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Abstract
We study the problem of partitioning a polygon into the minimum number of subpolygons using cuts
in predetermined directions such that each resulting subpolygon satisfies a given width constraint.
A polygon satisfies the unit-width constraint for a set of unit vectors if the length of the orthogonal
projection of the polygon on a line parallel to a vector in the set is at most one. We analyze
structural properties of the minimum partition numbers, focusing on monotonicity under polygon
containment. We show that the minimum partition number of a simple polygon is at least that of
any subpolygon, provided that the subpolygon satisfies a certain orientation-wise convexity with
respect to the polygon. As a consequence, we prove a partition analogue of the Bang’s conjecture
about coverings of convex regions in the plane: for any partition of a convex body in the plane, the
sum of relative widths of all parts is at least one. For any convex polygon, there exists a direction
along which an optimal partition is achieved by parallel cuts. Given such a direction, an optimal
partition can be computed in linear time.
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1 Introduction

Most works in partitioning polygons have primarily focused on maximizing geometric meas-
ures, such as fatness or the minimum side length of resulting pieces [11, 13, 20]. In this
paper, we study an opposite objective: partitioning a polygon into subpolygons whose
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22:2 Minimum Partition of Polygons Under Width and Cut Constraints

P

1

(a) (b) (c)
1

1

4

Figure 1 (a) The polygon P has a windmill shape with three arms extending from an equilateral
triangle of height 4. (b–c) The minimum partitions of P under constraints U = {v0◦ , v60◦ , v120◦ }
and W = {v30◦ , v90◦ , v150◦ }, where vθ = (cos θ, sin θ) ∈ S+. (b) A guillotine partition of five
trapezoids. (c) A non-guillotine partition of four trapezoids.

widths are bounded above in certain directions. Such a width constraint commonly arises in
manufacturing and recycling industries, where materials must be cut or processed within
certain width limits. For example, wood chipping and metal shredding require pieces to
fit within the machine’s inlet. In some materials, cut directions are critical for preserving
structural strength; for example, fabric is typically cut along the fiber direction [17].

Our problem is rooted in classical questions in convex geometry, notably Tarski’s plank
problem and its affine-invariant extension by Bang [7]. The original conjecture asserts that
any covering of a convex body in Rd by strips must have a total width at least the minimal
width of the body, which was proven by Bang. Bang further proposed the affine plank
problem, in which strip widths are measured relative to the body’s width in the same direction.
The affine version remains open in general, with only partial results [16, 4, 19, 6]. It is known
to be equivalent to the Davenport conjecture [5], which concerns partitions. Several partition
analogues have been studied [9, 3, 10].

Our work can also be viewed as a partition analogue of these problems in the plane,
where width constraints replace strips, and simple polygons substitute convex bodies.

1.1 Problem definition and results
We consider the problem of partitioning polygons into the minimum number of pieces
satisfying both a unit-width constraint and a cut constraint. Let P be a simple polygon. Let
Q be a piece in a partition of P satisfying unit-width constraint W ⊆ S+, where S+ is the set
of unit vectors {(cos θ, sin θ) | 0 ≤ θ < π}. Let ωv(Q) denote the width of Q in v ∈ S+, that
is, the length of the orthogonal projection of Q on a line parallel to v. We say Q satisfies the
unit-width constraint W if ωv(Q) ≤ 1 for some vector v ∈ W .

The process of partitioning P must satisfy a cut constraint U ⊆ S+. A cut is defined
as a line segment within P whose relative interior lies in the interior of P . A unit vector
is often used to represent a direction, such as the orientation of a cut, meaning that the
cut lies on a line parallel to the vector. We require that every cut must be in a direction
in U . If a cut extends from one edge of P to the other edge, it divides P into two distinct
pieces; such a cut is called a guillotine cut. A guillotine partition of P (also called a binary
partition) is obtained by a finite sequence of guillotine cuts; it starts from P and recursively
partitions each piece into two subpieces using a guillotine cut. A non-guillotine partition
of P is an arbitrary partition of P using cuts that are not necessarily guillotine. Figure 1
shows a guillotine partition and a non-guillotine partition.
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Given a simple polygon P , our objective is to partition P into the minimum number of
pieces using cuts constrained by U such that each piece in the partition satisfies unit-width
constraint W . We denote this minimum partition problem by wPartition(P, W, U) and its
optimum value by opt(P, W, U). Throughout this paper, we use W and U exclusively to refer
to the unit-width constraint and the cut constraint, respectively.

