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Abstract
We consider the Minimum Multi-Commodity Flow Subgraph (MMCFS) problem: given a directed
graph G with edge capacities cap and a retention ratio α ∈ (0, 1), find an edge-wise minimum
subgraph G′ ⊆ G such that for all traffic matrices T routable in G using a multi-commodity
flow, α · T is routable in G′. This natural yet novel problem is motivated by recent research that
investigates how the power consumption in backbone computer networks can be reduced by turning
off connections during times of low demand without compromising the quality of service. Since the
actual traffic demands are generally not known beforehand, our approach must be traffic-oblivious,
i.e., work for all possible sets of simultaneously routable traffic demands in the original network.

In this paper we present the problem, relate it to other known problems in literature, and
show several structural results, including a reformulation, maximum possible deviations from the
optimum, and NP-hardness (as well as a certain inapproximability) already on very restricted
instances. The most significant contribution is a max(1/α, 2)-approximation based on a surprisingly
simple LP-rounding scheme. We also give instances where this worst-case approximation ratio is
met and thus prove that our analysis is tight.
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1 Introduction

We present the (suprisingly seemingly novel) network design problem Minimum Multi-
Commodity Flow Subgraph (MMCFS): given a directed flow network G with edge capacities
and a retention ratio α ∈ (0, 1), find a subnetwork G′ ⊆ G of minimum size such that G′

still allows for a multi-commodity flow (MCF) routing of any traffic demands routable in G

when they are scaled down by factor α.
The problem arises naturally in recent research concerning power saving in backbone

(Tier 1) networks of Internet service providers. There, the overall amount of traffic has
distinct peaks in the evenings (when people are, e.g., streaming videos) and lows late at night
and in the early mornings [40]. Clearly, the networks are built to handle the peak times.
This opens up the possibility to reduce the power consumption of the network by turning off
some resources – e.g., connections, line cards, or servers – during low traffic periods [44, 14].
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19:2 Traffic-Oblivious Multi-Commodity Flow Network Design

So consider a computer network that allows for the simultaneous routing of the traffic
at peak times. This traffic is comprised of a set of commodities, where each commodity is
identified by a pair of nodes (s, t) in the network and has a demand d specifying that d flow
units have to be sent from s to t. The entirety of the demands for each pair of nodes is
encoded in a traffic matrix T . Commonly, one makes the simplifying assumption that during
low traffic periods the traffic demands are upper bounded by a down-scaling of T using a
factor α ∈ (0, 1); the most practically relevant scenarios concern α ≥ 1

2 [34]. The task now
is to minimize the size of the network by deactivating connections such that the reduced
network still accommodates a routing of the scaled-down demands α ·T . However, in practice
the traffic matrix T may change from day to day (in fact, even within sampling windows of
15 minutes) and while we can assume the capacity of the network to be large enough for all
occurring traffic at any given time, T is usually not known beforehand. Thus, our solution
should be traffic-oblivious, i.e., independent of any specific traffic matrix.

Technically, routing in realistic scenarios is not done via fully general multi-commodity
flows: while MCF would be optimal in terms of minimizing congestion [40], it would be too
complicated and temporally unstable for the routing hardware. Instead, simpler techniques
like 2-segment routing are used (which, in contrast to trivial shortest path routing, routes
flow along a sequence of two chained shortest subpaths) [19]. Interestingly, studies show
that in realistic networks, these routing solutions are virtually identical to those achieved by
MCF [40, 12]. At the same time, for a given fixed network and traffic matrix, an MCF can
be computed in polynomial time while establishing an optimal routing table for 2-segment
routing (which is then deployable on router hardware) is NP-hard [25]. Thus, we describe the
feasibility of solutions in our problem setting in terms of routability via MCF, and assume
that realistic (simpler) routing protocols will still be able to attain effective routability.

Let us give a formal description of our problem: Given a directed graph (or digraph) G =
(V,E) with positive edge capacities cap : E → Q and a traffic matrix T , a flow fs,t : E → Q
from a vertex s ∈ V to a vertex t ∈ V is a function satisfying the flow conservation constraints

∑
uv∈E

fs,t(uv) −
∑

vu∈E

fs,t(vu) =


−T (s, t) if v = s

T (s, t) if v = t

0 else
∀v ∈ V.

A multi-commodity flow (MCF) is a set of flows F = {fs,t | (s, t) ∈ V 2} satisfying∑
(s,t)∈V 2

fs,t(uv) ≤ cap(uv) ∀uv ∈ E.

For an edge e = st ∈ E, we may use the shorthand notation T (e) := T (s, t). Further, we call
a traffic matrix T routable in an edge set A ⊆ E if there exists an MCF F for (G, cap, T )
with

∑
f∈F f(e) = 0 for all e /∈ A. Based on this notion, we define the Minimum Multi-

Commodity Flow Subgraph (MMCFS) problem as follows: given a digraph G = (V,E) with
edge capacities cap and a retention ratio α ∈ (0, 1), find the edge set A ⊆ E with minimum
cardinality such that for all traffic matrices T that are routable in E, α · T is routable in A.

Throughout this paper, when mentioning a problem’s name or the corresponding abbrevi-
ation in sans-serif typeface, e.g. MMCFS, we refer to the optimization question. To indicate
that a subgraph is an optimal solution for the problem, we will denote it by the abbreviation
in normal typeface, e.g. an MMCFS (V,A) with A ⊆ E.

Our contribution. We present the MMCFS problem, which has both a natural formulation
and practical applicability. After discussing related problems from literature in Section 2, we
give some structural results in Section 3: We show how the MMCFS problem, even though it
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is traffic-oblivious in nature, can be reformulated to consider a specific single “hardest” traffic
matrix. We also establish how an MCF can be routed in an optimal MMCFS solution, and
how the ratio between the values of a feasible MMCFS solution and an optimal one relates
to their average edge capacities. In Section 4, we prove that MMCFS is NP-hard already
with unit edge capacities. Additionally, we show that it is NP-hard (and a closely related
problem cannot be approximated within a sublogarithmic factor) already on directed acyclic
graphs (DAGs). Our most important contribution is given in Section 5, where we present
a max(1/α, 2)-approximation algorithm for MMCFS: after modelling MMCFS as an ILP, we
can deduce a surprisingly simple LP-rounding scheme, whose complexity is solely shifted to
the correctness proof. Moreover, we show that our analysis of this algorithm is tight.

