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—— Abstract

Many natural computational problems, including e.g. MAX WEIGHT INDEPENDENT SET, FEEDBACK
VERTEX SET, or VERTEX PLANARIZATION, can be unified under an umbrella of finding the largest
sparse induced subgraph that satisfies some property definable in CMSOs logic. It is believed that
each problem expressible with this formalism can be solved in polynomial time in graphs that exclude
a fixed path as an induced subgraph. This belief is supported by the existence of a quasipolynomial-
time algorithm by Gartland, Lokshtanov, Pilipczuk, Pilipczuk, and Rzazewski [STOC 2021], and a
recent polynomial-time algorithm for Ps-free graphs by Chudnovsky, McCarty, Pilipczuk, Pilipczuk,
and Rzazewski [SODA 2024].

In this work we extend polynomial-time tractability of all such problems to Pr-free graphs of
bounded clique number.
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Sparse Induced Subgraphs in P;-Free Graphs of Bounded Clique Number

1 Introduction

When studying computationally hard problems, a natural question to investigate is whether
they become tractable when input instances are somehow “well-structured”. In particular, in
algorithmic graph theory, we often study the complexity of certain (hard in general) problems,
when restricted to specific graph classes. Significant attention is given to classes that are
hereditary, i.e., closed under vertex deletion.

Potential maximal cliques. Arguably, the problem that is best studied in this context
is MAX WEIGHT INDEPENDENT SET (MWIS) in which we are given a vertex-weighted
graph and we ask for a set of pairwise non-adjacent vertices of maximum possible weight.
Investigating the complexity of MWIS in restricted graph classes led to discovering numerous
new tools and techniques in algorithmic graph theory [24, 21, 18, 16]. One of such general
techniques is the framework of potential mazimal cliques by Bouchitté and Todinca [7, §].
Intuitively speaking, a potential maximal clique (or PMC for short) in a graph G is a bag of a
“reasonable” tree decomposition of G. The key contribution of Bouchitté and Todinca [7, 8]
is showing that:
1. the family F of PMCs in a graph G can be enumerated in time polynomial in |V (G)]
and |F|, and
2. given a family F containing all PMCs of G (and possibly some other sets as well), MWIS
can be solved in time polynomial in |V(G)| and |F| by mimicking natural dynamic
programming on an appropriate (but unknown) tree decomposition.

Consequently, MWIS admits a polynomial-time algorithm when restricted to any class
with polynomially many PMCs. (Here we say that a class X of graphs has polynomially
many PMCs if there exists a polynomial p, such that the number of PMCs in any n-vertex
graph in X is at most p(n).)

Later this framework was extended by Fomin, Todinca, and Villanger [19] to the problem
of finding a large “sparse” (here meaning: of bounded treewidth) induced subgraph satisfying
certain CMSO4 formula . (CMSO, stands for Counting Monadic Second Order logic, which
is a logic where one can use vertex/edge variables, vertex/edge set variables, quantifications
over these variables, and standard propositional operands.) Formally, for a given integer d
and a fixed CMSO; formula ¢ with one free set variable, the (tw < d,¢)-MWIS problem
(here “MWIS” stands for “max weight induced subgraph”) is defined as follows.

(tw < d,¥)-MWIS
Input: A graph G equipped with a weight function w: V(G) — Q4.
Task: Find a pair (Sol, X) such that

X C Sol CV(G),

G|[Sol] is of treewidth at most d,

G[Sol] k= $(X),

X is of maximum weight subject to the conditions above,

or conclude that no such pair exists.

As shown by Fomin, Todinca, and Villanger [19], every problem expressible in this
formalism can be solved in polynomial time on classes of graphs with polynomially many
potential maximal cliques.
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Note that if d = 0 and ¢ is a formula satisfied by all sets, then (tw < d,1)-MWIS
is exactly MWIS. It turns out that (tw < d,4)-MWIS captures several other well known
computational problems (see also the discussion in [19, 29]), e.g.;

FEEDBACK VERTEX SET (one of Karp’s original 21 NP-complete problems [27]), equivalent

by complementation to finding an induced forest of maximum weight,

EVEN CYCLE TRANSVERSAL [34, 33, 2], equivalent by complementation to finding an
induced graph whose every block is an odd cycle,

finding a largest weight induced subgraph whose every component is a cycle,

finding a maximum number of pairwise disjoint and non-adjacent induced cycles.

MWIS in graphs excluding a long induced path. Despite all advantages of the Bouchitté-
Todinca framework, its applicability is somehow limited, as there are numerous natural
hereditary graph classes that do not have polynomially many PMCs. Can we use at least
some parts of the framework outside its natural habitat?

A notorious open question in algorithmic graph theory is whether MWIS (and, more
generally, (tw < d,1¢)-MWIS) can be solved in polynomial time in graphs that exclude a fixed
path as an induced subgraph. It is believed that this question has an affirmative answer, which
is supported by the existence of a quasipolynomial-time algorithm of Gartland, Lokshtanov,
Pilipczuk, Pilipczuk, and Rzazewski [20, 36, 22]. However, if it comes to polynomial-time
algorithms, we know much less.

