
realization of d, since G contains 5 + d1 − 3 = n − 1 vertices of degree 3 and the degree
of v1 was increased by d1 − 3 to d1. Since Gc := G[{v1} ∪ C] consists of a universal vertex
attached to a cycle of length at least 3 (since d1 − 3 = n − 6 ≥ 3 by n ≥ 9), Gc contains two
edge-disjoint spanning trees T c

1 and T c
2 . Hence, T1 := T ′

1 ∪ T c
1 and T2 := T ′

2 ∪ T c
2 are spanning

trees of G, and T1 and T2 share only one edge, namely the edge shared by T ′
1 and T ′

2. Hence,
d admits a realization with two spanning trees that share one edge.

Secondly, consider the case that d2 ≥ 4. Note that Claim 3.7 thus implies that n ≥ d1 + 4,
since d2 ≥ 4 and d contains at least d1 − 4 + 6 = d1 + 2 entries of value 3. Let d′ be the
sequence obtained from d by removing the entry d1, removing d1 − 1 entries of value 3, and
adding a 1. We first show that d′ admits a realization with two spanning trees that share
one edge, and then describe how to construct the realization for d.

The remainder of this case is deferred to the full version. Intuitively, to then obtain
a desired realization, we attach, similar to the the first case, a large cycle to a degree-1
vertex v1. This time, the cycle has length d1 − 1 instead of d1 − 3 as in the first case. ◀

Finally, we consider the case where
∑

d = 4(n − 1) − 2 and dn = 2. Essentially, we
perform an induction over the length of the sequence and lay off the smallest degree dn = 2,
until we reach a sequence of constant length or dn has value unequal to 2. In the latter case,
the previous lemma acts as a base case.
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> 4

dn

≤ 1

d1

d1

= 3

= 2

Lem 4.5

Lem 4.4≤ 4

= n− 1

< n− 1

×Lem 4.2.

Lem 4.7

Figure 3 A guideline for the individual steps for the proof of Theorem 4.1.

▶ Lemma 3.8 (⋆). Let d = (d1, . . . , dn) be a graphical sequence with
∑n

i=1 di = 4(n − 1) − 2
and dn = 2. Then d admits a realization with two spanning trees that share one edge.

4 Realizations of C4-pivotable Graphs

In this section, we establish the following characterization of graphical sequences that allow
for a C4-pivotable graph realization.

▶ Theorem 4.1. Let d = (d1, . . . , dn) be a graphical sequence. Then, d admits a realization
which is a C4-pivotable graph if and only if

∑n
i=1 di = 4(n − 1) − 4, d1 < n − 1, and dn ≥ 2.

Figure 3 provides a guideline on the individual steps for proving Theorem 4.1. First, we
show the forward direction of Theorem 4.1. To this end, we analyze the minimum and
maximum degree of C4-pivotable graphs. This then directly proves the forward direction
of Theorem 4.1.

▶ Lemma 4.2 (⋆). Let G be a C4-pivotable graph on n vertices. Then G has a minimum
degree of at least 2 and a maximum degree of at most n − 2.

Realizability. Now, we show the backward direction. That is, we show the following.

▶ Lemma 4.3. Let d = (d1, . . . , dn) be a graphical sequence with
∑n

i=1 di = 4(n − 1) − 4,
d1 < n − 1, and dn ≥ 2. Then, d admits a realization which is a C4-pivotable graph.

To prove this statement, we assume that we are given a graphical sequence d with∑
d = 4(n − 1) − 4, d1 < n − 1, and dn ≥ 2. Note that these sequences are guaranteed to

fulfill dn ∈ {2, 3}, as otherwise,
∑

d ≥ 4n > 4(n − 1) − 4. We split the analysis in three cases.
First, we consider the case of dn = 3 and d1 ≤ 4 in Lemma 4.4, then dn = 3 and 5 ≤ d1 < n−1
in Lemma 4.5, and lastly dn = 2 and d1 < n − 1 in Lemma 4.6.