2 Related Work

There is a rich body of work on multi-commodity flows – see e.g. [3, Ch. 17] for a primer
on this topic and [38] for a recent literature review. The ability to route an MCF in an
MMCFS solution not only determines the latter’s feasibility, the problem of routing an MCF
also has many close ties to several other network design problems. These, however, involve
constraints unrelated to MMCFS, are usually not traffic-oblivious, and mostly focus on
undirected graphs. Concerning approaches on directed graphs, Foulds [20] minimizes the cost
of an MCF in a bidirected network where the use of some unidirectional arcs is prohibited to
reduce congestion. Gendron et al. [22, 23] discuss a directed MCF problem that considers
costs for both the installation of an edge and the amount of flow routed over it. Further,
in buy-at-bulk network design [8, 39, 13], capacity on edges must be bought as cheaply as
possible such that a given traffic matrix becomes routable – with the caveat that larger
amounts of capacity can be bought at a lower price per capacity unit.

In robust network design [10, 4, 9, 24], possible traffic matrices are given as an uncertainty
set in the form of a polytope, and the objective is usually to minimize the cost of reserving
capacity on the edges. While the dynamic routing variant considers a different MCF for every
traffic matrix in the polytope, static routing specifies a fixed unit flow for each commodity
that is only scaled with the respective demand value. For directed graphs, Al-Najjar et al. [5]
show that an exact algorithm for static routing would yield an O(|V |)-approximation for
dynamic routing. Our result can be seen as a better approximation ratio for the special
uncertainty set {α · T | α ∈ (0, 1), T is routable in G} under dynamic routing, but w.r.t.
minimizing the number of edges in a subgraph rather than the cost of reserved capacity.

There are also several related graph construction and subgraph minimization problems:
Khuller et al. [28] give an approximation algorithm for the construction of an undirected
tree with constant degree that accommodates given traffic demands between its leaves such
that the maximum load on any edge is minimized. Otten et al. [34] evaluate an integer
linear program (ILP) and a heuristic for a green traffic engineering problem on digraphs –
however, there a specific traffic matrix is also given (and rather than finding an edge subset of
minimum cardinality, they minimize the number of “line cards”, i.e., sets of 8 incident edges
at each vertex). Another well-known topic in the realm of subgraph minimization problems is
that of spanners [1], i.e., subgraphs that preserve the length of a shortest path within a given
ratio (stretch factor) between each pair of vertices. There exists a correspondence between
upper bounds on the stretch of shortest paths and the congestion of MCFs, however, this only
applies to the existence of probabilistic mappings in undirected graphs [6, 36]. Nonetheless,
this correspondence was used to find flow sparsifiers in undirected graphs G [18]. While a
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Figure 1 Digraph G constructed in the proof of Observation 1. Edges of the unique optimal
MCPS-solution E′ of (G, cap, β) are solid (black), and the remaining edges EXY are dashed (orange).

MMCFS solution is similar to a flow sparsifier that preserves the congestion up to a factor 1
α ,

they differ in that a flow sparsifier is an entirely new (undirected) graph, not necessarily
subgraph, containing a subset of the vertices of G but both old and new edges [32, 30, 7].

Closely related to MMCFS are classical Directed Survivable Network Design (DSND) prob-
lems, where, given a (possibly capacitated) input digraph G = (V,E) and a requirement
function r : V 2 → N, one aims to find an edge-wise minimum subgraph of G in which one
can send a flow of value r(s, t) from s to t for every (s, t) ∈ V 2. On undirected graphs with
unit edge capacities, there exists a 2-approximation by Jain [26], which has been adapted
to directed instances, but only for a very restricted set of requirement functions [31]. The
DSND problem most similar to MMCFS is the Minimum Capacity-Preserving Subgraph (MCPS)
problem [15], where the requirement value for a vertex pair (s, t) equals a fraction β of the
value of a maximum flow from s to t. However, in all of the aforementioned DSND approaches,
each routed commodity is considered in isolation from the others, whereas in the MMCFS
setting, all commodities are routed simultaneously. For example, given a digraph G = (V,E)
with edge capacities cap and a traffic matrix T routable in E, the scaled-down matrix α · T
is not necessarily routable in any optimal MCPS-solution of (G, cap, β) since some edges may
be congested by the simultaneous routing of multiple commodities. This is especially easy to
see for α ≥ β but even holds true when α ≪ β:

▶ Observation 1. Given an arbitrarily small α ∈ (0, 1) and an arbitrarily large β ∈ (0, 1),
there exists a digraph G = (V,E) with edge capacities cap and a traffic matrix T such that T
is routable in E, but α · T is not routable in any optimal MCPS-solution E′ of (G, cap, β).

Proof. Let C :=
⌈

2β
1−β

⌉
be a (high) edge capacity value and k >

√
C
α a number of vertices.

Construct G = (V,E) (visualized in Figure 1) as follows: Create two vertex sets X and Y

with k vertices each, as well as two distinct vertices z1, z2, and let V := X ∪ Y ∪ {z1, z2}.
Moreover, let EXY := X × Y , E′ := (X × {z1}) ∪ {z1z2} ∪ ({z2} × Y ), and E := EXY ∪ E′.
Edge capacities and the traffic matrix are chosen as follows:

cap(uv) =
{

1 if uv ∈ EXY ,

C otherwise;
T (u, v) =

{
1 if uv ∈ EXY ,

0 otherwise.