Related Work. Damian and Pemmaraju [14] and Damian-Iordache [15] gave a polynomial-
time algorithm for partitioning a simple polygon into the minimum number of subpolygons
without using Steiner points such that each subpolygon has diameter at most α, for α > 0.
Later, Buchin and Selbach [11] showed that this problem becomes NP-hard for polygons
with holes. Worman [22] proved NP-completeness for a variant in which each subpolygon
must be contained in an axis-aligned square of side length α. Abrahamsen and Stade [2]
showed that allowing Steiner points leads to NP-hardness for the partition problem under
axis-aligned unit-square containment, even for simple polygons without holes. This marks
the first known NP-hardness result of the minimum partition problems for hole-free polygons.
Abrahamsen and Rasmussen [1] studied the problem of partitioning simple polygons into the
minimum number of pieces such that each piece satisfies a bounded-size constraint (e.g., unit
area, perimeter, diameter, or containment within unit disks or squares).

Our Results. Our main contribution is an analysis of the minimum partition number
under constraints W, U ⊆ S+. First, we provide necessary and sufficient conditions for the
existence of feasible partitions in wPartition(P, W, U), along with a decision algorithm for
testing feasibility

Second, we study the monotonicity of the minimum partition number under polygon
containment Q ⊆ P (Sections 3, 4, and 5). We show that this monotonicity does not hold in
general, and identify a sufficient condition based on a restricted-orientation convexity, called
O-convexity, where O ⊆ S+. Theorem 3 states that opt(Q, W, U) ≤ opt(P, W, U) holds if Q

is U -convex with respect to P for guillotine partitions, or W -convex with respect to P for
non-guillotine partitions, where W is the set of all unit vectors perpendicular to those in W .

Finally, we prove a partition analogue of Bang’s conjecture (Section 6). The statement of
Bang’s conjecture is as follows: if a convex body K ⊂ Rd is covered by strips H1, . . . , Hm,
then

∑m
i=1 infv∈S+

ωv(Hi)
ωv(K) ≥ 1. Our theorem replaces strip coverings with arbitrary partitions

and extends the direction set to any subset W ⊆ S+.

▶ Theorem 1 (Bang-Type Partition Analogue). Let K ⊂ R2 be a convex body, and let
K1 ∪ · · · ∪ Km = K be its arbitrary partition. Then, for any subset W ⊆ S+,

m∑
i=1

inf
v∈W

ωv(Ki)
ωv(K) ≥ 1.

To the best of our knowledge, this is the first partition analogue that allows non-convex
pieces. We also show that, for U ⊆ W , an optimal partition of a convex polygon can be
computed in linear time using equally spaced parallel cuts (See Corollary 17). The omitted
proofs will be found in the full version of the paper at https://arxiv.org/abs/2509.09981.

2 Preliminaries

Let P be a simple polygon with n vertices in the plane. We assume that the vertices of P are
given in a list sorted in counterclockwise order along its boundary. A partition of a simple
polygon is a set of connected pieces with pairwise disjoint interiors whose union equals the
polygon. The cardinality of a partition is the number of its pieces.

ISAAC 2025
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For a set X ⊆ R2, we denote by ∂X the boundary of X, by int(X) the interior of X, and
by cl(X) the closure of X. We treat a polygon as the union of its interior and boundary;
cl(P ) = P , ∂P is the boundary, and int(P ) is the interior.