▶ Lemma 4.4. Let d = (d1, . . . , dn) be a graphical sequence with
∑n

i=1 di = 4(n − 1) − 4,
d1 ≤ 4 and dn = 3. Then d admits a realization which is a C4-pivotable graph.

Proof. Since
∑

d = 4(n − 1) − 4, d1 ≤ 4, and dn = 3, we get that n ≥ 8, dn−7 = 3, and
(if n > 8), dn−8 = 4. In other words, for each n ≥ 8, there is exactly one degree sequence dn

of length n with the required properties.
We show that dn admits a realization which is a C4-pivotable graph via induction over n.

In fact, we show a stronger result, namely, that for each n ≥ 8, dn has a realization G which
is a C4-pivotable graph with central cycle C, such that (i) there are two spanning trees T1
and T2 of G that share exactly two edges and both belong to C, and (ii) for each i ∈ [1, 2],
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c3 c2

c4 c1

c′2

c′1

c′3

c′4

c3 c2

c4 c1

c′2

c′1

c′3

c′4

v∗

Figure 4 Realization of the degree sequence d8 = (3, 3, 3, 3, 3, 3, 3, 3) from the base case in the
proof of Lemma 4.4, featuring the central 4-cycle C highlighted in gray, and two spanning trees T1

(solid orange edges) and T2 (dashed blue edges) that share exactly two edges, both contained in C.
The right side illustrates the inductive step.

there are two distinct edges ei, fi from Ti and outside of C for which {e1, e2} and {f1, f2} are
matchings in G. We call edge pairs (e1, e2) and (f1, f2) fulfilling these conditions matching
edge pairs.

For the base case of n = 8, consider the graph given in Figure 4 which is a realization
of d8 = (3, 3, 3, 3, 3, 3, 3, 3). As highlighted in the figure, there is a central cycle C on the
vertices c1, c2, c3, c4. Moreover, (c1c′

1, c2c′
2) and (c3c′

3, c4c′
4) are matching edge pairs. Hence,

the statement holds for the base case of n = 8.
Now let n > 8 and assume that the statement holds for n − 1. We show that the

statement also holds for n. Let G′ be a realization of dn−1 according to the properties of the
induction hypothesis. That is, G′ is a C4-pivotable graph with central cycle C, two spanning
trees T ′

1 and T ′
2 that share exactly two edges, both of which belong to C, and matching edge

pairs (e′
1, e′

2) and (f ′
1, f ′

2). Recall that dn can be obtained from dn−1 by adding a single entry
of value 4. The idea to obtain a realization for dn with these properties is by essentially
subdividing both edges e′

1 = pq and e′
2 = xy and identifying both newly added degree-2

vertices to obtain a new vertex v∗ (which then has degree 4). Formally, we obtain a graph G

by removing the edges e′
1 and e′

2 from G′ and afterwards adding a new vertex v∗ together
with the edges pv∗, qv∗, xv∗, yv∗.

Note that each vertex of V (G) \ {v∗} has the same degree in both G and G′ and v∗

has degree 4. Hence, G is a realization of dn. Moreover, since e′
1 and e′

2 are not part
of the central cycle C of G′, C is still a central cycle where T1 := (T ′

1 − e′
1) ∪ {pv∗, qv∗}

and T2 := (T ′
2 − e′

2) ∪ {xv∗, yv∗} being spanning trees of G that each share exactly two edges
and both of which belong to C. This implies that G is a C4-pivotable graph. It thus remains
to show that there are matching edge pairs (e1, e2) and (f1, f2) in G. To define these pairs,
we use the so far undiscussed pair (f ′