Every non-zero demand T (u, v) can be routed in (G, cap) using the respective edge uv ∈ EXY .
The only optimal MCPS-solution of (G, cap, β) is E′: For every vertex pair (u, v) ∈ E′,

the only u-v-path in G is the one consisting of the edge uv – so the edges E′ must be in the
solution. E′ also establishes a maximum flow of sufficient value for the remaining vertex
pairs. In particular, for every vertex pair (u, v) ∈ X × Y , there exists a maximum u-v-flow
of value C in E′, which is at least β times the value (C + 1) of a maximum u-v-flow in E:
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Figure 2 An MMCFS instance with an optimal solution (given by the solid edges) that does not
contain the MED. All edge capacities are 1, and α = 1

2 . The MED, which is unique in this example
and drawn in black, is not a feasible MMCFS solution: for T with T (s, t) = cap(st) if e = st ∈ E

and 0 otherwise, the dashed edge would have to accommodate a flow of 3
2 to satisfy all demands,

but it only has a capacity of 1.

C =
⌈

2β
1 − β

⌉
≥ β · 2 · (1 + β − β)

1 − β
= β

(
2β

1 − β
+ 2

)
≥ β

(⌈
2β

1 − β

⌉
+ 1

)
= β · (C + 1)

However, the scaled matrix α · T is not routable in E′: |X| · |Y | = k2 > C
α many demands of

value α would have to be routed over the single edge z1z2, exceeding its capacity C. ◀

Lastly, we want to highlight similarities of MMCFS to the well-established NP-hard
Minimum Equivalent Digraph (MED) problem [2, 37, 21, 27], where, given a digraph G, one
asks for the edge-wise minimum subgraph of G that preserves the reachability relation of G.
In Section 4, we show that MED is a special case of MMCFS. Further, we observe:

▶ Observation 2. In a simple DAG G, the unique minimum equivalent digraph (MED) of G
must be contained in every feasible MMCFS solution of G, regardless of edge capacities and α.

Proof. In any simple DAG G, the MED is unique and consists of exactly those edges st for
which there is no s-t-path in G− st [2]. A feasible MMCFS solution must also contain these
edges st in order to allow for a non-zero amount of flow from s to t. ◀

However, in general digraphs, a feasible MMCFS solution may not always contain the MED,
see Figure 2. Note that MED is not only polynomial-time solvable on DAGs, but there
are also several polynomial approximation algorithms for general graphs [29, 45] with the
currently best approximation ratio being 1.5 [11, 42].

3 Structural Results

We present some structural insights concerning MMCFS that give a deeper understanding of
the problem. Most importantly, we give a reformulation of MMCFS that is used throughout
the rest of the paper to obtain structural and algorithmic results: Recall that a feasible
solution A for a given MMCFS instance (G = (V,E), cap, α) is defined as an edge set A ⊆ E

such that for all traffic matrices T that are routable in E, α ·T is routable in A. Interestingly,
instead of explicitly considering all routable traffic matrices T , it suffices to consider the
single specific traffic matrix TE , which forces each edge to be utilized to its full capacity but
has no demands between non-adjacent vertices:

TE(s, t) :=
{

cap(e) if e = st ∈ E,
0 otherwise.

We show that an edge set A ⊆ E is a feasible MMCFS solution iff α · TE is routable in A:

ISAAC 2025



19:6 Traffic-Oblivious Multi-Commodity Flow Network Design

▶ Theorem 3. Given a digraph G = (V,E) with edge capacities cap, a retention ratio α ∈
(0, 1), and an edge set A ⊆ E, the following statements are equivalent:

For all traffic matrices T that are routable in E, the scaled matrix α · T is routable in A.
The scaled matrix α · TE is routable in A.

Proof. TE is routable in E by definition. If every traffic matrix routable in E is also routable
in A when scaled down by α, then so is α ·TE . For the other direction, consider any arbitrary
traffic matrix T routable in E. Let {fT

s,t | (s, t) ∈ V 2} be the MCF that routes T in E with
the vector fT :=

∑
(s,t)∈V 2 fT

s,t specifying the total flow over each edge. Using this MCF, we
can construct a new traffic matrix T ′:

T ′(s, t) :=
{

fT (st) if e = st ∈ E,
0 otherwise.

Observe that T ′ ≤ TE when using component-wise comparison. Thus, since α · TE is
routable in A, so is α · T ′. But if α · T ′ is routable in A using the flows {fα·T ′

u,v | (u, v) ∈ V 2},
then α · T is also routable in A using the flows {fα·T

s,t | (s, t) ∈ V 2} constructed as follows:
for each commodity st ∈ E and each edge uv ∈ E, calculate the fraction of flow routed over
uv that is used by fT

s,t, and route this fraction over the path chosen by fα·T ′

u,v . In short,

fα·T
s,t (e) :=

∑
uv∈E : f T (uv)>0

fT
s,t(uv)

fT (uv) · fα·T ′

u,v (e). ◀

We note that a related but slightly different concept to Theorem 3 has been implicitly
used previously in [35] (on undirected graphs). From this point onwards, we may refer to
edges as commodities since TE specifies a non-zero demand precisely for the edges in E.
Moreover, given a flow fẽ for a commodity ẽ ∈ E, we call fẽ(ẽ) the direct flow for ẽ. We
observe that in an optimal MMCFS solution A, for every commodity ẽ ∈ A, the demand TE(ẽ)
can always be fully satisfied by a direct flow fẽ(ẽ):

▶ Observation 4. Let G = (V,E) be a digraph with edge capacities cap and T a traffic matrix
routable in an edge set A ⊆ E with T (e) ≤ cap(e) for all edges e ∈ E. Then, there exists an
MCF F = {fs,t | (s, t) ∈ V 2} in the graph G′ := (V,A) satisfying the demands T such that
fẽ(ẽ) = T (ẽ) for all edges ẽ ∈ A.

Proof. Among all MCFs that witness the routability of T in A, let F ′ = {f ′
s,t | (s, t) ∈ V 2}

be one with a maximum sum of direct flow values
∑

ẽ∈E f
′
ẽ(ẽ).