A polynomial-time algorithm for MWIS (as well as for many other problems) in Py-free
graphs (i.e., graphs that exclude a 4-vertex path as an induced subgraph; analogously we
define P;-free graphs for any t), was discovered already in 1980s [14]. In today’s terms we
would say that these graphs have bounded clique-width and thus polynomial-time algorithms
for many natural problems, including (tw < d, 1)-MWIS, follow from a celebrated theorem
by Courcelle, Makowsky, and Rotics [15]. However, already the Ps-free case proved to be
quite challenging. In 2014, Lokshtanov, Vatshelle, and Villanger [30] showed that Max
WEIGHT INDEPENDENT SET admits a polynomial-time algorithm in Ps-free graphs — by
adapting the framework of Bouchitté and Todinca. Let us emphasize that Ps-free graphs
might have exponentially many PMCs, so the approach discussed above cannot be applied
directly. Instead, Lokshtanov, Vatshelle, and Villanger proved that in polynomial time one
can enumerate a family of some PMCs, and this family is sufficient to solve MWIS via
dynamic programming.

By extending this method (and adding a significant layer of technical complicacy), Grzesik,
Klimosova, Pilipczuk, and Pilipczuk [23] managed to show that MWIS is polynomially-solvable
in Pg-free graphs.

Some time later, Abrishami, Chudnovsky, Pilipczuk, Rzazewski, and Seymour [1] revisited
the Ps-free case and introduced a major twist to the method: they proved that in order to solve
MWIS and its generalizations, one does not have to have PMCs exactly, but it is sufficient to
enumerate their containers: supersets that do not introduce any new vertices of the (unknown)
optimum solution. They also proved that containers for all PMCs in Ps-free graphs can be
enumerated in polynomial time, circumventing the problem of exponentially many PMCs
and significantly simplifying the approach of Lokshtanov, Vatshelle, and Villanger [30]. This
result yields a polynomial-time algorithm for (tw < d,1)-MWIS in Ps-free graphs.

By further relaxing the notion of a container (to a carver), Chudnovsky, McCarty,
Pilipczuk, Pilipczuk, and Rzazewski [13] managed to extend polynomial-time solvability of
(tw < d,4)-MWIS to the class of Ps-free graphs.
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Our contribution. In this work we push the boundary of tractability of (tw < d,)-MWIS
in P;-free graphs by showing the following result.

» Theorem 1.1. For every fixed integers d,k, and a CMSOy formula i, the (tw < d,¢)-
MWIS problem can be solved in polynomial time in P;-free graphs with cligue number at
most k.

Quite interestingly, in P;-free graphs, the boundedness of treewidth is equivalent to the
boundedness of degeneracy and to the boundedness of treedepth [4]. Thus, Theorem 1.1
yields a polynomial-time algorithm for problems like:

VERTEX PLANARIZATION [26, 35], which asks for a largest induced planar subgraph, or

for constant k, finding a largest set of vertices inducing a subgraph of maximum degree

at most k (see, e.g., [25]).

Let us remark that the idea of investigating P;-free graphs of bounded clique number
was considered before. Pilipczuk and Rzazewski [37] showed that Ps-free graphs of bounded
clique number have polynomially many PMCs and thus the framework of Bouchitté and
Todinca can be applied here directly. However, this is no longer true for P;-free graphs (even
bipartite) (see the example in the Conclusions in [13]). On the other hand, Brandstadt and
Mosca [9] provided a polynomial-time algorithm for MWIS in P;-free triangle-free graphs.
However, they used a rather ad-hoc approach that works well for MWIS, but gives little
hope to generalize it to more complicated instances of (tw < d,1)-MWIS. Our work vastly
extends both these results.

2 Technical overview

For standard graph notation used in this work, including the definition of a tree decomposition,
we refer to the preliminaries section of the full version in the appendix.

As mentioned, in P;-free graphs the width parameters treewidth, treedepth, and degen-
eracy are functionally equivalent [4]. Furthermore, as discussed in [13], the property of
having treewidth, treedepth, or degeneracy at most d can be expressed as a CMSQO5 formula
of size depending on d only. Consequently, if we define problems (td < d,¢)-MWIS and
(deg < d,1)-MWIS analogously as (tw < d,4)-MWIS, but with respect to treedepth and
degeneracy, these three formalisms describe the same family of problems, when restricted to
P,-free graphs.

Treedepth structures. Following [13], the treedepth formalism is the most handy; we
henceforth work with (td < d,)-MWIS. Furthermore, it is more convenient to work not
just with induced subgraphs of bounded treedepth, but with treedepth-d structures: induced
subgraphs of treedepth at most d with a fixed elimination forest. Let us proceed with formal
definitions.

The rooted forest T is a forest in which each component has exactly one distinguished
vertex, called a root. A path in a rooted forest is called vertical if it connects a vertex and
any of its ancestors. Given a vertex v, we define its depth as the number of vertices on the
path connecting v and the root (so the root has depth 1). The height of the rooted forest T
is equal to the maximum depth of a vertex of 7. By T we denote a set of vertices of T of
depth exactly . We also write 7= for (J,/ -, T

We say that vertices u and v are T -comparable if they can be connected via a vertical
path. Otherwise, we say that they are T -incomparable. An elimination forest of graph G is
a rooted forest T such that V(7) = V(G) and for each edge uwv € E(G) vertices u and v are
T-comparable. The treedepth of graph G is the minimum height of any possible elimination
forest of graph G.
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Given a graph G and an integer d, a treedepth-d structure (the notion first proposed
in [13]) is a rooted forest T of height at most d such that V(7)) is a subset of V(G) and T is
an elimination forest of the subgraph of G induced by V(7). A treedepth-d structure T is
a substructure of a treedepth-d structure 7' if T is a subgraph of 7" (as a rooted forest) and
every root of 7T is also a root of T’. A treedepth-d structure T is called mazimal if there is
no treedepth-d structure 7' such that 7 is a substructure of 7’ and T # T'. Equivalently,
T is maximal if it cannot be extended by adding a leaf preserving the bound on the height
of 7. To avoid notational clutter, we sometimes treat 7 as set of vertices, for example in
expressions |[A N T].