1, f ′
2). Since e′

1, e′
2, f ′

1, f ′
2 are pairwise distinct edges

in G′, f ′
1 and f ′

2 are still edges of G and moreover, f ′
1 is an edge of T1 and f ′

2 is an edge of T2.
Recall that xv∗ and yv∗ are edges of T2, and note that f ′

1 contains at most one of x and y as
an endpoint, as otherwise f ′

1 would be identical to e′
2. Hence, there is an edge e2 ∈ {xv∗, yv∗}

which is not adjacent to f ′
1, that is, {f ′

1, e2} is a matching in G. With the same arguments,
there is an edge e1 ∈ {pv∗, qv∗} which is not adjacent to f ′

2, that is, {e1, f ′
2} is a matching

in G. This implies that (f ′
1, e2) and (e1, f ′

2) are matching edge pairs. Consequently, the
statement holds for n.

Concluding, for each n ≥ 8, the degree sequence dn admits a C4-pivotable graph
realization. ◀

Next, we consider the case that 5 ≤ d1 < n − 1 and dn = 3.
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v1

G′

y

x

z′

x′

z

y′

Figure 5 Construction of the graph G described in the proof of Lemma 4.5.

▶ Lemma 4.5 (⋆). Let d = (d1, . . . , dn) be a graphical sequence with
∑n

i=1 di = 4(n − 1) − 4,
5 ≤ d1 < n − 1, and dn = 3. Then d admits a realization which is a C4-pivotable graph.

Sketch. Essentially, we can show that the degree sequence d′ obtained by reducing v1 by 2
and removing six entries of value 3, has a realization G′ with two edge-disjoint spanning
trees. To this graph, we then attach the six vertices as depicted in Figure 5 to a vertex v1 of
degree d1 − 2 in G′. The resulting graph is then a C4-pivotable graph realization of d. ◀

Finally, we consider the case where d1 < n − 1 and dn = 2. This proof is similar to the
proof of Lemma 3.8. Essentially, we perform an induction over the length of the sequence
and lay off the smallest degree dn = 2, until we reach a sequence of constant length or dn

has value 3. In the latter case, one of the previous two lemmas acts as a base case.

▶ Lemma 4.6 (⋆). Let d = (d1, . . . , dn) be a graphical sequence with
∑n

i=1 di = 4(n − 1) − 4,
d1 < n − 1, and dn = 2. Then d admits a realization which is a C4-pivotable graph.

5 The Characterizations for TC-realizable Sequences

We now prove our characterization for graphical and multigraphical TC-realizable sequences.

5.1 Realizations of TC-realizable Graphs
We now prove our characterization of TC-realizable graphical sequences restated as follows.

▶ Theorem 5.1. A graphical sequence d = (d1, . . . , dn) with s =
∑n

i=1 di is TC-realizable if
and only if one of the following holds

s = 4(n − 1) − 4, d1 < n − 1, and dn ≥ 2
s ≥ 4(n − 1) − 2 and (i) n ≤ 2 (ii) n > 2, dn−1 ≥ 2, and dn ≥ 1.

Proof. (⇐) If
∑

d = 4(n − 1) − 4, d1 < n − 1, and dn ≥ 2, then due to Theorem 4.1, d
has a realization G which is a C4-pivotable graph. By Harary and Schwenk [19] this implies
that G is TC-realizable and thus that d is TC-realizable.

If
∑

d ≥ 4(n − 1) − 2 and (i) n ≤ 2 or (ii) n > 2, dn−1 ≥ 2, and dn ≥ 1, then d admits a
realization G which has two spanning trees that share at most one edge (see Theorem 3.1). By
Harary and Schwenk [19] this implies that G is TC-realizable and thus that d is TC-realizable.

(⇒) Suppose that d is TC-realizable and let G be one of its realizations. By Haj-
nal et al. [17], G has at least 2n − 4 edges, which implies

∑
d ≥ 4(n − 1) − 4.

First, consider the case that
∑

d = 4(n − 1) − 4. That is, G has 2n − 4 edges. Hence, by
Göbel et al. [16], G is a C4-pivotable graph. Thus, by Theorem 4.1, d1 < n − 1, and dn ≥ 2.

