
Covering Weighted Points Using Unit Squares
Chaeyoon Chung #

Department of Computer Science and Engineering, Pohang University of Science and Technology,
South Korea

Jaegun Lee #

Department of Computer Science and Engineering, Pohang University of Science and Technology,
South Korea

Hee-Kap Ahn #

Department of Computer Science and Engineering, Graduate School of Artificial Intelligence,
Pohang University of Science and Technology, South Korea

Abstract
Given a set of n points in d-dimensional space, each assigned a positive weight, we study the problem
of finding k axis-parallel unit hypercubes that maximize the total weight of the points contained
in their union. In this paper, we present both exact and (1 − ε)-approximation algorithms for the
case of k = 2. We present an exact algorithm that runs in O(n2) time in the plane, improving the
previous O(n2 log2 n)-time result. This algorithm generalizes to higher dimensions and larger k in
O(ndk/2) time for fixed d and k. We also present a (1 − ε)-approximation algorithm that runs in
O(n log min{n, 1/ε} + 1/ε3) time for k = 2 in the plane, improving the best known result. Our
approximation algorithm also extends to higher dimensions.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Maximum coverage, Unit squares, Approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2025.21

Funding This work was partly supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government(MSIT) (RS-2023-00219980), and the Institute of Information
& communications Technology Planning & Evaluation (IITP) grant funded by the Korea government
(MSIT) (No.RS-2019-II191906, Artificial Intelligence Graduate School Program (POSTECH)) and
(No. 2017-0-00905, Software Star Lab (Optimal Data Structure and Algorithmic Applications in
Dynamic Geometric Environment)).

1 Introduction

The maximum coverage problem is a classic and widely studied problem in theoretical
computer science and computational geometry. Given a set of weighted elements, a collection
of subsets, and an integer k, the goal is to choose up to k subsets that maximize the total
weight of the elements contained in the union of the subsets. This problem naturally models
many real-world scenarios such as facility location, sensor placement, and resource allocation.
It is well-known that the maximum coverage problem is NP-hard and cannot be approximated
within a factor better than (1 − 1/e) unless P = NP [5, 6, 13].

In this paper, we study a geometric version of the problem, specifically the variant where
the covering objects are axis-parallel unit hypercubes.

▶ Definition 1 (k-Cover(P)). Given a set P of n points in d-dimensional space, where each
point is assigned a positive weight, find k axis-parallel unit hypercubes such that the total
weight of points covered by their union is maximized.

The problem k-Cover(P) is NP-hard when k is part of the input, even for d = 2 [10].
There are results for fixed and small k. For 1-Cover(P), Imai and Asano [7], and Nandy and
Bhattacharya [12] gave exact algorithms which run in O(n log n) time. This is proven to

© Chaeyoon Chung, Jaegun Lee, and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Algorithms and Computation (ISAAC 2025).
Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chaeyoon17@postech.ac.kr
https://orcid.org/0009-0008-3363-2406
mailto:jagunlee@postech.ac.kr
https://orcid.org/0009-0007-8835-2957
mailto:heekap@postech.ac.kr
https://orcid.org/0000-0001-7177-1679
https://doi.org/10.4230/LIPIcs.ISAAC.2025.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

21:2 Covering Weighted Points Using Unit Squares

be optimal in the algebraic decision tree model [1]. For 2-Cover(P), Mahapatra et al. [9]
gave an algorithm that runs in O(n2 log2 n) time using O(n log n) space. They also studied a
variant where the solution pair of squares must not share a common input point and gave an
O(n2)-time algorithm. Cabello et al. [2] considered a more restricted version of 2-Cover(P)
where the solution pair of squares must be disjoint and gave an O(n log n)-time algorithm.

There are also approximation algorithms for this problem. For 1-Cover(P), Tao et al.[14]
gave a randomized approximation scheme that computes a (1 − ε)-approximate solution with
probability at least 1 − 1/n and runs in O(n log(1/ε)) + n log log n) time. This was later
improved by Jin et al.[8] with an algorithm with running time O(n log(1/ε)).

For k ≥ 3, de Berg et al. [4] gave an algorithm that can be extended to compute a (1 − ε)-
approximate solution to k-Cover(P) in O(n(k/ε)O(

√
k)) time. Jin et al. [8] gave an (1 − ε)-

approximation algorithm for k-Cover(P) which runs in O((n/ε) log(1/ε) + (k/ε) log(1/ε) +
k(1/ε)∆) time, where ∆ = O(min(

√
k, 1/ε)).

There are work on the problem in higher dimensions d ≥ 3. For k = 1, the problem
reduces to the well-known maximum depth problem that, given a set of weighted hypercubes,
finds a point maximizing the total weight of the hypercubes containing the point. Chan [3]
gave an O(nd/2)-time algorithm for this problem when d ≥ 3. For k ≥ 2, however, little is
known in higher dimensions (d ≥ 3). Mostafavi and Hamzeh [11] studied the problem of
approximating the smallest axis-parallel box that covers a given set of points in Rd while
allowing z outliers, and gave a 2-approximation algorithm with running time O(nd log n).

1.1 Our results

We present both exact and approximation algorithms for 2-Cover(P). We present an O(n2)-
time algorithm for 2-Cover(P) in the plane by reducing the problem to the Depth problem
(See Section 1.2). Our approach extends for any fixed d, k > 2 with little modification,
resulting in an O(ndk/2)-time algorithm for k-Cover(P) in d-dimensional space. More
importantly, we present a (1 − ε)-approximation algorithm for 2-Cover(P) in the plane
running in O(n log min{n, 1/ε} + 1/ε3) time. This improves upon the previous best result by
Jin et al. [8], which runs in O((n/ε) log(1/ε) + (1/ε)O(1)) time, with big hidden constants. In
contrast, our algorithm runs faster, is simple, and easy to implement. Our algorithm extends
for any fixed d ≥ 3 with little modification, running in O((n/εd−2) log(1/ε) + 1/ε2d−1) time.

Hidden Constants in the running time of the algorithm in [8]. For k = 2, it takes
O((n/ε) log(1/ε) + (1/ε)O(1)) time. It begins by constructing a grid G with cells of size 6/ε.
For each cell c of G, it first computes a (1 − ε)-approximate solution to 1-Cover(Pc), where
Pc denotes the set of points in P contained in c. Among all cells in G, it greedily selects
two cells whose (1 − ε)-approximate solution to 1-Cover(Pc) covers the maximum weight.
To approximate 2-Cover within each cell, it constructs an additional finer grid consisting
of O(1/ε3) horizontal and vertical lines, yielding O(1/ε6) grid points. Each grid point is
considered as a potential candidate for the upper-left corner of a square. Furthermore, this
process is repeated over O(1/ε) different grids. Thus, the second term is Ω(1/ε7) time.