For a point p ∈ R2, let x(p) and y(p) be its x- and y-coordinates, respectively. For any
two points p and q in R2, we use pq to denote the line segment connecting p and q with length
|pq|. We call pq a cut in P if it lies entirely in the interior of P , excluding its endpoints. If
both endpoints lie on ∂P , we call it a guillotine cut.

The inner product of any two vectors u and v is denoted by ⟨u, v⟩. The Euclidean norm
of a vector v is denoted by ∥v∥. A vector with norm 1 is called a unit vector. We use S+ to
denote the set of unit vectors {(cos θ, sin θ) | 0 ≤ θ < π}. For a subset V ⊆ S+, we define
V = {v ∈ S+ | ⟨u, v⟩ = 0 for some u ∈ V }.

For a compact set X ⊆ R2 and a vector v ∈ S+, let ωv(X) denote the length of the
orthogonal projection of X on a line parallel to v. We say X satisfies unit-width constraint
W ⊆ S+ if and only if ωv(X) ≤ 1 for some v ∈ W .

A strip is the region in the plane bounded by two parallel lines. The distance between the
bounding lines is the width of the strip, and the direction in S+ orthogonal to the bounding
lines is called the normal vector of this strip. If a strip has width 1, we call it a unit strip.

We use the notation [m] := {1, 2, . . . , m} for a positive integer m. For a finite set A, we
use |A| to denote the cardinality of A which is the number of its elements.

3 Monotonicity of minimum partition numbers

In this section, we assume that wPartition(P, W, U) has a partition satisfying the constraints.
The necessary and sufficient condition for feasibility is presented in the full version. We show
opt(Q, W, U) ≤ opt(P, W, U) for any subpolygon Q of P that satisfies a certain condition.
For both guillotine and non-guillotine partitions, we identify sufficient conditions on Q

that ensure this monotonicity. When the constraints W and U are clear from context, we
abbreviate opt(P, W, U) as opt(P ).

(c)(a) (b)

2

Q
Q

Q

OP P

P

O′

Figure 2 (a) A polygon P and its subpolygon Q (gray) with opt(P, W, U) = 2 and opt(Q, W, U) > 2
for W = {(1, 0)} and U = {(0, 1)}. (b) Q (gray) is U -convex (or W -convex) with respect to P ,
resulting in opt(Q, W, U) ≤ opt(P, W, U). (c) Q (gray) of P is O-convex, but not O′-convex with
respect to P , where O = {(1, 0), (0, 1)} and O′ = {(

√
2

2 ,
√

2
2 )}.

Let P be a square of side length 2, and let Q be a subpolygon of P as shown in Figure 2(a).
Consider the instance wPartition(P, W, U) with W = {(1, 0)} and U = {(0, 1)}. Since U

is a singleton, every cut must be a guillotine cut. Observe that neither P nor Q satisfies
unit-width constraint W . A vertical cut halving P yields a feasible partition of two pieces.
No vertical cut, however, in Q partitions Q into two pieces, each with horizontal width at
most 1. Thus, opt(Q) > 2 = opt(P ), implying that the inclusion Q ⊆ P alone is not sufficient
to ensure opt(Q) ≤ opt(P ).



J. Chung, K. Iwama, C.-S. Liao, and H.-K. Ahn 22:5

P

0.7

0.7Q

0.8

0.3

(a) (b)

0.3

P1

P2

Figure 3 A non-guillotine partition of P , where W = {(0, 1)} and U = {(0, 1), (1, 0)}. (a)
The polygon P and a subpolygon Q, both having vertical widths greater than 1. (b) An optimal
non-guillotine partition of P into two pieces, but four when restricted to Q.

Such failures are common in minimum partitioning problems, as the optimal partition
number depends on the geometric complexity of Q. Two typical approaches are restricting
the geometry of Q relative to P , and constraining the partition class to specific families, such
as the guillotine (binary) class [9]. These alter the structural properties of feasible solutions.