Using treedepth structures. Let 7 be a treedepth-d structure in G; think of T as the
sought solution to the (td < d,1)-MWIS problem in question. As proven in [19] (and cast
onto the current setting in [13]), there exists a tree decomposition (7, 3) of G whose every
bag is either contained in N[v] for a leaf v of T, or whose intersection with 7 is contained in
a single root-to-leaf path of 7, excluding the leaf. We call the latter bags T -avoiding.

Furthermore, the framework of [19] shows how to solve (td < d,v)-MWIS given a family
F of subsets of V(G) with the promise that all bags of such tree decomposition (T, 8) are
in F. In [1], it is shown that it suffices for F to contain only containers of bounded defect
for bags in (T, ): we require that there exists a universal constant d such that for every
t € V(T) there exists A € F such that the bag 8(t) is contained in A and A contains at most
d elements of 7.

Note that if v is a leaf of T, then N[v] may contain only ancestors of v among the vertices
of T, so N[v] is an excellent container for any bag contained in N[v]. Thus, it suffices to
provide containers for T-avoiding bags. This is how [1] solved (td < d,4)-MWIS in Ps-free
graphs; by generalizing the definition of a container to a carver, the same approach is applied
to Ps-free graphs in [13].

In fact, for a treedepth-d structure 7T, the tree decomposition (7', 8) of [19] is constructed
as follows: it is shown that there exists a minimal chordal completion F' of G (i.e., an
inclusion-wise minimal set of edges to add to G to make it chordal) whose addition keeps T
a treedepth-d structure, and (T, 8) is any clique tree of G + F. A potential maximal clique
(abbrieviated as PMC) is a maximal clique in G 4+ F for some minimal chordal completion F
of G. Both [1] and [13] actually provide containers/carvers for every treedepth-d structure in
G and an arbitrary choice of a T-avoiding PMC in G. Furthermore, [13] provides an example
of a family of Pr-free triangle-free graphs where such a statement is impossible (i.e., any such
family of containers/carvers would need to be of exponential size).

However, the algorithmic framework of [19, 1, 13] requires only that the provided family
F contains containers/carvers for all bags of only one “good” tree decomposition (7, 3), and
only for the sought solution 7. This should be contrasted with all T-avoiding PMCs, which is

in some sense the set of all reasonable T-avoiding bags, and for all treedepth-d structures 7.

Thus, if we want to tackle Pr-free graphs of bounded clique number, we need to significantly
deviate from the path of [1, 13] and either use the power of the choice of (T, 8) or the fact
that we need to handle only 7 being the optimum solution to the problem we are solving.

From PMCs to minimal separators. The assumption of bounded clique number allows
us to quickly reduce the case of finding a container for a PMC to finding a container for a
minimal separator. For a set S C V(G), a connected component A of G — S is full to S if

20:5
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N(A) = S; a set S is a minimal separator if it has at least two full components.! A classic
fact about PMCs [8] is that for every potential maximal clique 2 and for every connected
component D of G — €, the set N(D) is a minimal separator. By a classic result of Gyarfas,
the class of Pi-free graphs is x-bounded, in particular, if G is Pi-free and w(G) < k (where
w(@) is the number of vertices in a largest clique in G), then x(G) < (t — 1)k¥=1. This,
combined with a VC-dimension argument based on the classic result of Ding, Seymour, and
Winkler [17], shows the following:

» Lemma 2.1. For every t and k there exists ¢ such that for every Pi-free graph G with
w(G) <k and any PMC Q of G one of the two following conditions holds:

1. there exists v € Q such that Q = N[v], or

2. there exists a family D C cc(G — Q) of size at most ¢ such that Q =Jpep N(D).

That is, except for a simple case N[v] = § for some v € 2, the PMC ) is a union of a constant
number of minimal separators. Hence, it suffices to generate a family F’ of containers for
T-avoiding minimal separators (which are defined analogously to T-avoiding bags) and take
F to be the family of unions of all tuples of at most ¢ elements of F’.

Capturing minimal separators. Let G be a P;-free graph with w(G) < k. We start as
in [1, 13]: let 7 be an arbitrary treedepth-d structure in G and let S be a minimal separator
in G with full components A and B such that S is T-avoiding. We want to design a
polynomial-time algorithm that outputs a family F’ of subsets of V(G) that contains a
container for S. The algorithm naturally does not know 7 nor S; the convenient and natural
way of describing the algorithm as performing some nondeterministic guesses about 7 and
S, with the goal of outputting a container for .S in the end. We succeed if the number of
subcases coming from the guesses is polynomial in the size of G and the family F’ consists
of all containers generated by all possible runs of the algorithm.

We almost succeed with this quest. That is, we are able to guess an “almost container”
K for S: K contains a constant number of vertices of 7 and we identified a set D of tricky
connected components of G — K that are contained in A U B U S; all other connected
components of G — K are contained in A, in B, or in some other connected component
of G — S. Every tricky component D € D is somewhat simpler: we identify a subset
0 # L(D) € D such that if C(D) is the family of all connected components of G[L(D)] and
of G[D \ L(D)], then every C € C(D) is a module of G[D]. (A set A C V(@) is a module in
G if every vertex v € V(G) \ A is either complete to A or anti-complete to A.)