1.2 Preliminaries

For simplicity, we omit the terms “unit” and “axis-parallel” when they are clear from the
context. For a compact set X, we use int(X) to denote the interior of X.

C. Chung, J. Lee, and H.-K. Ahn 21:3

We denote by P a set of positively weighted points in d-dimensional space, and by w(P)
the total weight of points in P . We say that a region R covers weight w if the total weight of
the points in P contained in R is w. For any region R, we denote by w(R) the total weight
of points in P covered by R. Let opt(P) denote the total weight of points covered by an
optimal pair of hypercubes to 2-Cover(P).

▶ Definition 2 (k-Depth(R)). Given a set R of n positively weighted boxes (hyperrectangles)
in d-dimensional space, find k points in Rd that maximizes the sum of weights of the boxes
in R containing at least one of the points. Let Depth(R) denote 1-Depth(R).

2 Exact algorithm

We show that an instance of 2-Cover in the plane can be reduced to an instance of Depth
in 4-dimensional space. This yields an O(n2)-time algorithm for 2-Cover in the plane,
improving upon the previously best-known O(n2 log2 n)-time algorithm. We then generalize
this approach to higher dimensions and larger k, reducing an instance of k-Cover in d-
dimensional space to an instance of Depth in dk-dimensional space, which can be solved in
O(ndk/2) time for d ≥ 3 [3].

2.1 Two squares in the plane
For a set P of n points in the plane, we give a reduction from 2-Cover(P) to an instance of
Depth in 4-dimensional space. For a unit square s in the plane, we represent its location by
the coordinates of its top-right corner, denoted by (sx, sy) (See Figure 1(a)). By representing
a pair of unit squares (s, s′) as a point in 4-dimensional space, (sx, sy, s′

x, s′
y), there is a one-

to-one correspondence between a placement of a pair of squares and a point in 4-dimensional
space.

A unit square s covers a point p = (px, py) in the plane if and only if px ≤ sx ≤ px +1 and
py ≤ sy ≤ py +1. Let H(p) denote the set of points in 4-dimensional space that correspond to
all placements of two unit squares containing p in their union. Then, H(p) = H1(p) ∪ H2(p)
and Hi(p) = {(x1, y1, x2, y2) | px ≤ xi ≤ px + 1, py ≤ yi ≤ py + 1} for i = 1, 2. See Figure 1.

(a) (b)

p = (px, py)

x2

x1px px + 1

px

px + 1

(sx, sy)

(s′x, s
′
y)

(sx, s
′
x)

1

Figure 1 (a) A point p = (px, py) and a pair of squares (s, s′) whose union covers p. (b)
A bounding box B is represented by dashed lines. For illustration, we show the projection of
H(p) ∩ B onto the x1x2-plane (gray region). The pair of unit squares (s, s′) corresponds to a point
(sx, sy, s′

x, s′
y) in the 4-dimensional parameter space, and its projection is also shown.

By restricting the parameter space to a sufficiently large bounding box B = [bmin, bmax]4,
H(p) can be represented as a union of interior-disjoint boxes in B. (Let bmin be the minimum
coordinate value over all points in P and let bmax be the maximum coordinate value over all

ISAAC 2025

21:4 Covering Weighted Points Using Unit Squares

points in P plus one.) Clearly, H(p) ∩ B can be represented as the union of O(1) mutually
interior-disjoint boxes in the 4-dimensional space. Let B(p) denote this set of interior-disjoint
boxes such that the weight of each box is set to the weight of p. Let T denote the collection of
the boxes in B(p) for all p ∈ P . We now show that an optimal point for Depth(T) corresponds
to an optimal pair of squares for 2-Cover(P). Here, we slightly abuse the notation so that
opt(T) denotes the total weight of boxes in T containing an optimal point of Depth(T).

▶ Lemma 3. opt(T) = opt(P).

Proof. Let (s, s′) be an optimal pair of squares for 2-Cover(P). This pair corresponds to the
point qs,s′ = (sx, sy, s′

x, s′
y) in the 4-dimensional parameter space. Let P ′ ⊆ P be the set of

points covered by the union of s and s′, that is, w(P ′) = opt(P). By definition, we have
qs,s′ ∈ H(p) for every p ∈ P ′. Thus, for each p ∈ P ′, there is at least one box in B(p) that
contains qs,s′ , implying opt(T) ≥ opt(P).

Let qr,r′ = (rx, ry, r′
x, r′

y) be an optimal point for Depth(T), and let T ′ ⊆ T be the set of
boxes in T that contain qr,r′ . (By a symbolic perturbation to the boxes, we can avoid double
counting while preserving the maximum depth.) Then the total weight of points p ∈ P such
that qr,r′ ∈ H(p) is exactly opt(T). This means the pair of squares (r, r′) together cover the
total weight opt(T) which is at most opt(P). ◀

As |T | = O(n) and Depth(T) can be solved in O(nd/2) time [3], we have the following.

▶ Theorem 4. Given a set P of n positively weighted points in the plane, we can compute
an optimal pair of unit squares for 2-Cover(P) in O(n2) time.

2.2 Extension to larger k and higher dimensions
We can naturally extend this framework to handle k-Cover(P) for general k ≥ 3. By
representing the placement of k squares can also be specified by their top-right corners, it
corresponds to a single point in 2k-dimensional parameter space. There is a one-to-one
correspondence between a point in this 2k-dimensional space and a specific placement of the
k squares in the plane. Then H(p), Hi(p), and B(p) can be defined for a point p analogously.
The remaining procedure is exactly the same as in the case of k = 2.

▶ Corollary 5. Given a set P of n positively weighted points in the plane, we can compute
an optimal set of k unit squares for k-Cover(P) in O(nk) time.

Our approach also extends to higher dimensions with little modification, except that the
location of a hypercube, represented by one of its corners, now requires d coordinates. As a
result, we obtain a set T of boxes in dk-dimensional space.

▶ Corollary 6. Given a set P of n positively weighted points in d-dimensional space, we can
compute an optimal set of k unit hypercubes for k-Cover(P) in O(ndk/2) time.

3 Approximation algorithm

Given a set P of n positively weighted points in the plane, we present a (1−ε)-approximation
algorithm for 2-Cover(P) that runs in O(n log min{n, 1/ε} + 1/ε3) time for any fixed ε > 0.
Specifically, it returns a pair of squares whose union covers a weight at least (1 − ε) · opt(P).
Compared to the (1 − ε)-approximation algorithm by Jin et al. [8], our algorithm runs faster
asymptotically. Moreover, our algorithm is simple and easy to implement, and it can be
extended to higher dimensions with little modifications.