3.1 Restricted-orientation convexity
Rawlins [21] introduced the restricted-orientation convexity as a generalization of standard
convexity in Euclidean space. For O ⊆ S+, a set X is O-convex if, for every line ℓ parallel
to a vector in O, X ∩ ℓ is connected (we regard an empty set as being connected). When
O = S+, O-convexity coincides with standard convexity in R2. We extend this concept to
subpolygons of simple polygons with respect to guillotine cuts.

▶ Definition 2. Let Q be a subpolygon of a polygon P , and O be a set of unit vectors. Then
Q is O-convex with respect to P if its intersection with every guillotine cut in P parallel to a
vector in O is connected.

Figure 2(c) shows a subpolygon Q that is O-convex with respect to P for O = {(0, 1), (1, 0)},
but not O′-convex for O′ = {(

√
2

2 ,
√

2
2 )} since a guillotine cut in P parallel to (

√
2

2 ,
√

2
2 )

intersects Q in at least two connected components.
Observe that O-convexity with respect to a polygon P is equivalent to the geodesic

convexity within P when O = S+. The following theorem gives sufficient conditions for
monotonicity of the minimum partition numbers.

▶ Theorem 3 (Monotonicity in Polygon Containment). Let U and W be sets of unit vectors,
and let Q be a subpolygon of a polygon P . Assume that wPartition(P, W, U) has a solution.

opt(Q) ≤ opt(P ) for guillotine partitions if Q is U -convex with respect to P .
opt(Q) ≤ opt(P ) for non-guillotine partitions if Q is W -convex with respect to P .

Revisit the subpolygons Q in Figure 2(a,b). In (a), Q is neither U -convex nor W -convex
with respect to P , whereas in (b), Q satisfies both conditions, and Theorem 3 implies that
opt(Q) ≤ opt(P ) = 2, for both guillotine and non-guillotine partitions.

3.2 Monotonicity in guillotine partitions
We prove Theorem 3 for the guillotine case. Let Π = {P1, . . . , Pm} be a guillotine partition
of P feasible to wPartition(P, W, U), and let Π[Q] = {Pi ∩ Q}i=1,...,m be its restriction to a
subpolygon Q that is U -convex with respect to P . Then,

⋃m
i=1(Pi ∩ Q) = Q, and thus, Π[Q]

ISAAC 2025
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also forms a partition of Q. Note that each piece in Π[Q] satisfies unit-width constraint W ,
as every piece is a subset of some Pi that satisfies the constraint. To show opt(Q) ≤ opt(P ),
it suffices to verify two aspects: (1) Π[Q] is a guillotine partition of Q and (2) |Π[Q]| ≤ m.

Since Π is a guillotine partition, the cuts used for Π are partially ordered by their
precedence in the partitioning process. Let C = ⟨c1, . . . , cm−1⟩ denote a sequence of guillotine
cuts that produces Π. Then each ci ∩ Q is connected as ci is a cut in P with a direction
in U and Q is U -convex with respect to P . Let D = ⟨d1, . . . , dm′⟩ be the subsequence of
⟨c1 ∩ Q, . . . , cm−1 ∩ Q⟩ consisting of those satisfying ci ∩ int(Q) ̸= ∅ for i = 1, . . . , m − 1.
Note that each dj for j ∈ [m′] is a cut in Q and m′ ≤ m − 1. Also, observe that Π[Q] is
induced by D. It suffices to show that D is indeed a sequence of guillotine cuts in Q: each
dj ∈ D is a guillotine cut in one subpolygon obtained by applying ⟨d1, . . . , dj−1⟩ to Q.

Let i be the smallest index in [m − 1] such that ci ∩ int(Q) ̸= ∅. Since no cut in
⟨c1, . . . , ci−1⟩ intersects int(Q), there is a subpolygon in the partition of P by ⟨c1, . . . , ci1−1⟩
that contains Q. Observe that ci is a guillotine cut in this subpolygon that is aligned with a
direction in U . Since Q is U -convex with respect to P , d1 = ci ∩ Q is a line segment, and
thus, d1 is a guillotine cut in Q.