We give a proof by contradiction: Assume that there exists an edge e′ = uv ∈ A such that
f ′

e′(e′) < T (e′) (if no such edge exists, F = F ′ and we are done). There must exist at least
one alternative u-v-path P that routes at least some of the remaining demand T (e′) − f ′

e′(e′).
Further, the edge e′ has residual capacity cap(e′) −

∑
(s,t)∈V 2: f

′
s,t(e′) = 0 as otherwise we

could increase fe′(e′) (and decrease flow along P accordingly), which would contradict the
selection of F ′. Thus, there exists an edge e′′ ∈ E, e′′ ̸= e′, with fe′′(e′) > 0. But then,
we can exchange a non-zero amount ε > 0 of flow of commodity e′ routed over P with an
equally small amount of flow of commodity e′′ routed over e′. This increases f ′

e′(e′) without
decreasing any other direct flow value – again a contradiction to the selection of F ′. ◀

Further, for any edge set A, we can compare its total edge capacity
∑

e∈A cap(e) to the
total flow needed to satisfy the demands TE . This not only gives us a necessary condition
for an edge set A to be a feasible MMCFS solution, but, upon closer analysis, also allows
us to relate its quality as a solution to its mean capacity capA := 1

|A| ·
∑

e∈A cap(e). The
following results apply both in the case of simple and non-simple graphs, but we can give
better guarantees in the former case.
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▶ Theorem 5. Let O be an optimal solution and A ̸= O a feasible solution for an MMCFS
instance (G, cap, α). Then, |A|

|O| ≤ min
{(

1 + 1−α
θα

)
· capO

capA
, 1 + 1−α

θα · capO

capA\O

}
with θ = 2 if

G has no parallel edges and θ = 1 otherwise.

Proof. Let X := A \ O, and Y := A ∩ O. The commodities of all ẽ ∈ O must be routed
through O, requiring a total flow of at least α

∑
e∈O cap(e) and leaving a total remaining

capacity in O of at most (1 − α)
∑

e∈O cap(e). Every commodity ẽ′ ∈ X has to be routed
within this remaining capacity since O is feasible. This requires a total flow of at least
θα

∑
e∈X cap(e); the θ is due to the fact that without parallel edges each such commodity ẽ′

must be routed over at least two other edges in O since ẽ′ ̸∈ O. We thus have

θα
∑
e∈X

cap(e) ≤ (1 − α)
∑
e∈O

cap(e) . (1)

By adding θα
∑

e∈Y cap(e) ≤ θα
∑

e∈O cap(e) to this inequality, we obtain

θα
∑
e∈A

cap(e) ≤ (1 − α)
∑
e∈O

cap(e) + θα
∑
e∈O

cap(e)

θα · |A| · capA ≤ (1 − α+ θα) · |O| · capO

|A|
|O|

≤
(

1 + 1 − α

θα

)
· capO

capA

.

Alternatively, we can rewrite inequality (1) as θα · |X| · capX ≤ (1 −α) · |O| · capO and obtain

|A|
|O|

≤ |O| + |X|
|O|

= 1 + |X|
|O|

≤ 1 + 1 − α

θα
· capO

capX

. ◀

▶ Corollary 6. Any arbitrary feasible solution for MMCFS (including the trivial one, E
itself), is a (1 + 1−α

θα · maxe∈E cap(e)
mine∈E cap(e) )-approximation.

This ratio is met, e.g., on a bundle of parallel edges with ℓ := ( 1
α − 1) · k capacity-1 edges

and one capacity-k edge (for any given α ∈ Q(0,1) and an arbitrary k ∈ Q s.t. ℓ ∈ N).

▶ Corollary 7. For uniform capacities, any arbitrary feasible solution for MMCFS (including
the trivial one, E itself) is a (1 + 1−α

θα )-approximation.

4 Complexity

Given that even trivial MMCFS solutions satisfy an approximation guarantee according to
Corollary 6, one might expect MMCFS to be polynomial-time solvable. However, in this
section, we show that MMCFS is NP-hard already on DAGs and give a first inapproximability
result. We begin by proving that MMCFS is NP-hard already with unit edge capacities using
a reduction from MED that directly follows from Theorem 3:

▶ Corollary 8. MED is the special case of MMCFS with unit edge capacities cap and α ≤ 1
|E| .

Proof. An optimal solution A ⊆ E for an MMCFS instance (G, cap, α) with unit edge
capacities is an edge set of minimum cardinality such that the demands α · TE(s, t) =
α · cap(st) ≤ 1

|E| for each edge st ∈ E are routable in A. This is equivalent to ensuring that
there exists an s-t-path in A for every edge st ∈ E since the (unit) capacity of an edge can
never be surpassed by the |E| many flows of size at most 1

|E| each. ◀

ISAAC 2025



19:8 Traffic-Oblivious Multi-Commodity Flow Network Design

Moreover, we can show that MMCFS is NP-hard already on DAGs using a reduction from
the NP-hard decision variant of Set Cover [27], where one asks: given a universe U , a family
of sets S = {Si ⊆ U}1≤i≤k with k ∈ O(poly(|U |)), and a parameter φ, is there a subfamily
C ⊆ S of cardinality |C| ≤ φ such that

⋃
S∈C S = U? The reduction is similar to that given

in [15] to prove the NP-hardness of the Minimum Capacity-Preserving Subgraph problem.

▶ Theorem 9. For any fixed α ∈ (0, 1), MMCFS is NP-hard already on DAGs where the
longest path has length 3.