C. Chung, J. Lee, and H.-K. Ahn 21:5

3.1 Types of solutions
For any pair (s1, s2) of squares, either (1) int(s1) ∩ int(s2) = ∅ or (2) int(s1) ∩ int(s2) ̸= ∅.
See Figure 2 for an illustration. We solve two cases of the problem: Type (1) case finds two
squares (s1, s2) with int(s1) ∩ int(s2) = ∅ whose union covers the maximum weight. Type (2)
case finds two squares (s1, s2) with int(s1) ∩ int(s2) ̸= ∅ whose union covers the maximum
weight. An optimal solution to the type (1) case can be computed in O(n log n) time [2].
We show how to find a (1 − ε)-approximate solution to the type (1) case for 2-Cover(P) in
O(n log(1/ε)) time.

▶ Lemma 7. Given a set P of n positively weighted points in the plane, a (1−ε)-approximate
solution to the type (1) case can be computed in O(n log(1/ε)) time.

Proof. We note that Jin et al. [8] presented an algorithm that computes a (1−ε)-approximate
square for 1-Cover(P) in O(n log(1/ε)) time. We adopt their grid-shifting technique for our
problem. Let G3(a, b) denote the square grid with mesh size 3, where the vertical and
horizontal grid lines are defined as:

G3(a, b) =
{

(x, y) ∈ R2 | x = a + 3k, k ∈ Z
}

∪
{

(x, y) ∈ R2 | y = b + 3k, k ∈ Z
}

.

Consider the following nine grids: G3(a, b) for all a, b ∈ {1, 2, 3}. It can be easily shown
that for any two unit squares s1 and s2, there exists at least one of these grids such that both s1
and s2 do not intersect any grid lines Therefore, for every grid G ∈ {G3(a, b) | a, b ∈ {1, 2, 3}},
we aim to compute a pair of disjoint unit squares that do not intersect any grid lines of G,
and we return the pair that covers the maximum total weight.

For a grid G ∈ {G3(a, b) | a, b ∈ {1, 2, 3}}, we perform the following preprocessing. We
compute a (1−ε)-approximate square for 1-Cover(Pc) for every nonempty cell c of G where Pc

denotes the set of points of P in c. We note that Jin et al. [8] give an algorithm, MaxCovCell(c),
which computes a (1 − ε)-approximate to 1-Cover(Pc) in O(|Pc| log(1/ε) + 1/ε2) time for a
cell c of G if the size of c is constant. For each cell of G which contains larger than (1/ε)2

points, we run MaxCovCell. For the remaining nonempty cells, we run the exact algorithm
which runs in O(|Pc| log |Pc|) time [2]. Let n1 ≥ . . . nj ≥ (1/ε2) ≥ nj+1 ≥ . . . ≥ nj+k be the
sorted sequence of the number of points in nonempty cells of G. Then the total running time
is

∑j
i=1 O(ni log(1/ε) + (1/ε)2) +

∑k
i=1 O(ni+j log(ni+j)), which is O(n log(1/ε)).

To make use of the above results, we consider two cases based on whether there exists an
optimal disjoint pair of squares for 2-Cover(P) such that the two squares are contained in
different cells of G, or the two squares are contained in different cells of G.
Case 1. We first consider the case where there exists an optimal pair of squares of type
(1) for 2-Cover(P) such that the two squares are contained in different cells of G. In this
case, there always exist at least two cells of G whose respective (1 − ε)-approximate solutions
together cover at least the weight of ε · opt(P). Therefore, among all cells of G, we select the
pair of cells whose (1 − ε)-approximate solutions together cover the maximum total weight.
The union of these two (1 − ε)-approximate solutions then forms a (1 − ε)-approximate
solution for 2-Cover(P).

Before moving onto the second case, we provide a summary of MaxCovCell(c).
MaxCovCell(c). For a given cell c, they form another (non-uniform) grid G′ which consists
of O(1/ε) horizontal lines and O(1/ε) vertical lines such that the following property holds:
For a unit square q, it holds that w(r(q) ∩ c) ≥ ε · w(q ∩ c) where r(q) denotes the largest
axis-parallel rectangle contained in q whose corners all lie on grid points of G′. They construct
such grid G′ in O(|Pc| log(1/ε)) time. The details of the method used to construct G′ can be
found in Lemmas 1 and 2 of [8].

ISAAC 2025

21:6 Covering Weighted Points Using Unit Squares

For each cell c′ of G′, they calculate the sum of weights of points at the interior, edges, or
corners of c′ in O(|Pc| log(1/ε)) time. Then they enumerate every vertex of G′ and consider
the unit square q which has its top-left corner on the vertex. While enumerating those
vertices and corresponding unit squares q, they calculate w(r(q) ∩ c). Then the one that
covers the maximum weight can be found in O(1/ε2) time with a standard incremental
algorithm, and it is a (1 − ε)-approximate solution to 1-Cover(Pc).

Case 2. Now we consider the case where an optimal pair of squares of type (1) for 2-Cover(P)
is contained in the same cell of G. We can observe that once we compute a (1−ε)-approximate
pair of squares to 2-Cover(Pc) for every cell c of G, and we can return the pair which covers
the maximum total weight as a (1 − ε)-approximate solution to 2-Cover(P).

We first note that there exists an O(n log n)-time exact algorithm for 2-Cover(P) in the
case where a disjoint optimal pair of squares exists [2]. For any cell c with |Pc| ≤ 1/ε2, we can
directly apply this algorithm for 2-Cover(Pc), which takes O(|Pc| log |Pc|) = O(|Pc| log(1/ε))
time. Therefore, we now focus on the remaining cells c with |Pc| > 1/ε2.

To compute a (1 − ε)-approximate solution of type (1) for 2-Cover(Pc), we further utilize
the information obtained from the procedure MaxCovCell(c). Recall that we calculated
w(r(q) ∩ c) for the squares q which has its top-left corner on the vertex of G′. Among the
rectangle r(q)’s, we find a disjoint pair whose union covers the maximum total weight. This
can be done using the observation that there always exists a horizontal or vertical line that
separates the two disjoint squares. Without loss of generality, we can sweep a horizontal line
across the plane and, at each position, track the maximum value of w(r(q) ∩ c) achievable
by placing q on one side of the sweep line. We repeat this process by sweeping the line in
both directions. By combining the results from both sweeps, we can identify two disjoint
rectangles among the r(q)’s whose union covers the maximum total weight. We note that this
procedure can be implemented as part of the MaxCovCell(c). Then a pair of unit squares,
each containing one of the rectangles, is a (1 − ε)-approximate solution to 2-Cover(Pc).

Among all the cells c of G, the pair of squares for 2-Cover(Pc) that covers the maximum
total weight is a (1 − ε)-approximate solution to 2-Cover(P).