Second, consider the case that
∑

d ≥ 4(n − 1) − 2. Since G is TC-realizable, G is
connected. For n ≤ 2, d is from {(0), (1, 1)} as these are the only graphical sequences of
length at most 2 fulfilling

∑
d ≥ 4(n − 1) − 2. Thus, consider n > 2. Since G is connected
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and n > 2, G has a minimum degree of 1, which implies that dn ≥ 1. It remains to show
that dn−1 ≥ 2. To this end, assume towards a contradiction that dn−1 = dn = 1. Then, G

contains at least two vertices u and v of degree 1. These vertices are not adjacent in G, as
otherwise, G would not be connected. Hence, the unique edge eu incident with u and the
unique edge ev incident with v are distinct. Since G is TC-realizable, there is a TC-labeling
of the edges of G. To ensure that there is a temporal path from u to v, this labeling has to
assign a label to eu which is strictly smaller than the label assigned to ev. But simultaneously,
to ensure that there is a temporal path from v to u, the label assigned to ev has to be strictly
smaller than the label assigned to eu; a contradiction. Consequently, G contains no two
vertices of degree 1, which implies that dn−1 ≥ 2 and dn ≥ 1 in the case that n > 2. ◀

5.2 Realizations of TC-realizable Multigraphs
We now prove our characterization for TC-realizable multigraphical sequences:

▶ Theorem 5.2 (⋆). A multigraphical sequence d = (d1, . . . , dn) with s :=
∑n

i=1 di is
TC-realizable if and only if one of the following holds

s = 4(n − 1) − 4 and dn ≥ 2
s ≥ 4(n − 1) − 2 and (i) n ≤ 2 or (ii) n > 2, dn−1 ≥ 2, and dn ≥ 1.

Note that the only difference from the characterization of (simple) graphical sequences (see
Theorem 5.1) is the absence of the restriction d1 < n − 1 in the case m = 4(n − 1) − 4.

We show the statement in the following similarly to the graphical case.

Intermediate characterization for spanning trees with one shared edge. First, we provide
a characterization for multigraphical sequences that allow for a realization that has two
spanning trees with at most one shared edge.

▶ Theorem 5.3 (⋆). Let d = (d1, . . . , dn) be a multigraphical sequence. Then, d admits
a realization with two spanning trees that share at most one edge if and only if

∑n
i=1 di ≥

4(n − 1) − 2 and (i) n ≤ 2 or (ii) n > 2, dn−1 ≥ 2, and dn ≥ 1.

Intermediate characterization for C4-pivotable multigraphs. Next, we provide a charac-
terization for multigraphical sequences that allow for a realization which is a C4-pivotable
multigraph.

▶ Theorem 5.4. Let d = (d1, . . . , dn) be a multigraphical sequence. Then, d admits a
realization which is a C4-pivotable multigraph if and only if

∑n
i=1 di = 4(n−1)−4 and dn ≥ 2.

Proof. (⇒) By definition, each C4-pivotable multigraph on n vertices has exactly 2n − 4
multiedges. Hence,

∑
d = 4(n − 1) − 4 holds. Next, we show that dn ≥ 2 also has to hold.

The argument is identical to the one in the proof of Lemma 4.2: By definition, each vertex v

of a the C4-pivotable multigraphs G is (i) part of the central cycle or (ii) a vertex that has
at least one incident multiedge in each of the two spanning trees that only share edges of the
central cycle. In both cases, vertex v has degree at least 2. Hence, the minimum degree of G

is at least 2, which implies that dn ≥ 2 to allow for a realization which is a C4-pivotable
multigraph. This completes this direction.