Proof. Given a Set Cover instance (U,S, φ) and a fixed retention ratio α ∈ (0, 1), we
construct an instance I = (G = (V,E), cap, α, ψ) for the decision variant of MMCFS: I is a
yes-instance if and only if there exists a feasible MMCFS solution E′ ⊆ E for (G, cap, α) with
cardinality |E′| ≤ ψ. We construct I as follows (see Figure 3 for a visualization):

V := VU ∪ VS ∪ V S
t ∪ {t} and E := EU ∪ ES ∪ E1

VU := {vu, v
′
u | ∀u ∈ U} VS := {vS | ∀S ∈ S} V t

S := {zS | ∀S ∈ S}
EU := VU × {t} ES := VS × {t}
E1 := {vuvS , v

′
uvS | ∀S ∈ S, u ∈ S} ∪ {vSzS , zSt | s ∈ S}

cap(e) :=
{

1 if e ∈ E1; 1−α
α if e ∈ ES ; ε if e ∈ EU , with ε ≤ min

(
1−α

α2·|U | ,
1−α

α

)
.

ψ := |E1| + φ = 2 ·
∑

S∈S |S| + 2 · |S| + φ

As G is a DAG, its MED is unique [2] and must be part of any feasible MMCFS solution, see
Observation 2. This MED is formed by the edges e ∈ E1; a flow of α must be routed over
each of them in order to satisfy the demands TE(e) = α · cap(e). The remaining capacity for
each edge e ∈ E1 is 1 − α.

So consider a single set S ∈ S and the corresponding two-path {vSzS , zSt} ∈ E1, whose
remaining capacity can thus accommodate either arbitrarily many item commodities ẽU ∈ EU

(each one with the sufficiently small demand TE(ẽU ) = α·ε) or a single set commodity ẽS ∈ ES
(with the demand α · TE(ẽS) = α · 1−α

α = 1 − α). In the former case, we can remove at least
two corresponding item edges vut, v′

ut with u ∈ S, which is more than the single corresponding
set edge vSt we can remove in the latter case. Thus, for each item commodity vut ∈ EU , an
optimal MMCFS solution must contain one of the corresponding set edges {vSt | S ∋ u} ⊆ ES ;
the item commodity can then be routed over the path from vu over vS to t.

Given a Set Cover solution C with |C| ≤ φ, we can construct an MMCFS solution E′ =
E1 ∪ {vSt ∈ ES | S ∈ C} with cardinality |E′| = |E1| + |C| ≤ |E1| + φ = ψ. Since every
item is covered by the sets in C, the constructed MMCFS solution includes at least one
corresponding set edge for each item, ensuring its feasibility. Conversely, since a feasible
MMCFS solution E′ with |E′| ≤ ψ has at least one corresponding set edge for each item
u ∈ U , the Set Cover solution C = {S | vSt ∈ ES ∩E′} also contains at least one covering set
for each item. Moreover, |C| = |E′| − |E1| ≤ ψ − |E1| = φ. ◀

Considering the optimization variants of Set Cover and MMCFS (and thus ignoring the
additional input values φ and ψ), the reduction above also implies the inapproximability of
the number of edges in an optimal MMCFS solution beyond the edges required for an MED:
Consider an instance I = (G = (V,E), cap, α) for the optimization variant of MMCFS that is
produced by the reduction above, and an arbitrary feasible solution A ⊆ E for this instance.
Let µ(I, A) := |A| − med(G) where med(G) denotes the number of edges in an MED of G.
Then, A can be transformed into a feasible solution for the original Set Cover instance with
objective value µ(I, A) in linear time. Further, let µ(I) be the minimum µ(I, A′) over all
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t

S1

S2 S3

a

c′

b′ d′

a′

c

b d

Figure 3 MMCFS instance constructed from a Set Cover instance with universe U = {a, b, c, d}
and family of subsets S = {{a}, {a, b, c}, {a, c, d}}. An optimal solution contains the (solid black)
MED as well as one (blue) corresponding set edge for each u ∈ U . Item edges are orange and dashed.

feasible solutions A′ for I, and recall that the size |E| of the MMCFS instance I is linear in the
size N ∈ O(poly(U)) of the Set Cover instance: if it was possible to approximate µ(I) within
a factor in o(log |E|) = o(log |U |), one could also approximate Set Cover within o(log |U |),
which is NP-hard [17, 33]. This implies that any approximation algorithm for MMCFS (such
as the one we present in Section 5) must leverage the existence of a comparatively high
number of MED-edges in order to achieve its approximation ratio.

▶ Observation 10. Given an MMCFS instance I = (G = (V,E), cap, α) and an MED of G,
approximating µ(I) with a ratio in o(log |E|) is NP-hard. This already holds on DAGs where
the longest path has length 3.

5 LP-based Approximation

We present an extremely simple max(1/α, 2)-approximation for MMCFS based on LP rounding.
This is a clear improvement over the default approximation guarantee of Corollary 6, which
depends the instance’s edge capacities and is thus not even polynomially bounded in α−1 or
the instance size. Consider the following ILP formulation for MMCFS:

min
∑
e∈E

xe (1.a)

∑
u : uv∈E

fẽ(uv) −
∑

u : vu∈E

fẽ(vu) =


−αTE(ẽ) if v = s

αTE(ẽ) if v = t

0 else
∀v ∈ V, ẽ=st ∈ E (1.b)

∑
ẽ∈E

fẽ(e) ≤ xe · cap(e) ∀e ∈ E (1.c)

fẽ(e) ≥ 0 ∀e ∈ E, ẽ ∈ E (1.d)
xe ∈ {0, 1} ∀e ∈ E (1.e)

A binary indicator variable xe determines whether edge e ∈ E is part of the solution
subgraph or not. We minimize the sum of these variables in the objective function (1.a)
to obtain a subgraph of minimum size. The non-negative variables fẽ(e) determine the
amount of flow routed over edge e for commodity ẽ ∈ E. Recall that TE specifies a demand
of cap(ẽ) precisely for each edge ẽ: the flow preservation constraints (1.b) guarantee that
the f -variables represent proper flows that satisfy these demands. Lastly, the capacity
constraints (1.c) ensure that the total sum of flow over any edge e ∈ E does not surpass the
capacity of e. This flow sum f(e) :=

∑
ẽ∈E fẽ(e) must be zero if e is not part of the solution.