For each grid G ∈ {G3(a, b) | a, b ∈ {1, 2, 3}}, we compute a (1 − ε)-approximate solution
for both cases in O(n log(1/ε)) time and take the one that covers the larger total weight.
Then we repeat this process for every grid G ∈ {G3(a, b) | a, b ∈ {1, 2, 3}}, and we return the
pair of squares that covers the maximum total weight. ◀

(a) (b)

Figure 2 Solutions for 2-Cover with unit-weighted points. (a) A solution for the type (1) case,
which is optimal for 2-Cover. No optimal to the type (2) case is optimal to 2-Cover. (b) Two optimal
solutions (red and blue) to the type (2) case, which are optimal for 2-Cover. No optimal to the type
(1) case is optimal to 2-Cover.

C. Chung, J. Lee, and H.-K. Ahn 21:7

If an optimal pair of squares for the type (1) case is an optimal pair of squares for
2-Cover(P), we can compute a (1 − ε)-approximate solution for 2-Cover(P) in O(n log(1/ε))
time by Lemma 7. From now on, we assume that every optimal pair of squares for 2-Cover(P)
intersect each other in their interior, and we focus on computing a (1 − ε)-approximate
solution to the type (2) case. Once we obtain a (1 − ε)-approximate solution to the type (2)
case, we compare it with the approximate solution to the type (1) case and return the one
with the larger total weight.

3.2 Search space of the type (2) case
We begin with reducing the search space for 2-Cover(P). We use s∗ to denote an optimal
square for 1-Cover(P).

▶ Lemma 8. There is an optimal pair of squares for 2-Cover(P) such that both squares
intersect int(s∗).

Proof. Suppose that, for an optimal pair (s1, s2) for 2-Cover(P), s2 does not intersect int(s∗).
See Figure 3(a). Since s∗ is an optimal square for 1-Cover(P), w(s1) ≤ w(s∗). Thus,
w(s1 ∪ s2) ≤ w(s1) + w(s2) ≤ w(s∗) + w(s2), implying that (s∗, s2) is an optimal pair of
squares for 2-Cover(P). Observe that int(s∗) ∩ int(s2) = ∅, which contradicts our assumption
that every optimal pair of squares for 2-Cover(P) intersect each other in their interiors. ◀

(a) (b)

3

s∗
s1 s2

s∗

s1

s2

q1

q2

q3

q4

q5

G

(c)

Figure 3 (a) An optimal square s∗ for 1-Cover(P) and an optimal pair (s1, s2) for 2-Cover(P).
(s∗, s2) is also an optimal pair for 2-Cover(P). (b) 3 × 3 square centered at s∗. (c) A set Q =
{q1, q2, . . . , q5} of squares and a grid G formed by Lv and Lh (gray lines). The rectangles in
R = {r(q) | q ∈ Q} are drawn in red. Note that r(q2) = r(q3).

Lemma 8 immediately implies the existence of an optimal pair of squares for 2-Cover(P)
that are contained in the 3 × 3 square centered at s∗. See Figure 3(b). We have a similar
statement for a (1 − ε)-approximate square s̃ for 1-Cover(P).

▶ Lemma 9. There exists a (1 − ε)-approximate pair of squares (s1, s2) for 2-Cover(P) such
that int(s1) ∩ int(s̃) ̸= ∅ or int(s2) ∩ int(s̃) ̸= ∅.

Proof. Suppose that neither s1 nor s2 intersects int(s̃). Without loss of generality, assume
that w(s1) ≥ w(s2). Then, w(s1) ≥ (1 − ε)opt(P)/2. Since s̃ is a (1 − ε)-approximate square
for 1-Cover(P), 2w(s̃) ≥ (1 − ε)opt(P). Thus, w(s1 ∪ s̃) = w(s1) + w(s̃) ≥ (1 − ε)opt(P),
implying that (s̃, s1) is a (1 − ε)-approximate pair of squares for 2-Cover(P). ◀

Recall that we compute a (1 − ε)-approximate solution to the type (2) case. By Lemma 9,
we have the following.

ISAAC 2025

21:8 Covering Weighted Points Using Unit Squares

▶ Lemma 10. There exists a (1 − ε)-approximate pair (s1, s2) of squares for 2-Cover(P) such
that both s1, s2 are contained in the 5 × 5 square centered at s̃.

By Lemmas 8, 9, and 10, the search space for 2-Cover(P) is a 5 × 5 square centered at s∗

or s̃. We compute either s∗ or s̃ depending on the comparison between n and 1/ε, identify
the corresponding search space, and remove the points of P lying outside this search space.
Since s∗ can be computed in O(n log n) time [2] and s̃ can be computed in O(n log(1/ε))
time by Lemma 7, this step can be completed in O(n log min {1/ε, n}) time.

From now on, we assume that every point of P lies in the 5 × 5 square. Clearly, there is
a unit square that contains a subset of P whose total weight is at least w(P)/25.

▶ Lemma 11. opt(P) ≥ w(P)/25.

3.3 Reduction to 2-Depth
Consider a dual mapping between a weighted point and a weighted square. For a point
p = (a, b) with weight wp, the dual p̄ of p is a unit square centered at (a, b) and with weight
wp. For a square s with weight ws centered at (a, b), the dual s̄ of s is the point (a, b) with
weight ws. Observe that s contains p if and only if p̄ contains s̄.

Let Q denote the set of weighted squares p̄ for each p ∈ P . Throughout this section, for
a square q ∈ Q, we denote by w(q) the weight q. For an optimal pair (p1, p2) of points for
2-Depth(Q), (p̄1, p̄2) form an optimal pair of squares for 2-Cover(P). Thus, we transform P

into Q, and solve 2-Depth(Q). We then return the pair of squares that is dual to the solution
to 2-Depth(Q) as a solution for 2-Cover(P). Since we aims to compute a (1 − ε)-approximate
solution for 2-Cover(P), it suffices to compute a (1 − ε)-approximate solution to 2-Depth(Q).
To do this, we construct a grid G and snap round each rectangle in Q to G.

Grid. We construct a grid G with O(1/ε) horizontal and vertical lines with respect to Q
using the following lemma, which is obtained by combining Lemmas 1 and 2 of [8].

▶ Lemma 12 ([8]). Given n positively weighted points with distinct x-coordinates in the plane
whose weight sum is W , and a value wd with 0 < wd ≤ W , we can find O(W/wd) vertical
lines such that the sum of the weights of points lying in the interior of the slab bounded by
any two consecutive lines is at most wd in time O(n log(W/wd)).

Let VQ denote the set of corners of the squares in Q. The weight of v ∈ VQ is set to the
weight of its corresponding square. Let Lv be the set of vertical lines obtained by applying
Lemma 12 with wd = ε · w(P)/50. Let Lh be the set of horizontal lines defined in exactly the
same way. Let G denote the grid formed by Lv and Lh. By Lemma 12, G can be constructed
in O(n log(min{n, 1/ε})) time. In particular, when n < 1/ε, we can simply draw horizontal
and vertical lines through every point in VQ.