(⇐) We have to show that d has a realization which is a C4-pivotable multigraph
if

∑
d = 4(n − 1) − 4 and dn ≥ 2. Note that this implies that n ≥ 4. To show the statement,

we distinguish between the possible values of dn−2.
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If dn−2 ≥ 3, then
∑

d − d1 ≥ 3(n − 3) + dn−1 + dn ≥ 3(n − 3) + 4 = 3(n − 1) − 2.
By

∑
d = 4(n − 1) − 4, this implies d1 ≤ n − 3. Thus, by Corollary 2.2, d is also a graphical

sequence, since d4 ≥ 3. This is due to the fact that dn−2 ≥ 3 and n ≥ 8, as otherwise,∑
d ≥ 3n > 4(n − 1) − 4. Hence, Theorem 4.1 thus implies that d admits a realization which

is a C4-pivotable graph (and thus a C4-pivotable multigraph).
Hence, we only need to consider the case that dn−2 = 2 = dn−1 = dn. First, we consider

special cases: d ∈ {(2, 2, 2, 2), (3, 3, 2, 2, 2)}. Note that these are the only two options for d
for which

∑
d = 4(n − 1) − 4, d1 ≤ 4, and dn−2 = dn−1 = dn = 2. Both these degree

sequences are graphical and fulfill d1 < n − 1 and dn ≥ 2. Hence, by Theorem 4.1, d admits
a realization which is a C4-pivotable graph (and thus a C4-pivotable multigraph).

For all other options of d, we can thus assume that d1 ≥ 4. Let d′ := (d′
1, . . . , d′

n′) be the
degree sequence with n′ := n − 3 obtained from d by (i) removing dn−2, dn−1, and dn, and
by (ii) reducing d1 by 2 (and potentially reordering).

▷ Claim 5.5 (⋆). d′ admits a realization G′ with two edge-disjoint spanning trees T ′
1 and T ′

2.

We obtain a realization G of d as follows: Let v1 denote an arbitrary vertex of G′ with
degree d1 − 2. We add three new vertices x, y, and z to G′ and add the edges xy, yz, v1x, v1z.
Note that G is a realization of d, since we added three new vertices of degree 2 to G′

and increased the degree of a vertex of degree d1 − 2 by 2. It remains to show that G is
a C4-pivotable multigraph. This is the case, since C := (v1, x, y, z) is an induced cycle of
length 4 in G and T1 := T ′

1 ∪ {v1x, xy, yz} and T2 := T ′
2 ∪ {v1z, xy, yz} are two spanning

trees of G that only share two edges and both these edges are from C (namely the edges xy

and yz). Consequently, d admits a realization which is a C4-pivotable multigraph. ◀

With these characterizations, we can prove our characterization for TC-realizable multi-
graphical sequences. The proof is similar to Theorem 5.1 and deferred to the full version.

6 Linear-Time Algorithm for Realizing TC (Multi)graphs

In the previous section, we presented a full characterization of (multi)graphical degree
sequences that are TC-realizable (see Theorems 5.1 and 5.2). These necessary and sufficient
conditions can be checked in O(n) time in the graphical and in O(n + m) time in the
multigraphical case, where m := 1

2 ·
∑

d denotes the number of edges in each realization.
Hence, in linear time, we can detect whether there is a TC-realizable graph for the given
degree sequence. It is, however, not clear how efficiently we can build such a realization. In
this section, we show that in both the graphical and multigraphical case, we can construct
such a realization (together with a TC-labeling) in O(n + m) time. To this end, we observe
that all existential proofs in the previous sections are constructive and allow for linear time
implementations with the help of a simple data structure.

First, we describe the data structure and its properties, afterwards, we explain how all
previous constructive algorithms can be implemented in linear time, and finally, we describe
how to obtain a TC-labeling for the constructed realization in linear time.