Observe now that every connected component C € C(D) satisfies w(G[C]) < w(G) < k,
as D\ C contains a vertex complete to C. Hence, we can recurse on C, understanding it fully
(more precisely, finding optimum partial solutions; the definition of this “partial” requires a
lot of CMSO3 mumbling).

Furthermore, we observe that the quotient graph G[D]/C(D) is bipartite. Thus, if we
can understand how to solve (td < d,1)-MWIS on Pr-free bipartite graphs, then we should
be done: the partial solutions from components C' € C(D), combined with the understanding
of the P;-free bipartite graph G[D]/C(D) should give all partial solutions of G[D] for every
D € D. This, in turn, should give an understanding on how (td < d,v)-MWIS behaves
on KUJD. As S C K UJD, this should suffice to solve (td < d,)-MWIS on G using
(K,D, L) to play the role of the container for S.

L Note the following equivalent definition: We say that a set of vertices S is a (u,v)- separator if u and v
belong to distinct components in G — S. A (u, v)-separator S is called minimal if no proper subset of S
is a (u, v)-separator. A set of vertices S is called a minimal separator of graph G if there exists a pair of
vertices u and v such that S is a minimal (u,v)-separator.
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The bipartite case. Explaining properly all “should”s from the previous paragraph is quite
involved and tedious. In this overview, let us focus on the more interesting case of solving
(td < d,v)-MWIS in P;-free bipartite graphs. Here, we actually prove the following result.

» Theorem 2.2. There exists an algorithm that, given a P;-free bipartite graph G and an
0(d3)
integer d > 0, runs in time n?’ and computes a family C of subsets of V(G) with the

following guarantee: for every Sol C V(G) such that G[Sol] is of treedepth at most d, there
exists a tree decomposition (T, ) of G such that for every t € V(T) we have B(t) € C and

18(t) N Sol| = 2277

We remark that Theorem 2.2 is not needed if one just wants to solve the MWIS problem,

as this problem can be solved in general bipartite graphs using matching or flow techniques.

On the other hand, our work identified the bipartite case as an interesting subcase in
exploring tractability of (td < d,1)-MWIS in P;-free graphs. To state a precise problem for
future work, we propose polynomial-time tractability of FEEDBACK VERTEX SET in P;-free
bipartite graphs. Meanwhile, Theorem 2.2 and its proof in Section 3 can be of independent
interest.

The proof of Theorem 2.2 starts from the work of Kloks, Liu, and Poon [28], who showed
that chordal bipartite graphs have polynomial number of PMCs, and thus (td < d,¢)-MWIS
problem is solvable in this graph class by the direct application of the PMC framework of
Bouchitté and Todinca. (A graph G is chordal bipartite if it is bipartite and does not contain
induced cycles longer than 4.) A Pr-free bipartite graph is almost chordal bipartite: it can
contain six-vertex cycles.

We would like to add some edges to the input graph G so that it becomes chordal bipartite.

Let C =¢; —ca—...— cg — c1 be an induced six-vertex cycle in G; we would like to add
the edge cicq to keep G bipartite but break C. We show that, if one chooses C' carefully,
one can do it so that G remains P;-free. However, such an addition may break the sought
solution T if ¢1,¢4 € V(T) but are incomparable in the elimination forest 7, then 7 is no
longer a treedepth-d structure in G + {cica}.

We remedy this by a thorough investigation of the structure of the neighborhood of a
six-vertex cycle in a Pr-free graph, loosely inspired by [5]. On a high level, we show that
there is a branching process with a polynomial number of outcomes that, in some sense
“correctly” completes G to a chordal bipartite graph, proving Theorem 2.2.

In summary, the proof of Theorem 1.1 consists of three ingredients. First, we show the
guesswork that leads to a polynomial number of candidate “almost containers” (K, D, L) for
a minimal separator .S in the input graph G. Second, we focus on bipartite graphs and prove
Theorem 2.2. Finally, we show how these two tools combine with the dynamic programming
framework of [19, 1, 13].

In this extended abstract, we present a more detailed overview of the proof of one part,
namely Theorem 2.2. The full version of the work can be found in the appendix.

3  P;-free bipartite graphs: Overview of the proof of Theorem 2.2

In this section we focus on Pr-free bipartite graphs. We prove the following theorem.

» Theorem 2.2. There exists an algorithm that, given a Pr-free bipartite graph G and an

0(d3)
integer d > 0, runs in time n?’ and computes a family C of subsets of V(G) with the
following guarantee: for every Sol C V(G) such that G[Sol] is of treedepth at most d, there
exists a tree decomposition (T, 8) of G such that for every t € V(T) we have B(t) € C and

1B(t) N Sol| = 22°7.
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The general approach is to reduce to the case of chordal bipartite graphs. Recall that a
bipartite graph is chordal bipartite if its every cycle of length longer than 4 has a chord (i.e.,
the only induced cycles are of length 4).

The class of MWIS problems is tractable on chordal bipartite graphs thanks to the
following result of Kloks, Liu, and Poon (and the general algorithm of Fomin, Todinca, and
Villanger [19]).

» Theorem 3.1 (Corollary 2 of [28]). A chordal bipartite graph on n vertices and m edges
has O(n + m) minimal separators.

Observe that Pr-free bipartite graphs are “almost” chordal bipartite: they only additionally
allow Cg as an induced subgraph. Our approach is to add edges to the input graph so that it
becomes chordal bipartite, without destroying the sought solution. To this end, the following
folklore characterization will be handy. (We use # to mark statements whose proofs are
omitted in this extended abstract due to space constraints.)