Snap rounding. For each square q ∈ Q, let r(q) be the largest axis-parallel rectangle
contained in q whose corners all lie on grid points of G. Let R = {r(q) | q ∈ Q}. The
weight of r(q) is set to the weight of q. If two or more squares in Q have the same rectangle
snap-rounded in G, R contains exactly one snap-rounded rectangle for those squares and the
weight of the rectangle is set to the sum of the weights of those squares. See Figure 3(c).
For a rectangle r ∈ R, we denote by w(r) the weight of r. Let opt(R) and opt(Q) denote the
total weights obtained by 2-Depth(R) and 2-Depth(Q), respectively.

▶ Lemma 13. opt(R) ≥ (1 − ε) · opt(Q).

C. Chung, J. Lee, and H.-K. Ahn 21:9

Proof. For a point p ∈ R2, let Q(p) = {q ∈ Q | p ∈ q}. Note that there may exist squares
q ∈ Q(p) with p /∈ r(q). Let Qc(p) = {q ∈ Q(p) | p /∈ r(q)}.

Let (p1, p2) be an optimal pair of points for 2-Depth(Q). Assume that p1 lies in the
interior of a vertical slab Γv bounded by two consecutive lines in Lv. Also, assume that
p1 lies in the interior of a horizontal slab Γh bounded by two consecutive horizontal lines
in Lh. Every square in Qc(p1) must have at least two corners lying in int(Γv) or at least
two corners in int(Γh). Since the total weight of the corners in VQ contained in int(Γv) or
int(Γh) is at most ε · w(P)/25, w(Qc(p1)) ≤ ε · w(P)/50. Since opt(P) = opt(Q) ≥ w(P)/25
by Lemma 11, w(Qc(p1)) ≤ ε · opt(Q)/2. The same argument applies to p2, implying
w(Qc(p2)) ≤ ε · opt(Q)/2.

By defining R(p) analogously to Q(p), we have w(R(p1) ∪ R(p2)) ≥ w(Q(p1) ∪ Q(p2)) −
w(Qc(p1)) − w(Qc(p2)). Since w(Qc(p1)) + w(Qc(p2)) ≤ ε · opt(Q) and w(Q(p1) ∪ Q(p2)) =
opt(Q), we have opt(R) ≥ (1 − ε) · opt(Q). ◀

For a rectangle r = [x1, x2] × [y1, y2], let x(r) = [x1, x2] and let y(r) = [y1, y2]. Let
Ix = {x(r) | r ∈ R} and Iy = {y(r) | r ∈ R}.

▶ Lemma 14. For any two elements I = [x1, x2] and I ′ = [x′
1, x′

2] in Ix, we have x2 ≤ x′
2 if

x1 < x′
1, and x1 ≤ x′

1 if x2 < x′
2. The same property holds for Iy.

Proof. Let q and q′ be the squares in Q with x(r(q)) = I and x(r(q′)) = I ′. Let x(q) = [a1, a2]
and x(q′) = [a′

1, a′
2]. Since x1 < x′

1, and q, q′ are unit squares, we have a1 < a′
1, and thus

a2 < a′
2. This implies that x2 ≤ x′

2 by the snap rounding method. The same can be shown
for the other cases analogously. ◀

By Lemma 14, we obtain the following corollary. Note that R ⊆ {α × β | α ∈ Ix, β ∈ Iy}.

▶ Corollary 15. Both |Ix| and |Iy| are O(1/ε). |R| = O(1/ε2).

Recall that G can be constructed in O(n log min{n, 1/ε}) time. After sorting the grid
lines, we can use binary search to snap round every square in Q in O(n log min{n, 1/ε}) total
time.

▶ Theorem 16. Given a set P of n positively weighted points in the plane, we can compute
in O(n log min{n, 1/ε}) time a set R of positively weighted rectangles in the plane such that
|R| = O(1/ε2) and the dual of an optimal solution for 2-Depth(R) is a (1 − ε)-approximate
solution for 2-Cover(P).

3.4 Algorithm
Let R be the set of O(1/ε2) positively weighted rectangles obtained by Theorem 16. Recall
that each corner of a rectangle in R lies on a grid point of G. As defined in Section 3.3, G
is formed by a set Lv of O(1/ε) vertical lines and a set Lh of O(1/ε) horizontal lines. Let
Lv = {ℓ1, ℓ2, . . . , ℓt}. For each i from 1 to t − 1, ℓi and ℓi+1, form a vertical slab which we
denote by Γi (See Figure 4(a)). Then there is a pair of index (i, j) such that 2-Depth(R)
has an optimal pair of points (p1, p2) with p1 ∈ Γi and p2 ∈ Γj . For every possible pair of
indices (i, j) for 1 ≤ i ≤ j < t, we compute an optimal pair of points, (p1, p2), for 2-Depth(R)
while restricting that p1 ∈ Γi and p2 ∈ Γj . Among all the pairs of points, the one (p1, p2)
that maximizes the sum of weights of the rectangles in R containing p1 or p2 is an optimal
solution for 2-Depth(R).

For two indices 1 ≤ i ≤ j < t, we denote by 2-Depth(Γi, Γj), or simply 2-Depth(i, j), the
case of 2-Depth(R) in which we seek a pair of points (p1, p2) maximizing the total weight of
rectangles in R containing at least one of them, subject to the constraint that p1 ∈ Γi and
p2 ∈ Γj .

ISAAC 2025

21:10 Covering Weighted Points Using Unit Squares

y = γ

r1 r2

r3 r4

r5 r6

r7

p1

p2

(a) (b)

I4,5

I1,2
I8,9

I3

I6
I7

r1
r2

r3

r4 r5

r6
r7

r8

r9

Γi ΓjΓi Γj

Figure 4 (a) Ri\j = {r7}, Rj\i = {r6}, Ri,j = {r1, r3, r4, r5}. (p1, p2) for 2-Depth(R) with total
weight of 5 for unit weight rectangles. Ri,j(γ) = {r1, r3, r4}, Rc

i,j(γ) = {r5}. Depth(Ri\j ∪Ri,j(γ)) = 3,
Depth(Rj\i ∪ Rc

i,j(γ)) = 2. (b) Rℓ = [r1, r2, r3, r4, r5, r8, r7, r6, r9], Rr = [r1, r2, r3, r4, r5, r6, r8, r7, r9],
Rt = [r4, r5, r8, r9, r1, r2, r3, r7, r6], Ii\j = [I1,2, I3], Ij\i = [I8,9, I7, I6], Ii,j = [I4,5].