ISAAC 2025
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We obtain the relaxation of ILP (1) by replacing the integrality constraints (1.e) on
xe by the inequalities 0 ≤ xe ≤ 1 for all e ∈ E. The only other type of constraint that
bounds the xe-variables is (1.c). Since the xe-variables can assume fractional values in the
LP relaxation, and the sum over all xe is minimized, this lower bound of f(e)

cap(e) on xe for all
e ∈ E will always be met with equality. Hence, the LP relaxation is equivalent to a standard
MCF-LP that minimizes the sum of edge utilizations in the objective function

∑
e∈E

f(e)
cap(e) .

Accordingly, we will refer to cost(e) := 1
cap(e) as the cost that routing a single unit of flow

over an edge e will add to this objective.

▶ Remark 11. The solution xe = α for all e ∈ E with objective value α|E| is always feasible for
the relaxation of ILP (1). When the input graph is simple and all edge capacities are uniform,
it is in fact optimal: the flow fẽ for commodity ẽ will always be routed completely over ẽ since
all edges have the same cost and routing fẽ over an alternative path would cost more than
routing it over a single edge. This implies that any arbitrary feasible solution for MMCFS
on simple graphs with uniform edge capacities is an (1/α)-approximation (which we already
proved using a separate argument via Corollary 7). However, below we also use the LP
relaxation to approximate MMCFS on non-simple graphs with non-uniform edge capacities.

For our approximation algorithm, we make use of the well-known fact that all standard
LP solving algorithms will always return a basic optimal solution (if any solution exists) [43,
p. 279]. A basic optimal solution – or equivalently, extreme point solution – is a vertex of
the polyhedron defined as the convex hull of the set of feasible solutions. It does not lie
on a higher-dimensional face of the polyhedron and thus cannot be expressed as a convex
combination of two or more other feasible solutions [41, p. 100]. We prove that a basic
optimal solution for the relaxation of ILP (1) will only have comparatively few variables with
a positive value below α, allowing us to round up the solution to obtain an approximation.

▶ Lemma 12. Let x∗ be a basic optimal solution for the relaxation of ILP (1), and h the
number of edges e such that x∗

e = 1. There exist at most h many edges e′ with x∗
e′ ∈ (0, α).

Proof. Let H := {e ∈ E | x∗
e = 1} be the h many edges that are saturated by the fractional

multi-commodity flow, and L := {e ∈ E | x∗
e ∈ (0, α)} with ℓ := |L| the edges that are only

used to a fraction less than α; in short, edges with high and low corresponding x∗-values.
We show that an optimal fractional solution x∗ with ℓ > h would allow us to construct a
vector p ∈ Q|E| such that both (x∗ + p) and (x∗ − p) are still feasible solutions for the LP
relaxation – thus, x∗ would not be basic.

For every edge e = st ∈ L, let Pe denote an arbitrary alternative s-t-path not using
the edge e and fe(e′) > 0 for all edges e′ ∈ Pe. Such a path must exist since at most
x∗

e · cap(e) < α · cap(e) flow is routed over e, so an alternative s-t-path is necessary to satisfy
the demand α · TE(s, t) = α · cap(e). Further, the total cost of routing a unit of flow over Pe

must be lower than or equal to the cost of routing it over e itself, i.e.,
∑

e′∈Pe

1
cap(e′) ≤ 1

cap(e) ,
by the optimality of x∗. Based on the alternative paths, we construct a matrix M ∈ {0, 1}ℓ×h

indexed by pairs (e, e′′) ∈ L × H, with M(e, e′′) := 1 if e′′ ∈ Pe, and 0 otherwise. Since
ℓ > h, the ℓ rows of M must be linearly dependent, i.e., there exists a vector of coefficients
q ∈ Qℓ with q ̸= 0, such that q⊤ ·M = 0 (and consequently, −q⊤ ·M = 0).

We can obtain two new feasible solutions by modifying the MCF corresponding to
the optimal basic solution x∗ as follows: for each edge e ∈ L, and using a small positive
value ε ∈ Q, we send ε · q(e) less flow over e itself and ε · q(e) more flow over the alternative
path Pe – or vice versa. Put formally, we argue that for a small enough ε > 0, the following
vector p ∈ Q|E| yields two feasible solutions (x∗ + p) and (x∗ − p) for the LP relaxation:
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p(e′) =
{
ε · q(e′) − ε ·

∑
e∈L : e′∈Pe

q(e) if e′ ∈ L,
−ε ·

∑
e∈L : e′∈Pe

q(e) otherwise.

Clearly, the two solutions satisfy all demands and flow preservation constraints (1.b).
Consider the capacity constraints (1.c): By construction of q, the flow difference on saturated
edges is 0. For all non-saturated edges e′ it holds: if we modified the flow routed over e′, this
flow was already non-zero before our modification, and ε can be chosen sufficiently small
such that the flow will neither turn negative nor surpass cap(e′).

It remains to show that p ̸= 0 given that q ̸= 0. So, among the edges e ∈ L with q(e) ̸= 0,
choose one with maximum cost 1

cap(e) and denote it by emax. We show that p(emax) ̸= 0.
If emax were contained in any of the alternative paths Pe with e ∈ L and q(e) ̸= 0, we

would arrive at a contradiction even without using p: Recall that
∑

e′∈Pe

1
cap(e′) ≤ 1

cap(e) . So
we must have |Pe| = 1, i.e., e and emax are parallel edges with cap(e) = cap(emax). Since
e, emax ∈ L and thus x∗

e, x
∗
emax

∈ (0, α), we could simply obtain two new solutions by shifting
some small ε > 0 of flow from one to another, or vice versa, contradicting that x∗ is basic.

Hence, emax is only contained in alternative paths Pe with e ∈ L s.t. q(e) = 0, and

p(emax) = ε · q(emax) − ε ·
∑

e∈L : emax∈Pe

q(e) = ε · q(emax) − 0 ̸= 0. ◀

The proof implicitly gives an intuitive explanation for the distribution of LP values:

▶ Corollary 13. Let x∗ be a basic optimal solution for the relaxation of ILP (1). For each
edge e = st with x∗

e ∈ (0, α) it holds: every alternative s-t-path Pe (not containing e)
with fe(e′) > 0 for all of its edges e′ ∈ Pe must contain an edge e′′ with x∗

e′′ = 1.