The data structure. We assume that all graphs be stored via adjacency list. Since our
arguments rely on spanning trees, we assign two Boolean flags to each edge to indicate
whether this edge is part of the first tree, the second tree, both, or neither of them. This
will allow to extract the two spanning trees in O(n + m) time, once the final realization is
constructed.
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We now come to the additional data structure for degree sequences and (multi)graphs.
Instead of storing degree sequences as sequences of numbers, we store them as double-linked
list that store entries of the form (x, c). Such an entry indicates that the respective degree
sequence contains exactly c entries of value x. The entries of the double-linked list are sorted
decreasingly according to their x-values. In this way, both in the graphical and multigraphical
case, we can lay off a degree di in O(di) time, since we only need to remove di and rearrange
the c-values of the at most di + 1 first entries of the data structure. In this data structure,
we can ensure that the degree sequence always stays sorted and no reordering is necessary.

Similarly, we use an additional data structure for (multi)graphs G. It is also a double-
linked list and stores entries of the form (x, S). Such an entry indicates that the vertices
of S are exactly the vertices of G that have degree exactly x. These entries are also sorted
decreasingly according to their x-values. This way, we can reattach a vertex of degree dn

to G by adding edges properly to vertices of the first dn entries of the data structure. That is,
we can obtain a realization for the degree sequence that, after laying off a vertex of degree dn,
leads to the degree sequence of G. In particular, this can be done in O(dn) time.

In case of a realization for a C4-pivotable (multi)graph, we also output the central cycle
separately.

Realizations for two edge-disjoint spanning trees. We now turn to the algorithmic aspects
of finding a realization with two edge-disjoint spanning trees and show that such a realization
can be computed in linear time.

For the graphical case, we used the result by Kundu [25]. While their proof is constructive
in nature, the arguments are brief and incomplete. Thus, we give a complete construction in
Lemma 6.1 and argue how it can be implemented in O(n + m) time using our data structure.

For the multigraphical case, we build on the result by Gu et al. [15], which was proven
non-constructively. In Lemma 6.4, we give a complete inductive construction for such
multigraphical sequences, and argue that this construction, too, can be carried out in
O(n + m) time using our data structure.

▶ Lemma 6.1 (⋆). Let d = (d1, . . . , dn) be a graphical sequence with
∑

d ≥ 4(n − 1) and
dn ≥ 2. We can compute a realization G of d and two disjoint spanning trees of G in
O(n + m) time.

Proof. To prove the statement, we show that for each n and for each graphical sequence d
of length n with

∑
d ≥ 4(n − 1) and dn ≥ 2, we can construct a realization with two

edge-disjoint spanning trees. We show this statement via induction over n.
For the base case, note that for n ∈ {1, 2, 3}, there is no graphical sequence of length n

that sums up to 4(n − 1). Moreover, for n = 4, (3, 3, 3, 3) is the only graphical sequence of
length n with

∑
d ≥ 4(n − 1) and dn ≥ 2. Since the complete graph on four vertices, which

obviously contains two edge-disjoint spanning trees, is the only realization of d, the base
case holds for n ≤ 4.

For the inductive step, let n ≥ 5 and assume that the statement holds for n − 1. Let d be
an arbitrary graphical sequence of length n fulfilling

∑
d ≥ 4(n − 1) and dn ≥ 2. We show

that d admits a realization with two edge-disjoint spanning trees. Observe that whenever∑
d = 4(n − 1), it holds that dn ∈ {2, 3} as otherwise

∑
d ≥ 4n.

If
∑

d = 4(n − 1) and dn = 2, or
∑

d > 4(n − 1) and dn ≥ 2, consider the residual
sequence d′ = (d′

1, . . . , d′
n′) of length n′ = n − 1 obtained from laying off the entry dn

according to Definition 2.4. In the full version, we show that this degree sequence fulfills the
conditions of the induction hypothesis and thus admits a realization with two edge-disjoint
spanning trees. Moreover, we can then obtain a desired realization for d by reattaching a
vertex of degree dn.
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Otherwise,
∑

d = 4(n − 1) and dn = 3. In that case, consider the sequence d′ obtained
from d by reducing d1 by 1 and removing the entry dn.

▷ Claim 6.2 (⋆). d′ admits a realization G′ with two edge-disjoint spanning trees T ′
1 and T ′

2.