» Lemma 3.2 (folklore, #&). Let G be a bipartite graph with bipartition V1, Va. Then, G is
chordal bipartite if and only if for every minimal separator S of G, S N V1 is complete to
SNVy (i.e., the separator induces a complete bipartite graph, also called a biclique).

Lemma 3.2 motivates the following process of completing a Pr-free bipartite graph G
into a chordal bipartite graph: while G contains a minimal separator S that violates the
statement of Lemma 3.2, complete G[S] into a biclique. In Section 3.1 we analyse this process
and show that it is well-behaved on Pr-free graphs: it does not lead outside the class of
P;-free bipartite graphs.

3.1 Completing to a chordal bipartite graph

Throughout the rest of this section we assume that the input graph G has a fixed bipartition
into sets Vi, V, (this is an ordered partition). We remark that we will often look at certain
induced subgraphs of G that are not necessarily connected, but a vertex never changes its
side of the bipartition.

Lemma 3.2 motivates the following definition. Let G be a bipartite graph with bipartition
V1, Vo, and let S be a minimal separator of G. We say that S induces a biclique if SNV
is complete to S N V5. The operation of completing S into a biclique turns G into a graph
G+ F:=(V(G),E(G)UF), where F = {uwv |ue SNVi,ve SNV, uv ¢ E(G)}.

The next two lemmata (proved by a tedious case analysis) are pivotal to our completion
process.

» Lemma 3.3 (M). Let G be a P;-free bipartite graph. Let S be a minimal separator. Let
G + F be the result of completing S into a biclique. Then G + F is also P;-free.

» Lemma 3.4 (M). Let G be a P;-free bipartite graph. Let S be a minimal separator in G.
Let G+ F be the result of completing S into a biclique. Let C be an induced Cg in G + F.
Then, C is also an induced Cg in G.

Let G be a P;-free bipartite graph with fixed bipartition V7, V5, and let 7 be a treedepth-d
structure in G. A tuple (C,z,y) is a bad Cg (with respect to 7) in G if C' is an induced
six-vertex cycle in G, and = € V;, y € V5 are two vertices that are at the same time (a)
opposite vertices of C, and (b) incomparable vertices of 7. That is, if one adds the edge
2y to G (which can be done without violating the biparteness of G), then one breaks the
treedepth-d structure T, i.e., T is not a treedepth-d structure in G + zy.

We have the following simple corollary of Lemma 3.4.
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» Lemma 3.5. Let G be a Pr-free bipartite graph, let T be a treedepth-d structure in G, let
S be a minimal separator in G, and let G+ F be a result of completing S into a biclique.
Assume that there is no bad Cg in G with respect to T. Then, T is a treedepth-d structure in
G + F and, furthermore, there is no bad Cg in G + F with respect to T .

Proof. By contradiction, suppose that E(C)NF # (. As S in a biclique in G+ F, V(C)N S
contains either two or three consecutive vertices of C'. Thus, P := C'\ S is a path and belongs
to exactly one component of G — S. Without loss of generality, we can assume that P does
not lie in B, i.e., CN B = .

Let x,z € V(C) N S be the two vertices of C' adjacent on C' to the vertices of P. Note
that zz ¢ E(G): either |[V(C)N S| =3 and z, z are on the same biparteness side of G or
[V(C)N S| =2 and then xz € F.

Let R be the shortest path from x to z via B. Then, RU P induce a hole C’ in G. Since
R is of length at least 2, C” is not shorter than C. Since G is Py-free, C’ is a six-vertex hole.
This can only happen if R is of length 2 and V(C) NS = {z,y, z} for some y € S. Then,
C=x—y—z—r—q—p—x, where p,q,r lie in a single component of G — S different than
B. Without loss of generality, we can assume that yz € F. Then we can find a shortest path
R/, which connects y and z via B; it is of length at least 3. Then the path R —r —q —p is
an induced path in G on at least 7 vertices, a contradiction. |

We conclude this section with the following enumeration.

» Lemma 3.6. There exists an algorithm that, given a P;-free bipartite graph G and an integer
d, runs in polynomial time and returns a family C of subsets of V(G) of size O(|V(G)|?) with
the following property: for every treedepth-d structure T in G that admits no bad Cg, there
exists a tree decomposition (T, ) of G such that for every t € V(T'), the set B(t) belongs to
C and B(t) contains at most d elements of T .

Proof. Consider the following process. Start with G := G. While G is not chordal bipartite,
find an induced six-vertex cycle C in G, fix two opposite vertices x and y in C, find a minimal
separator S in G that contains  and y (note that any minimal separator separating the two
components of C — {z,y} would do), complete S into a biclique obtaining G + F, and set
G:=G+F.

Lemma 3.3 ensures that G stays Pr-free bipartite. Lemma 3.5 ensures that every
treedepth-d structure 7 in G that admits no bad Cg remains so in G.

By Theorem 3.1, G has O(|V(G)[2) minimal separators. Using [7, 8], this allows us to
bound the number of potential maximal cliques of G by O(|V(G)|) and enumerate them in
a family C.

As shown in [13], there exists a minimal chordal completion F of G such that for every
maximal clique 2 of G+ F, the set QN 7T is contained in a single leaf-to-root path in 7 and
thus is of size at most d. Since all these maximal cliques are enumerated in C, any clique
tree of G + F serves as the promised tree decomposition (T, 3). <

3.2 Cleaning

In this section we define a branching step that cleans a specific part of the graph. The step
will be general enough to be applicable in many contexts.