Proof. Assume that, for some edge e = st with x∗
e ∈ (0, α), there is a Pe that does not

contain an edge e′′ with x∗
e′′ = 1. Then, we can follow the proof of Lemma 12, choosing Pe

as the alternative s-t-path for e. As a result, the matrix M constructed in the proof contains
a row of zeroes, allowing us to route ε more flow over e and ε less flow over Pe, or vice versa.
Thus, x∗ cannot be basic, a contradiction. ◀

We now analyze the following LP-rounding algorithm: compute a basic optimal solution x∗

for the relaxation of ILP (1) in polynomial time, and return the edge set {e ∈ E | x∗
e > 0}.

Based on Lemma 12, one could use naïve techniques to prove approximation guarantees
of (2 + 1

α ) or 2
α for this algorithm. However, we provide the stronger bound of max(1/α, 2)

based on the following intuition: the algorithm either “misses” the optimal solution mainly
due to edges with x∗

e ∈ (0, α) and we can obtain a 2-approximation via Lemma 12, or due to
edges with x∗

e ∈ [α, 1) and we can round up the variables for a 1
α -approximation.

▶ Theorem 14. Let x∗ be a basic optimal solution for the relaxation of ILP (1). The edge
set A := {e ∈ E | x∗

e > 0} is a max(1/α, 2)-approximation for MMCFS. That is, rounding
up x∗ is a 2-approximation when α ≥ 1

2 , and an 1/α-approximation when α < 1
2 .

Proof. The solution A is clearly feasible. Let z := |A| be the number of edges e such that
x∗

e > 0. Furthermore, let ∆ = |{e ∈ E | x∗
e ∈ [α, 1)}| be the number of these z edges whose

x∗-variable is set to a value in the interval [α, 1). We know that the remaining (z − ∆) edges
have a x∗-variable either set to 1 or a value lower than α. In particular, by Lemma 12, there
exist at least as many edges e′ with x∗

e′ = 1 as there are edges e′′ with x∗
e′′ ∈ (0, α). Thus,

|{e ∈ E | x∗
e = 1}| ≥ z−∆

2 . Hence, the optimal fractional solution x∗ has objective value

z∗ ≥ |{e ∈ E | x∗
e = 1}| + α · |{e ∈ E | x∗

e ∈ [α, 1)}|

≥ z − ∆
2 + α · ∆ =

(
1
2 + (α− 1

2) · ∆
z

)
· z.
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Using the minimum fractional objective value z∗ as a lower bound for the minimum
integral objective value z∗

int , we can then give an upper bound for the approximation ratio:

r := z

z∗
int

≤ z

z∗ ≤ 1
1
2 + (α− 1

2 ) · ∆
z

To obtain an upper bound on this ratio, we examine when its denominator is at its
minimum. For α ≥ 1

2 , the term (α − 1
2 ) · ∆

z is always non-negative and reaches its lowest
value 0 when ∆ = 0, giving us the upper bound 2 ≥ r in this case. In contrast, for α < 1

2 , the
term (α− 1

2 ) · ∆
z is negative, and the minimum of the denominator is reached when ∆ = z,

leading to the upper bound 1
α ≥ r in this second case. ◀

It is surprisingly hard to find instances (in particular, ones without parallel edges) where
the worst-case approximation ratio given by Theorem 14 is actually met. However, we show
that such instances exist for the most relevant α ∈ (0, 1), and hence our analysis is tight:

▶ Lemma 15. The ratio 1/α for the algorithm of Theorem 14 is tight for all α = 1
q , q ∈ N>1.

Proof. Consider a complete bidirected graph G = (V,E) on q + 1 vertices, and let H ⊂ G

denote an arbitrarily chosen directed Hamiltonian cycle in G (an example for q = 4 is
visualized in Figure 4). For all edges st ∈ E, let η(st) denote the number of edges of the
unique s-t-path in H and set the capacity cap(st) := 1

η(st) . E(H) is a feasible integral solution
for the MMCFS instance (G, cap, α) since the demands α · TE are routable in it: A single
edge e ∈ H is able to satisfy its own demand α · cap(e) = 1

q · 1. Adding to this, for every
i ∈ {2, . . . , q}, there are i edges uv ∈ E \ E(H) with η(uv) = i whose unique u-v-path in H

contains e. The edge e can accommodate all of these commodities uv because each of them
has a demand of α · cap(uv) = 1

q · 1
i , summing up to a total flow of

∑q
i=1 i · 1

i · 1
q = 1 ≤ 1

cap(e) .
Lastly, E(H) is not only feasible but optimal since we need at least |E(H)| many edges to
preserve the reachability relation of G in H.

The algorithm from Theorem 14 would potentially choose all edges of G, i.e., |E| = (|V |−
1) · |V | = q · |E(H)| = 1

α · |E(H)| many: As the cost 1
cap(uv) = η(uv) of an edge uv ∈ E \E(H)

is equal to the total cost of its unique u-v-path in H, all u-v-paths are equal in cost. Thus, one
optimal solution for the relaxation of ILP (1) simply routes all commodities ẽ ∈ E completely
over their own edges ẽ and chooses x∗

ẽ = α. This solution is also basic: Let f denote the flow
variables of this solution. If it were not basic, there would exist two other optimal solutions
with flow variables f ′, f ′′ respectively, such that for some ẽ, e ∈ E, f ′

ẽ(e) < fẽ(e) < f ′′
ẽ (e).

However, if e = ẽ, f already routes the full demand of commodity ẽ over e and we cannot
increase fẽ(e) without introducing a flow cycle, which would raise the objective value and
thus be suboptimal. In contrast, if e ̸= ẽ, fẽ(e) is already 0 and cannot be decreased. ◀

▶ Lemma 16. The ratio 2 for the algorithm of Theorem 14 is tight for all α > 1
2 .