Now consider the graph G obtained from G′ by adding a degree-3 vertex vn, connecting
it to a vertex v1 of G′ of degree d1 − 1, and inserting it on an arbitrary edge vivj of G′ with
v1 /∈ {vi, vj} (replacing vivj with vnvi and vnvj). Then G is a realization of d. Moreover, G

contains the edge-disjoint spanning trees T1 := T ′
1 ∪ v1vn and T2 := (T ′

2 − vivj) ∪ {vnvi, vnvj}.
We defer the analysis of the running time to the full version. ◀

For multigraphical sequences, we split the proof in two parts: we first show how to
construct the desired realization for a multigraphical sequence d with

∑
d = 4(n − 1) and

dn ≥ 2 in Lemma 6.3, and then describe how this can be used to obtain a realization for
every multigraphical sequence fulfilling

∑
d > 4(n − 1) and dn ≥ 2.

▶ Lemma 6.3 (⋆). Let d = (d1, . . . , dn) be a multigraphical sequence with
∑

d = 4(n − 1)
and dn ≥ 2. We can compute a realization G of d and two disjoint spanning trees of G in
O(n + m) time.

Sketch. Intuitively, this result is again obtained via a constructive induction over the of n.
Two cases are distinguished in the inductive step: If dn = 2, then simply laying off dn and
reattaching it to the provided solution for the sequence of length n − 1 provides a desired
realization. By our data structure, this laying off and reattaching can be done by a constant
time overhead. If dn = 3, then the degree sequence actually is graphical and the algorithm
behind Lemma 6.1 provides the desired result. ◀

The construction for sequences with a degree sum larger than 4(n − 1) follows directly
from the laying-off process for multigraphical sequences (Theorem 2.7), which reduces the
degree sum by two while preserving the length of the sequence.

▶ Lemma 6.4 (⋆). Let d = (d1, . . . , dn) be a multigraphical sequence with
∑

d ≥ 4(n − 1)
and dn ≥ 2. We can compute a realization G of d and two disjoint spanning trees of G in
O(n + m) time.

Realizations with spanning trees that share at most one edge and C4-pivotable graph
realizations. By carefully recalling the existential proofs of the previous sections, one can
observe that these proofs imply linear-time constructions by using the data structure.

▶ Lemma 6.5 (⋆). Let d be a (multi)graphical degree sequence. If d is TC-realizable, then
we can compute a realization of d in O(n + m) time.

Computing a TC-labeling. We recall the labeling schemes for TC-labelings (that can be
implemented in linear time) in the full version. We conclude the following algorithmic main
result of our work.

▶ Theorem 6.6 (⋆). Let d be a (multi)graphical degree sequence. We can decide in O(n +
m) time whether d is TC-realizable. If this is the case, then in O(n + m) time, we can
compute a (multi)graph G which is a realization of d together with a TC-labeling for G.
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7 Conclusion

In this work, we presented complete characterizations of graphical and multigraphical
degree sequences that admit temporally connected realizations under proper labelings. All
characterizations presented in this paper are constructive and lead to linear-time algorithms
for constructing TC realizations (including the corresponding labelings), provided that the
input satisfies the necessary conditions.

As explained in introduction, the fact that we only considered proper labelings is not
a limitation, as the remaining cases involving non-proper labelings are either trivial or
covered by our techniques. Thus, these results cover directly or indirectly all the possible
combinations of settings among proper/non-proper, simple/non-simple, and strict/non-strict.

Several natural questions could follow from the present work. For instance, one may ask
to enumerate all TC-realizable graphs of a given degree sequence, or ask for realizations
with additional constraints such as bounded lifetime, bounded diameter, or the existence
of temporal spanners of a certain size. Another promising avenue is to optimize over these
criteria while searching for a realization. Finally, the realizability question studied in this
paper could be generalized to temporal k-connectivity or to directed temporal graphs.
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