Without loss of generality, we assume that 2-Depth(i, j) has an optimal pair (p⋆
1, p⋆

2) such
that p⋆

1 lies to the left of and above p⋆
2. The remaining cases can be handled analogously. For

ease of description, we assume that p⋆
1 and p⋆

2 lie in int(Γi) and int(Γj), respectively. The
cases where either p1 or p2 lies on the boundary can be handled in a similar manner.

For a rectangle r, let ry denote the y-coordinate of its top side. For a set H of rectangles
and a real value α, let H(α) = {r ∈ H | α < ry} and Hc(α) = H \ H(α). For a set H of
weighted rectangles, let Iy(H) = {Iy(r) | r ∈ H}. We abuse the notation and use Depth(H)
to denote the total weight of rectangles in H hit by an optimal point for Depth(H). See
Figure 4(a) for the following definition.

▶ Definition 17. Let Ri = {r ∈ R | r ∩ int(Γi) ̸= ∅} for 1 ≤ i < t. For two indices i and j,
1 ≤ i < j < t, let Ri\j = Ri \ Rj, Rj\i = Rj \ Ri, and Ri,j = Ri ∩ Rj. For i = j, let Ri\i = ∅
and Ri,i = Ri.

For a point p ∈ R2, let x(p) and y(p) denote its x and y-coordinates.

▶ Lemma 18. For any fixed i, j with 1 ≤ i ≤ j < t, let opt(i, j) be the total weight of
rectangles in R hit by an optimal solution for 2-Depth(i, j). If there is an optimal pair of
points (p1, p2) for 2-Depth(i, j) with p1 ∈ Γi, p2 ∈ Γj and y(p1) > y(p2), there is a real value
γ satisfying Depth(Ri\j ∪ Ri,j(γ)) + Depth(Rj\i ∪ Rc

i,j(γ)) = opt(i, j).

Proof. Let Q1 ⊂ R be the set of rectangles hit by p1. Let Q2 ⊂ R be the set of rectangles
hit by p2 but not by p1. Note that w(Q1) + w(Q2) = opt(i, j) as Q1 ∩ Q2 = ∅.

Let γ = max{ry | r ∈ (Q2 ∩ Ri,j)}. See Figure 4(a). Observe that y(p2) ≤ γ < y(p1). We
will prove that w(Q1) = Depth(Ri\j ∪ Ri,j(γ)) and w(Q2) = Depth(Rj\i ∪ Rc

i,j(γ)).
Every rectangle r ∈ Q1 has y(p1) ≤ ry by the definition. Every rectangle in Q1 is from

either Ri\j or Ri,j . (Note that Ri\j and Ri,j are disjoint.) For a rectangle of the latter
case, that is r ∈ Q1 ∩ Ri,j , observe that r ∈ Ri,j(γ) as we have γ < y(p1) ≤ ry. Therefore
Q1 ⊂ (Ri\j ∪ Ri,j(γ)).

Every rectangle in Q2 is from either Rj\i or Ri,j . (Note that Rj\i and Ri,j are disjoint.)
For a rectangle of the latter case, that is r ∈ Q2 ∩ Ri,j , observe that ry ≤ γ by the definition
of γ. Therefore such r is contained in Rc

i,j(γ). Therefore Q2 ⊂ (Rj\i ∪ Rc
i,j(γ)).

C. Chung, J. Lee, and H.-K. Ahn 21:11

Now we first show that w(Q1) = Depth(Ri\j ∪ Ri,j(γ)). As Q1 ⊂ (Ri\j ∪ Ri,j(γ)), it is
clear that w(Q1) ≤ Depth(Ri\j ∪ Ri,j(γ)). Now suppose w(Q1) < Depth(Ri\j ∪ Ri,j(γ)). As
every rectangle in (Ri\j ∪ Ri,j(γ)) intersects int(Γi), there always exists an optimal point p′

for Depth(Ri\j ∪ Ri,j(γ)) such that p′ ∈ Γi. Let R′ be the set of rectangles in (Ri\j ∪ Ri,j(γ))
hit by p′, that is w(R′) = Depth(Ri\j ∪ Ri,j(γ)). Observe that R′ ∩ Q2 = ∅ because we have
R′ ⊂ (Ri\j ∪ Ri,j(γ)), Q2 ⊂ (Rj\i ∪ Rc

i,j(γ)), and (Ri\j ∪ Ri,j(γ)) ∩ (Rj\i ∪ Rc
i,j(γ)) = ∅. Then

the total weight of rectangles in R hit by a new pair (p′, p2) is w(R′)+w(Q2) > w(Q1)+w(Q2),
which contradicts that (p1, p2) is an optimal pair of points for 2-Depth(i, j).

In a similar way, we can show that w(Q2) = Depth(Rj\i ∪ Rc
i,j(γ)). ◀

3.4.1 Data Structures and Invariants
Given an input set R of weighted rectangles, we store them in three lists. The first list, Rℓ,
stores the rectangles in increasing order of the x-coordinates of their left sides. The second
list, Rr, stores the rectangles in increasing order of the x-coordinates of their right sides. In
the case of a tie, the rectangles are further sorted by increasing order of the y-coordinates
of their top sides. If the tie still remains unsolved, we sort them by increasing order of the
y-coordinates of their bottom sides. See Figure 4(b). The third list, Rt, stores the rectangles
in increasing order of the y-coordinates of their top sides. In the case of a tie, the rectangles
are further sorted by increasing order of the y-coordinates of their bottom sides. If the tie
still remains unsolved, we sort them by increasing order of the x-coordinates of their right
sides.

We compute Rℓ and Rr once at the beginning of the algorithm. Since |R| = O(1/ε2) by
Corollary 15, this can be done in O((1/ε2) log(1/ε)) time. For any fixed indices i and j with
1 ≤ i ≤ j < t, recall that Iy(Ri\j) denotes the set of weighted intervals induced by Ri\j in
the y-direction. By Lemma 15, there are O(1/ε) intervals in Iy(Ri\j).

Note that two or more rectangles in Ri\j may have the same interval, ignoring their
weights. In such a case, we merge them into a single interval. The weight of the merged
interval is set to the total weight of those intervals. Let Ii\j denote the resulting set of
intervals, which satisfies |Ii\j | = O(1/ε). In the same way, we define Ij\i and Ii,j with respect
to Iy(Rj\i) and Iy(Ri,j), respectively. We always maintain the lists Ii\j , Ij\i, and Ii,j in
increasing order of the right endpoints of the intervals. In the case of a tie, the intervals are
further sorted by their left endpoints.