Let G be a Pr-free bipartite graph. We say that a triple (A, B, C) of pairwise disjoint
vertex sets of G is \J/-free if there are no two anticomplete Pss of the form A — B — C. Note
that such a configuration naturally appears in a Py-free bipartite graph if AU C is in one
side on the bipartition, B is in the other side, and there is an additional vertex v in the same
side as B such that A C N(v) but C N N(v) = 0. In our case, \/-free sets appear naturally
in the following context.
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» Lemma 3.7. Let G be a Pr-free bipartite graph with a fized bipartition V1, Va. Let A and C
be two disjoint subsets contained in V;, for some i € {1,2}, and let B C Vs_;. Furthermore,
assume that there exists a vertex v € Vs_; \ B such that A C N(v) but CNN(v) = 0. Then,
(A, B,C) is [ -free.

Proof. Any two anticomplete Pss of the form A — B — C, together with v, induce a Py
in G. <

Recall that in our setting, we have some unknown treedepth-d structure 7 in G and we
are building a container for it. That is, we are happy with inserting any number of vertices
of G into the container, as long as we are guaranteed that we insert only a constant number
of vertices of T along the way. In the case of a \/-free triple (A4, B,C'), we would like to
simplify this part of G by filtering out vertices of B that have neighbors both in A and in C.
To achieve this goal, we will guess a set X C AU B U C that on one hand contains (in one of
the branches) at most a constant number of vertices of the fixed unknown 7, and on the
other hand satisfies the following: no b € B\ X has a neighbor both in A\ X and in C'\ X.

To this end, we will rely on the following simple yet powerful observation. Observe that if
(A, B,C) is {/-free and both AUC and B are independent sets (which happen, in particular,
if AUC is on one side of the bipartition and B is on the other side of the bipartition), then,
for every distinct by, by € B either N(b1) N A and N(bz) N A are comparable by inclusion
or N(b;) N C and N(by) N C are comparable by inclusion. This allows to use the following
lemma on subsets of B, with the orders <; and <5 being inclusion of the neighborhoods in
A and C, respectively.

» Lemma 3.8 (see Lemma 4.1 in [23]). Let (X, <;) and (X, <3) be two partial orders on the
set X such that any pair of elements of X is comparable in <y or in <. Then, there exists
an element v such that for any element x € X we have v <1 x orv <5 x.

This observation is the engine of the following lemma that formalizes our goal of filtering
out vertices of B that have neighbors both in A and in C.

» Lemma 3.9. Fiz an integer d. Let G be a graph, and let (A, B,C) be a \-free triple in G
with both AU C' and B being independent set. Then one can in polynomial time enumerate a
family F of subsets of AU BUC of size at most n* @D with the following guarantee:
For every X € F, there is no b € B\ X with both N(b) N (A\ X) and N(b)N (C'\ X)
nonempty.
For every treedepth-d structure T in G, there exists X € F such that | X N'T| < d*(d+1).

Proof. Fix a treedepth-d structure 7 in G. We will describe the process of enumerating
the elements of F as a branching algorithm, guessing some properties of 7. The number of
leaves of the branching will be polynomial in the size of G and in each leaf of the branching
we will output one set X that satisfies the second property for every T that agrees with the
guesses made in this leaf.

For every b € B, let t4(b) be the maximum integer 1 < a < d such that N(b))N AN T*
contains at least two vertices; t4(b) = 0 if such a « does not exist. Similarly define tc(b)
with respect to N(b)NCNT* For0<a,B <d,let Bog={b€ B |i1a(b) =aAic(b) =5}
Note that sets B, g form a partition of B.

Initialize X = (). For every 0 < a, 8 < d, we we will guess some set of vertices and include
them into X. We will argue that there will be a branch where the vertices guessed for «, 8
ensure that every vertex from B, g\ X satisfies the first statement of the lemma. Thus, for
(at least) one of sets X generated in the process, the statement will hold for every vertex in
B\ X.
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Consider fixed 0 < «, f < d. If B, g is empty, there is nothing to do, so assume otherwise.

Define the following two orders <; and <3 on B, g:

b<;b < NOB)NADNB)NA, if =0,
b<ib <= NOL)NANT*C NH)NANT® if o >0,
b<; b <= NOb)NCDN®WH)NC, if 5=0,
b<o b <= Nb)nCnTPCNW)NnCNTP if B> 0.

Apply Lemma 3.8 to B, g with <; and <, obtaining a vertex ba.5

If a =0, guess b, 5 and add N (b}, 5) N A to X. This adds at most d vertices of 7 to X,
while adds to X all vertices of N( ) n A such that b € B, g and b’ 5 <1 b.

If @ > 0, guess two elements aaﬁ, aﬂ € N(b; 5)NANT® and add N( )ﬂN(ai,B)ﬂB
to X. This adds at most (« — 1) vertices of T to X, while adds to X every b € B, g such
that b}, 5 <1 b.

Perform symmetrical operation for 8 and C: If 8 =0, guess b}, 5 and add N (b}, 5) N C' to
X. This adds at most d vertices of T to X, while adds to X all vertices of N (b ) ﬂ C' such
that b € Ba,p and b7, 5 <o b. If 3 > 0, guess two elements ¢}, 5,¢2 5 € N(b, 5) NCNT? and
add N(c}, )N N(ci,ﬁ) N B to X. This adds at most (5 — 1) vertices of 7 to X, while adds
to X every b € B, g such that b, 5 <5 b.

Finally, add the resulting set X to F if it satisfies the first bullet point of the statement.