We proceed by induction on j with 1 < j ≤ m′, that ⟨d1, . . . , dj−1⟩ forms a sequence of
guillotine cuts in Q. Among the pieces of Q partitioned by the sequence, let Qj denote the
one containing dj , where dj is a cut in Qj . By definition, there exists an index k ∈ [m] such
that dj = ck ∩ Q. Let Pk be the piece in the partition of P by ⟨c1, . . . , ck−1⟩ that contains ck.

To see that dj is a guillotine cut of Qj , recall that dj = ck ∩ Qj , where ck is a guillotine
cut of Pk and Qj ⊆ Pk. Let c′

k be the guillotine cut in P obtained by extending ck until
it touches ∂P . Since Q is U -convex, c′

k ∩ Q is connected, and hence so is its subsegment
ck ∩ Q = dj . Moreover, as ck spans ∂Pk, its restriction to Qj necessarily touches ∂Qj at both
endpoints. Thus, dj is a guillotine cut in Qj . We conclude that D = ⟨d1, . . . , dm′⟩ induces a
guillotine partition of Q. Since m′ ≤ m, we have |Π[Q]| ≤ m.

▶ Lemma 4. Let P be a polygon and let Π = {P1, . . . , Pm} be a solution to the problem
wPartition(P, W, U) for guillotine cuts. If a subpolygon Q of P is U-convex with respect to
P , the restricted partition {Q ∩ Pi}i=1,...,m is a solution to wPartition(Q, W, U) for guillotine
cuts with at most m pieces.

4 Reconfiguration of restricted non-guillotine partitions

Let Q be a subpolygon of P that is W -convex with respect to P . The monotonicity
opt(Q) ≤ opt(P ) trivially holds when opt(Q) = 1. Also, any feasible partition is guillotine
when U is a singleton. Assume that opt(Q) > 1 and U contains at least two distinct vectors.

Let Π = {P1, . . . , Pm} be any feasible partition of P to wPartition(P, W, U). Its restriction
to Q, defined as Π[Q] = {Pi ∩ Q}i=1,...,m, is a feasible partition of Q to wPartition(Q, W, U).
However, some regions Pi ∩ Q may be disconnected, even when Q is W -convex with respect
to P (See Figure 3(a–b)). To address this, we modify the cuts in Π[Q] to reconnect disjoint
fragments into connected regions while preserving feasibility for wPartition(Q, W, U).

Consider any element Pi in the partition Π of P such that int(Pi) ∩ int(Q) ̸= ∅. The
intersection int(Pi) ∩ int(Q) consists of open connected components. We define Ri as

Ri := { cl(X) | X is a connected component of int(Pi) ∩ int(Q) with cl(X) ∩ ∂Q ̸= ∅ } .

Let Ri = {C1, C2, . . . , Ct}. Note that each Cj is a subpolygon of Q with positive area
that touches ∂Q. To connect elements in Ri into a single piece, we reconfigure Π[Q] by
iteratively performing a process, called reallocation. Let X be a connected region in Q. We
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(a)

Lk

I ∈ Ii

(b)

Z2

Pi

I1

I2

e1

e2

∂Q

Z

Lk

Z1

(c)

A

Cj

Cj′

I1

I2

Figure 4 (a) A layer segment Z of Ri is bounded by e1, e2 ∈ Ebd
i , and it corresponds to I ∈ Ii.

(b) A link instruction λ = (I1, I2, k) reallocates the layer segments in Lk[Z1, Z2] to Pi. (c) Applying
λ merges Cj and Cj′ into a single piece through layer segments in Lk, where I1 ∈ Iij and I2 ∈ Iij′

for some j, j′ ∈ [t].

define the reallocation of X to Pi as the operation that modifies Π[Q] by expanding the
region assigned to Pi so that it includes X. This can be done by adding new boundaries
along ∂X \ Pi and removing those along ∂Pi \ X. If X and Pi intersect in their interiors, or
share a boundary segment of positive length, then X ∪ Pi appears as a single piece in the
resulting partition. We say that the region X is reallocated to Pi.