3.4.2 Algorithm for fixed indices i, j

We consider two fixed indices i and j with 1 ≤ i ≤ j < t, and present an algorithm that finds
an optimal pair of points for 2-Depth(i, j). For now, we assume that the sorted lists Ii\j ,
Ij\i, and Ii,j are given. We will later show how to compute them efficiently. By Lemma 18,
there is a real value γ such that an optimal point p1 ∈ Γi for Depth(Ri\j ∪ Ri,j(γ)), and an
optimal point p2 ∈ Γj for Depth(Rj\i ∪ Rc

i,j(γ)) together form an optimal pair (p1, p2) for
2-Depth(i, j). Thus, our goal is to find such γ and the corresponding optimal pair (p1, p2).

Since every rectangle in Ri\j ∪ Ri,j(γ) intersects int(Γi), Depth(Ri\j ∪ Ri,j(γ)) can be
reduced to the one-dimensional problem Depth(Iy(Ri\j) ∪ Iy(Ri,j(γ))). Recall that for any
fixed point p on the real line, the total weight of intervals in Iy(Ri\j) ∪ Iy(Ri,j(γ)) hit by p is
the same as the total weight of intervals in Ii\j ∪ Ii,j(γ) hit by p. (Here, we slightly abuse the
notation: For a list I of intervals on the real line and a real value α, let I(α) denote the set of
intervals in I whose right endpoints are larger than α, and let Ic(α) denote the remaining
intervals in I. Let I ∪ I′ denotes the set consisting of all intervals from I and I′.) Therefore,
for any fixed γ, it suffices to compute Depth(Ii\j ∪ Ii,j(γ)). Similarly, Depth(Rj\i ∪ Rc

i,j(γ)) is
reduced to Depth(Ij\i ∪ Ici,j(γ)).

ISAAC 2025

21:12 Covering Weighted Points Using Unit Squares

Thus, our objective is to find a real value γ that maximizes Depth(Ii\j ∪ Ii,j(γ)) +
Depth(Ij\i ∪ Ici,j(γ)). Imagine that γ decreases from ∞. Then Depth(Ii\j ∪ Ii,j(γ)) does not
decrease, and we can easily maintain this using a simple incremental update since the intervals
in Ii\j ∪ Ii,j satisfy the property described in Lemma 14. For Depth(Ij\i ∪ Ici,j(γ)), we increase
γ from −∞, and the update can be done in a similar manner. Since all the lists are already
sorted, this entire process takes linear time, and we can find the value of γ that maximizes
Depth(Ii\j ∪ Ii,j(γ)) + Depth(Ij\i ∪ Ici,j(γ)). As there are O(1/ε) intervals in Ii\j , Ij\i, and Ii,j ,
we have the following lemma.

▶ Lemma 19. For any fixed i and j with 1 ≤ i ≤ j < t, once we have Ii\j, Ij\i, and Ii,j, we
can solve 2-Depth(i, j) in O(1/ε) time.

3.4.3 Final algorithm
For any fixed i with 1 ≤ i < t, we show how to compute 2-Depth(i, j) for every j =
i, i + 1, . . . , t − 1 in total time O((1/ε2) log(1/ε)). Since t = O(1/ε), this can be done by
running the algorithm from Lemma 19 for each j in the range (t − i + 1) = O(1/ε), resulting
in a O((1/ε2) log(1/ε)) time in total.

However, it remains to show that the lists Ii\j , Ij\i, and Ii,j are properly updated as we
enumerate j from i to t − 1. To this end, we introduce new notations Si and Ti, and provide
inductive relations for Ri\j , Rj\i, and Ri,j .

▶ Definition 20. For an index 1 ≤ i < t, let Ri = {r ∈ R | r ∩ int(Γi) ̸= ∅}. Let R0 = Rt = ∅.
We then define Si = Ri \ Ri−1 and Ti = Ri \ Ri+1 for 1 ≤ i < t.

For any fixed i with 1 ≤ i < t, the rectangles of Si appear as a contiguous sublist in Rℓ,
and they appear before those of Si+1 in Rℓ. Symmetrically, the rectangles of Ti appear as a
contiguous sublist in Rr, and they appear before those of Ti+1 in Rr.

▶ Observation 21. For i and j with 1 ≤ i ≤ j < t, Ri\j+1 = Ri\j ∪ (Ri,j ∩ Tj), Rj+1\i =
(Rj\i \ Tj) ∪ Sj+1, and Ri,j+1 = Ri,j \ Tj.

Using the inductive relation above, we prove the following lemma.

▶ Lemma 22. For any fixed i with 1 ≤ i < t, the lists Ii\j , Ij\i, and Ii,j for all j = i, . . . , t − 1
can be computed in time O(1/ε2) in total.

Proof. For the base case where i = j, recall that Ri\i = ∅ and Ri,i = {r ∈ R | r ∩ Γi ̸= ∅}.
Thus, we initialize Ii\j and Ij\i as empty lists. For Ii,i, we find the rectangles in Ri,i and store
them in increasing order of the y-coordinates of their top sides. This can be done by scanning
the list Rt. Note that two or more rectangles in Ri\j may have the same interval, ignoring
their weights. In such a case, we merge them into a single interval. The weight of the merged
interval is set to the total weight of those intervals. This process takes O(|Rt|) = O(1/ε2)
time, producing the correct Ii,j .

We maintain two pointers, one each for Rℓ and Rr. As j increases, the pointer in Rℓ

moves to the first element contained in Sj+1. and the pointer in Rr moves to the first element
contained in Tj .

Assuming we already have Ii\j , by Observation 21, we need to find rectangles in (Ri,j ∩Tj)
to obtain Ii\j+1. This can be done by scanning the elements in Rr starting from its pointer,
which takes O(|Tj |) time. Note that these rectangles share the same right-side x-coordinate
and are sorted by the y-coordinates of their top sides. Hence, we can convert them into
intervals, and merge the same intervals (ignoring their weights) as done in the previous

C. Chung, J. Lee, and H.-K. Ahn 21:13

paragraph. This also takes O(|Tj |) time. By Lemma 15, the resulting set of intervals, say
Inew, has size O(1/ε). We then merge Inew into Ii\j . We merge the same intervals as done
in the previous paragraph if necessary. Since both Ii\j and Inew are sorted by their right
endpoints, this merge can be done in O(|Ii\j | + |Inew|) = O(1/ε) time.

Similarly, we need to find the rectangles in (Rj\i ∩ Tj) ∪ Sj+1 to obtain Ij+1\i from Ij\i.
The rectangles in (Rj\i ∩ Tj) can be found by scanning the elements in Rr, as before. We
then convert these rectangles into intervals and merge the same intervals, which can be done
in O(|Tj |) time. After that, we update Ij\i by removing or decreasing the weights of the
corresponding intervals. In the same way, we find the rectangles in Sj+1 by scanning the
elements in Rℓ from its pointer, convert them into intervals, and process them similarly.
Therefore, the total time required is O(|Tj | + |Sj+1| + 1/ε). The update for Ii,j+1 can be
handled in the same manner.