We have already argued that in the branch when all guesses concerning 7 are correct, the
first bullet point of the statement is satisfied. Furthermore, the size of 7 N X is bounded by

d d
d+1
PHAEL y=2a D _ i)
Finally, observe that the number of branches is bounded by n 4d+D)” a5 for every 0 < a, 8 <d
we guess at most four vertices of G. <

Thanks to Lemma 3.7, Lemma 3.9 is applicable in the following setting.

» Definition 3.10. Let G be a Pr-free bipartite graph with a fized bipartition Vi, Vo and let
Z C V(G). The neighborhood partition with respect to Z is a partition Z of V(G)\ Z into
sets depending on (1) their side in the bipartition, and (2) their neighborhood in Z. More
precisely,

Z={A;y |i€{1,2},Y CZNVs_;}, where A;y ={ve (V(G\Z)NV;| Nwv)NZ=Y}.

» Lemma 3.11. Let G be a P;-free bipartite graph with a fized bipartition Vi, Vs, let
Z CV(Q), and let Z be the neighborhood partition with respect to Z. Then, for every distinct
A, B,C € Z, the triple (A, B,C) is Y -free.

Proof. There is no P; of the form A— B —C unless A and C are on one side of the bipartition,
and B is on the other side of the bipartition. Then, by the definition of Z, the vertices of A
and the vertices of C differ in their neighborhood in Z: there exists v € Z such that either
Nw)N(AuC)=Aor Nw)N(AUC) = C. Then, the claim follows from Lemma 3.7 and
the symmetry of A, C. |

We summarize this section with the following cleaning step.

20:11

ISAAC 2025



20:12

Sparse Induced Subgraphs in P;-Free Graphs of Bounded Clique Number

» Lemma 3.12. Let G be a Pr-free bipartite graph with a fized bipartition Vi, Vs, let
Z CV(G), and let Z be the neighborhood partition with respect to Z. Then one can in time
\V(G)|23|Z“o(d2) enumerate a family F of at most n*@+D* 271 qupsets of V(G)\ Z with the
following properties:
For every X € F, for every v € V(G) \ X, the elements of N(v) \ (X U Z) are contained
in a single set of Z.
For every treedepth-d structure T in G, there exists X € F such that | X NT| < 23121
d?(d+1).

Proof. Observe that |Z| < 2!4141. Let 23 be the family of all triples (4, B, C) where A, B,C
are distinct elements of Z. For every triple (A, B,C) € Z3, we apply Lemma 3.9 obtaining
a family F(4 p c); Lemma 3.11 asserts that the assumptions are satisfied. For every triple
(X(a,B,0))(4,B,0)e28

€ H(A,BA,C)GZB F(a,B,c) insert U(A,B,C)ez?’ X(a,B,c) into F. The promised guarantees and
size bounds are immediate from Lemma 3.9 and the bound |Z| < 2/4/+1 which implies
|23 < (2171 4 1) - 2141 (2121 — 1) < 23141, <

3.3 Branching on a bad Cgs

The tools developed in Section 3.1 allow us to solve (td < d, ¢)-MWIS on G, assuming that
there is no bad Cg w.r.t. the solution treedepth-d structure 7. We now investigate properties
of bad Cgs and how to branch on them.

We will often denote an induced Cg as C = ¢4 — ¢y — ... — ¢g — ¢1. Then
(c1,¢4), (c2,¢5), (c3,c6) are pairs of the opposite vertices in C'. We implicitly assume
that the indices behave cyclically, i.e., c; = ¢1 etc. We will need the following observation
implicit in [6].

» Lemma 3.13 (M). Let G be a Pr-free bipartite graph, let C =c¢1 —co — ... —cg — c1 be an
induced Cgs in G, and let D be a connected component of G — N[V (C)] that contains at least
two vertices. Then, for every v € N(D), the set N(v) NV (C) equals to either {c1,cs,c5} or

{02704706}'

For an induced six-vertex-cycle C' = ¢y —co — ... — ¢g — ¢1, denote

ST ={ve N(V(0)) | N(v) NV(C) = {e1,¢3,¢5}},
S¢ ={ve N(V(C)) | N(w)NV(C) = {ca,c4,c6} }.

Furthermore, let MR be the union of vertex sets of all connected components of G— N[V (C)]
that contain at least 2 vertices. (MR stands for the “main remainder”.) With this notation,
Lemma 3.13 states that N(MR¢) C S¢ U S§.

Greatly simplifying, our algorithm will guess a bad Cs (C,z,y), resolve N[V (C)] using
cleaning, and recurse on connected components of MR¢x. To restrict the space of possible
recursive calls, we need the following observation.

» Lemma 3.14. Let G be a P;-free bipartite graph with a fixed bipartition Vi, Vs, and let
B be a family of pairwise disjoint and anticomplete subsets of V(G) such that for every
B € B, G[B] is connected and |B| > 1. Let D be a connected component of G — |z N[B],
let C' be the connected component of G that contains D. Then, for every i € {1,2}, either
N(D)NV; = 0 or there exists a single set B; € B such that N(D)NV; C N(B;). Consequently,
there exists a subfamily B' C B of size at most 2 such that N(D) C Ugcp N[B] (i.e., D is a
connected component of G —gcp N[B]).