4.1 Construction and layering of corridor of Q

We first construct a narrow corridor along ∂Q. This corridor lies entirely within Q, closely
following ∂Q, and provides the space needed to link elements of Ri.

The corridor is an annular region bounded by two simple closed curves: the outer curve
∂Q and an inner curve that lies at a small distance δ inward. The region between the two
curves is called the δ-corridor of Q, where δ denotes its width. In our construction, we set δ

to be a sufficiently small positive value and denote the resulting corridor by A.
Consider the edges of each Cj ∈ Ri that have one endpoint on ∂Q and intersect int(Q).

Let Ebd
ij denote the set of such edges of Cj . We define Ebd

i :=
⋃t

j=1 Ebd
ij and Ebd

Q :=
⋃m

i=1 Ebd
i .

The corridor A is subdivided into a sequence of nested subregions, which we refer to as layers.
Let h ∈ Z>0 denote the number of layers which will be determined in Section 4.4. For each
k ∈ [h], we construct a simple closed curve Γk lying entirely within int(A), such that the
curves Γ1, . . . , Γh are pairwise disjoint and arranged sequentially inward from ∂Q. Each Γk

follows a zigzag pattern using the two directions in U , and intersects every edge in Ebd
Q once

or twice, depending on whether the edge is a guillotine cut in Q. Details on the construction
of the corridor A and simple curves are provided in the full version.

These h curves subdivide A into h nested subregions, called layers: for each k ∈ [h], the
k-th layer is the annular region bounded by Γk−1 and Γk, where we define Γ0 = ∂Q.

4.2 Link instructions with circular intervals and layers
Let Cj and Cj′ be two elements in Ri with j ̸= j′. For k ∈ [h], let Lk denote the k-th layer.
Each connected component of Lk ∩ Cj for Cj ∈ Ri is a subregion of Q referred to as a layer
segment of Cj (and of Ri) in Lk. Each layer segment is bounded by four parts: continuous
portions of the inner and outer boundaries of Lk, and two edges from Ebd

ij . Removing any
layer segment from Lk alters its topological structure from an annulus to a weakly simple
polygon. All layer segments in Lk can be arranged in cyclic order along Lk. Figure 4(a)
illustrates a layer segment of Ri in Lk.

ISAAC 2025



22:8 Minimum Partition of Polygons Under Width and Cut Constraints

(a)
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γ3
I3

I4

C1 C2
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(b)

Q

p3

p4

p5

p6

p7

I3

I4
p1

p2

I1

Pi

I2

p8 I5

Figure 5 (a) int(Pi) ∩ int(Q) induces Ri = {C1, C2, C3}, and each ∂Cj ∩ int(Q) induces simple
paths {γ1, . . . , γ5}. (b) p8 serves as both an entry and exit point for the transition C1 → C2. The
simple paths outside int(Q), from p7 to p6 and from p5 to p1, represents the transitions C2 → C3

and C3 → C1, respectively. (c) The directed graph Gi, constructed based on Pi and Q shown in (a).

We use an interval notation over layer segments that are cyclically ordered. For two
layer segments Z1, Z2 in Lk, we denote by Lk[Z1, Z2] the set of layer segments encountered
in counterclockwise traversal from Z1 to Z2 in Lk, where Z1, Z2 ∈ Lk[Z1, Z2]. Similarly,
Lk(Z1, Z2), Lk[Z1, Z2), and Lk(Z1, Z2] denote the open and half-open intervals over layer
segments between Z1 and Z2 in Lk.