Proof. We construct a family of MMCFS instances (visualized in Figure 5), each one consisting
of a simple graph G = (V,E) with edge capacities cap and the given retention ratio α, that
meets the approximation ratio of 2 asymptotically with increasing size. Intuitively, the edge
set of each instance contains two subsets that have a size quadratic in the number of vertices
and two subsets of linear size; our algorithm chooses both quadratic-size subsets even though
one could be replaced by a linear-size subset.
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Figure 4 MMCFS instance for α = 1
4 , constructed as a member of the family of instances in the

proof of Lemma 15. The Hamiltonian cycle H is drawn as black. The value η(st), denoting the
distance from s to t in H for an edge st, is 2, 3, or 4 for blue, green, and orange edges, respectively.

x1 x2 xk

z1 z2 zk

vy1 y2 yk

u1u2uk

w1w2wk

. . .

. . .

. . .

. . .

. . .

Figure 5 Family of MMCFS instances constructed in the proof of Lemma 16. Edges in Ev are
drawn in green (and dashed), edges in EXZ are orange, edges in E1 are black, and edges in EB are
blue. Recall that edges E1 and EB (black and blue) form the unique MED, which is contained in
every feasible solution. There exists a feasible MMCFS solution E1 ∪ EB ∪ Ev without any (orange)
edges from EXZ , but the algorithm from Theorem 14 will include all edges of EXZ in its solution.
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Let V be comprised of five disjoint vertex sets X, Y , Z, U , W with k ∈ N vertices each
(respectively named with the corresponding lowercase letter and indexed by i ∈ {1, . . . , k})
and a distinct vertex v. Further, let ε ≤ 1−α

k·α and B ≥ k·ε
1−α be sufficiently low and high

positive values, respectively. Then, E := Ev ∪ EXZ ∪ E1 ∪ EB with

Ev := (X × {v}) ∪ ({v} × Z) EXZ := X × Z

E1 := X × Y ∪ {xiui, uiv, vwi, wizi | i ∈ {1, . . . , k}} EB := {yizi | i ∈ {1, . . . , k}}

cap(e) :=
{

1−α
α if e ∈ Ev,

1−α+ε
α if e ∈ EXZ , 1 if e ∈ E1, B if e ∈ EB .

G is a DAG, thus its MED is unique [2] and must be part of any feasible solution for the
MMCFS instance (G, cap, α), see Observation 2. The MED of G consists of the edges E1 ∪EB

and in particular can satisfy all demands α · TE(e) = α · cap(e) with e ∈ E1 ∪ EB. The
“remaining” capacity of 1 − α for each of the edges in E1 (and (1 − α) ·B for edges in EB) is
also sufficient to satisfy the demands α · TE(ev) of the commodities ev ∈ Ev, and to almost
satisfy the demands α ·TE(eXZ) = 1 −α+ ε for the commodities eXZ ∈ EXZ : it only leaves
a demand of ε for every such eXZ . Thus, there exists a feasible solution E1 ∪ EB ∪ Ev for
(G, cap, α) that contains all of the k2 + 5k edges from E1 ∪ EB and additionally, to satisfy
the remaining demands (of size ε each), the 2k edges from Ev. This feasible solution gives
an upper bound on the objective value z∗

int of the optimal integral solution: z∗
int ≤ k2 + 7k.

In contrast, the algorithm from Theorem 14 also includes all k2 + 5k edges of the
MED E1 ∪EB in its solution, but must additionally choose (at least) the k2 edges from EXZ ,
resulting in an objective value z ≥ 2k2 + 5k. This is because every optimal solution for the
relaxation of ILP (1) routes the commodities st = eXZ ∈ EXZ over the edges eXZ themselves:
they have a lower cost than the alternative s-t-path of length 2 over the edges in Ev.

For increasing k, the ratio of the algorithmic solution’s objective value to the optimum is

lim
k→∞

z

z∗
int

≥ lim
k→∞

2k2 + 5k
k2 + 7k = 2. ◀

Combining Theorem 14 with Lemmas 15 and 16, we obtain:

▶ Corollary 17. The approximation ratio max(1/α, 2) for the algorithm given by Theorem 14
is tight for all α > 1

2 and all α = 1
q with q ∈ N>1.

▶ Remark 18. There are instances where the integrality gap of ILP (1) is 1
α – e.g. trees, where

the unique optimal integral solution contains every edge while the unique optimal fractional
solution chooses x∗

e = α for all edges e of the input graph. Interestingly, the approximation
ratio of our algorithm (for α ≤ 1

2 ) equals the integrality gap exactly, but on completely
different instances and not on trees (where the algorithm always finds the optimal solution).

6 Conclusion and Open Questions

We introduced the practically motivated Minimum Multi-Commodity Flow Subgraph (MMCFS)
problem and paved the way for further research by giving several structural results, most im-
portantly a reformulation of this traffic-oblivious problem that only needs to consider a single
specific traffic matrix. Further, we showed that MMCFS is NP-hard (and a closely related
problem cannot be approximated within a sublogarithmic factor) already on DAGs. Lastly,
we gave an extremely simple LP-rounding scheme for MMCFS with a tight approximation
guarantee of max(1/α, 2).
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Considering seemingly related problems (see Section 2), one observes that an approx-
imation ratio of 2 (which we attain for the practically most relevant cases of α ≥ 1

2 [34])
often arises as a seemingly “natural” limit for such ratios. Yet, it remains an open question
whether there exists an approximation algorithm for MMCFS with a better quality guarantee,
and whether there is a non-trivial lower bound on the approximation guarantee for any such
algorithm (assuming P ̸= NP). Further, it might be of interest to explore several generaliza-
tions of MMCFS: this includes the non-traffic-oblivious variant where a specific traffic matrix
is part of the input (which is also NP-hard via Theorem 3), and the variant where, given an
additional cost function on the edges, one asks for a subgraph of minimum cost.
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