M. Chudnovsky, J. Czyzewska, K. Kluk, M. Pilipczuk, and P. Rzazewski

Proof. Let B; C B be an inclusion-wise minimal set such that (Jpcp N(B) 2 N(D)NV;.
Assume |B;| > 1; let B, B’ € B; be distinct. By minimality, there exists v,v' € N(D)NV;
such that v € N(B)\ N(B’) and v € N(B’)\ N(B). Since |B|,|B’| > 1, there exists an
induced P3 of the form v — B — B and an induced Ps of the form v — B’ — B’. Let Q be
a shortest path from v to v/ via D. Then, there exists an induced path in G of the form
B—-B—v—Q—v — B'— B’ and this path has at least 7 vertices, a contradiction. <

To see how Lemma 3.14 is useful, consider a hypothetical recursive branching algorithm
that guesses a bad Cg (C, z,y) and recurses on connected components of MR¢. Assume that
some recursive call is invoked on an induced subgraph G[A] and the Cgs in the stack of the
recursion are C1,C?,...,CP. Then, B = {V(C?) | 1 <i < p} satisfies the prerequisites of
Lemma 3.14 and G[A] is a connected component of G — |z N[B]. Lemma 3.14 asserts
that there are at most two Cgs among C!,C?, ..., CP, say C® and C?, such that G[A] is a
connected component of G — (N[V(C*)] U N[V (C?)]). Since |V (C%) U V(C?)| = 12, there
are O(|V(G)|*?) options for the set A, and we have a polynomial bound on the number of
different possible recursive calls.

However, cleaning N[V (C)] for a bad Cs (C, x,y) is far from trivial, and we help ourselves
with a careful choice of (C, z,y). Informally speaking, we choose the one in which the depths
of x and y in 7 are maximum possible. This maximality allows us to argue that some other
Cgs found in the vinicity of C' are not bad, as their vertices of T are deeper.

Further complications arise from the fact that either S{ or S§ can contain an arbitrary
number of vertices of 7 (but we can prove that one of these sets contains at most d vertices
of 7). In this case, the following observation helps us get enough structure to perform
branching.

» Lemma 3.15. Let G be a Pr-free bipartite graph with a fized bipartition Vi, Va, let Z C V(G)
be connected, and let D, D’ be two connected components of G — N[Z] that are of size at least
2 each. Then, for every i € {1,2}, the sets N(D)NV; and N(D')N'V; are comparable by
inclusion.

Proof. Assume the contrary, let x € (N(D)\ N(D"))NV; and 2’ € (N(D')\ N(D))NV;.
By the existence of x and z’, we observe that Z,z,z’, D, D’ lie all in the same connected
component of G and z,2’ € N(Z). Let Q be the shortest path from z to 2’ via Z. Since
|D|,|D’| > 1, there exists an induced Pj of the form  — D — D and an induced P of the form
2’ — D’ — D'. But then there exists an induced path of the foom D—D—x2—Q —2'— D' — D',
which has at least 7 vertices, a contradiction. <

The most frequent usage of Lemma 3.15 will be when Z = V(C) for some bad Cs (C, z,y).
Then, D, D’ are connected components of MR and Lemma 3.15 asserts that for every
i € {1,2}, the neighborhoods N(D) NS¢ and N(D’) N SE are comparable by inclusion.

This concludes the main insights into the proof of Theorem 2.2. Full proof can be found
in the full version of the paper in the appendix.

4  Conclusion

Our work suggests some directions for future research. Of course the most ambitious goal is
to show a polynomial-time algorithm for (tw < d,%)-MWIS in P;-free graphs, for all fixed
t, with the first open case for ¢t = 7 (with no further assumptions on the graph). However,
there are several intermediate goals that also seem interesting. For example, we think that
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the idea of considering graphs of bounded clique number is quite promising. Not only it
allows us to use some strong structural tools like x-boundedness or VC-dimension, but also
to measure the progress of an algorithm by decreasing clique number (see also [12, 11]).

» Problem 4.1 ([12, Problem 9.2]). Show that for every fized t and k, MWIS is polynomial-
time solvable in P;-free graphs with cligue number at most k.

As illustrated in Section 3, assuming additionally that a graph is bipartite might lead to
an easier, but still interesting problem. Of course in this setting asking for an algorithm for
MWIS makes little sense, but already the next case is far from trivial.

» Problem 4.2. Show that for every fixed t, given a vertex-weighted bipartite P;-free graph,
in polynomial-time we can find an induced forest of maximum possible weight.

Let us point out that in case ¢ = 7 one can use an approach alternative to our Theorem 2.2.
Indeed, it follows from the work of Lozin and Zamaraev [32] that Pr-free bipartite graphs
have bounded mim-width, which allows us to solve maximum induced forest in polynomial
time [3]. However, already Ps-free bipartite graphs have unbounded mim-width [10].

A different subclass of P;-free graphs are (P, K i )-free graphs (i.e., excluding additionally
a star with k leaves as an induced subgraph), studied by Lozin and Rautenbach [31], who
show that MAXIMUM WEIGHT INDEPENDENT SET is polynomial-time solvable in these graph
classes. Does this result generalize to (tw < d,1)-MWIS?

Finally, let us point out that Abrishami, Chudnovsky, Pilipczuk, Rzazewski, and Sey-
mour [1] did not only provide an algorithm for (tw < d,1)-MWIS in Ps-free graphs, but
they actually considered a richer class of graphs. In particular, their algorithm works for
Cs4-free graphs, i.e., graph with no induced cycles of length more than 4 (analogously
we define Cs¢-free graphs for any ¢). Similarly, the quasipolynomial-time algorithm for
(tw < d,1)-MWIS works for Cs;-free graphs, for any t. Note that Cs-free graphs form a
proper superclass of P;-free graphs. We believe that all polynomial-time results for P;-free
graphs, discussed in this paper, can be actually lifted to Cs¢-free graphs.
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