It takes O(|Tj |+1/ε) time for computing Ii\j+1, O(|Tj |+ |Sj+1|+1/ε) time for computing
Ij+1\i, and O(|Tj | + 1/ε) time from computing Ii,j+1. Summing over j = i to t − 1, the total
time is

∑t−1
j=i O

(
|Sj+1| + |Tj | + 1/ε

)
= O(|R|) + O(1/ε2) = O(1/ε2). ◀

By combining Lemmas 19 and 22, we can conclude that for any fixed index i with 1 ≤ i < t,
we can compute 2-Depth(i, j) for all j = i, . . . , t − 1 in O(1/ε2) total time. Repeating this
process for all i = 1, . . . , t − 1 takes O(1/ε3). Since it takes O(n log min {n, 1/ε}) time to
compute the set R by Theorem 16, we obtain the following result.

▶ Theorem 23. Given a set P of n positively weighted points in the plane, we can compute
a (1 − ε)-approximate pair of squares for 2-Cover(P) in O(n log min{n, 1/ε} + 1/ε3) time.

3.5 Extension to higher dimensions
Our algorithm extends naturally to higher dimensions. For any fixed d ≥ 3, an optimal
pair to the type (1) case can be computed in O((n/εd−2) log(1/ε)) time by extending the
algorithm of Lemma 7.

Consider the type (2) case. As in Section 3.2, the search space can be reduced to a
constant-size d-dimensional box, and the same duality transform can also be applied. By
applying a lemma analogous to Lemma 12, we can construct a grid such that there are
O(1/ε) grid hyperplanes along each axis xi for i = 1, . . . , d. After performing snap rounding
for each dual hypercube into hyperrectangle, the algorithm proceeds in exactly the same
manner as in the two-dimensional case.

Let Γ1, . . . , Γt denote the slabs formed by two consecutive grid hyperplanes along the
x1-axis. For any fixed 1 ≤ i ≤ j ≤ t, we solve 2-Depth(i, j). We can observe that once i and j

are fixed, all the hyperrectangles of our interest intersect either Γi or Γj . We then project the
problem onto the plane orthogonal to the x1-axis and recursively solve the lower-dimensional
instance.

Thus, we obtain the following theorem.

▶ Theorem 24. Given a set P of n positively weighted points in d-dimensional space, we can
compute a (1 − ε)-approximate pair of hypercubes for 2-Cover(P) in O((n/εd−2) log(1/ε) +
1/ε2d−1) time for any fixed d ≥ 3.

References
1 Michael Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of 15th

Annual ACM Symposium on Theory of Computing, pages 80–86, New York, NY, USA, 1983.
Association for Computing Machinery.

ISAAC 2025

21:14 Covering Weighted Points Using Unit Squares

2 Sergio Cabello, J. Miguel Díaz-Báñez, Carlos Seara, J. Antoni Sellès, Jorge Urrutia, and
Inmaculada Ventura. Covering point sets with two disjoint disks or squares. Computational
Geometry, 40(3):195–206, 2008. doi:10.1016/J.COMGEO.2007.10.001.

3 Timothy M. Chan. Klee’s measure problem made easy. In 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science, pages 410–419, 2013. doi:10.1109/FOCS.2013.51.

4 Mark de Berg, Sergio Cabello, and Sariel Har-Peled. Covering many or few points with unit
disks. Theory of Computing Systems, 45(3):446–469, 2009. doi:10.1007/S00224-008-9135-9.

5 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–652,
1998. doi:10.1145/285055.285059.

6 Dorit S. Hochbaum and Anu Pathria. Analysis of the greedy approach in problems of maximum
k-coverage. Naval Research Logistics, 45(6):615–627, 1998.

7 Hiroshi Imai and Takao Asano. Finding the connected components and a maximum clique of
an intersection graph of rectangles in the plane. Journal of Algorithms, 4(4):310–323, 1983.
doi:10.1016/0196-6774(83)90012-3.

8 Kai Jin, Jian Li, Haitao Wang, Bowei Zhang, and Ningye Zhang. Near-linear time approxim-
ation schemes for geometric maximum coverage. Theoretical Computer Science, 725:64–78,
2018. doi:10.1016/J.TCS.2017.11.026.

9 Priya Ranjan Sinha Mahapatra, Partha P. Goswami, and Sandip Das. Placing two axis-parallel
squares to maximize the number of enclosed points. International Journal of Computational
Geometry & Applications, 25(04):263–282, 2015. doi:10.1142/S0218195915500156.

10 Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common geometric
location problems. SIAM Journal on Computing, 13(1):182–196, 1984. doi:10.1137/0213014.

11 Ali Mostafavi and Ali Hamzeh. High-dimensional axis-aligned bounding box with outliers. In
Proceedings of 34th Canadian Conference on Computational Geometry, pages 264–269, 2022.

12 Subhas C. Nandy and Bhargab B. Bhattacharya. A unified algorithm for finding maximum
and minimum object enclosing rectangles and cuboids. Computers & Mathematics with
Applications, 29(8):45–61, 1995.

13 George L. Nemhauser, Laurence Wolsey, and M.L. Fisher. An analysis of approximations
for maximizing submodular set functions-I. Mathematical Programming, 14(1):265–294, 1978.
doi:10.1007/BF01588971.

14 Yufei Tao, Xiaocheng Hu, Dong-Wan Choi, and Chin-Wan Chung. Approximate MaxRS
in spatial databases. In Proceedings of the VLDB Endowment, pages 1546–1557. VLDB
Endowment, 2013. doi:10.14778/2536258.2536266.

https://doi.org/10.1016/J.COMGEO.2007.10.001
https://doi.org/10.1109/FOCS.2013.51
https://doi.org/10.1007/S00224-008-9135-9
https://doi.org/10.1145/285055.285059
https://doi.org/10.1016/0196-6774(83)90012-3
https://doi.org/10.1016/J.TCS.2017.11.026
https://doi.org/10.1142/S0218195915500156
https://doi.org/10.1137/0213014
https://doi.org/10.1007/BF01588971
https://doi.org/10.14778/2536258.2536266

	1 Introduction
	1.1 Our results
	1.2 Preliminaries

	2 Exact algorithm
	2.1 Two squares in the plane
	2.2 Extension to larger k and higher dimensions

	3 Approximation algorithm
	3.1 Types of solutions
	3.2 Search space of the type (2) case
	3.3 Reduction to 2-depth
	3.4 Algorithm
	3.4.1 Data Structures and Invariants
	3.4.2 Algorithm for fixed indices i, j
	3.4.3 Final algorithm

	3.5 Extension to higher dimensions