Assume that Z1 ⊆ Cj and Z2 ⊆ Cj′ are layer segments of Ri in Lk, for j, j′ ∈ [t] with
j ̸= j′. The reallocation of Lk[Z1, Z2] to Pi merges Cj and Cj′ into a single piece within Lk.
We refer to such an ordered pair (Z1, Z2) as a link instruction of Ri. See Figure 4(b–c).

Decomposition of ∂Q into circular intervals. For Cj ∈ Ri, Cj is a subpolygon of Q that
touches ∂Q. The intersection ∂Cj ∩ ∂Q consists of continuous paths on ∂Q. Specifically, it
can be the loop ∂Q itself if ∂Q ⊆ ∂Cj , implying that Q satisfies unit-width constraint W .
However, assuming opt(Q) > 1, this case does not occur. Thus, every connected component
of ∂Cj ∩ ∂Q must be a continuous path on ∂Q that is not a loop. We define Iij as

Iij := {I ⊆ ∂Q | I is a connected component of ∂Cj ∩ ∂Q} .

We then define the aggregate sets Ii :=
⋃t

j=1 Iij and IQ :=
⋃m

i=1 Ii.
Let I ∈ Iij be a continuous path along ∂Q with endpoints p and q such that I corresponds

to the portion of ∂Q from p to q in counterclockwise order. Since ∂Q is a simple closed curve,
topologically equivalent to a circle, we regard each path I as a circular interval on ∂Q. As Iij

contains no loops, the case p = q occurs only when ∂Cj touches ∂Q at a single point p, and
no other portion of ∂Cj near p intersects ∂Q. Such intervals are called degenerate intervals.

For i ∈ [m], Ii may contain both degenerate and non-degenerate intervals. Since Pi is
simple, all intervals in Ii are pairwise interior-disjoint. Figure 5(a) shows a piece Pi and
the subpolygon Q, from which the circular intervals in Ii are defined. These intervals are
illustrated in Figure 5(b).

Note that a degenerate interval at some point p ∈ ∂Q may appear in multiple Ii’s. In
such cases, each occurrence is treated as a distinct element in IQ. Since Π = {P1, . . . , Pm} is
a partition of P and Q ⊆ P , every point on ∂Q belongs to some interval of IQ, and no two
intervals in IQ intersect each other in their interiors. Thus, IQ forms a decomposition of ∂Q.

Finally, we relate these circular intervals to layer segments so as to define a link instruction
formally. For any j ∈ [t] and any k ∈ [h], consider the component Cj ∈ Ri and the layer Lk.
Each connected component of A ∩ Cj (or Lk ∩ Cj) is bounded by four parts: continuous
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portions of the inner and outer boundaries of A (or Lk), and two edges from Ebd
ij . Each

connected component of Lk ∩ Cj is entirely contained within a unique connected component
of A ∩ Cj . Moreover, the portion of ∂Q that bounds each connected component of A ∩ Cj

corresponds to a circular interval in Iij . Thus, each layer segment of Cj in Lk is uniquely
associated with a circular interval in Iij , in a one-to-one correspondence. The number of
layer segments in A ∩ Cj (or Lk ∩ Cj) is |Iij | · h (or |Iij |).

We revisit the link instruction that merges two layer segments Z1 ⊆ Lk ∩ Cj and
Z2 ⊆ Lk ∩ Cj′ for j, j′ ∈ [t] along layer Lk. The link instruction reallocates the region
in Lk spanned counterclockwise from Z1 to Z2. Since Z1 and Z2 correspond to circular
intervals in Iij and Iij′ , respectively, each link instruction can be represented by a triple
(I1, I2, k), where I1, I2 ∈ IQ and k ∈ [h] (See Figure 4). Note that (I1, I2, k) ̸= (I2, I1, k), as
the counterclockwise span from Z1 to Z2 differs from that in the reverse order.

4.3 Graph for encoding link instructions
Recall that Ri = {C1, C2, . . . , Ct} is the set of closures of connected pieces of int(Pi) ∩ int(Q)
such that each Cj has a positive area and touches ∂Q. We construct a graph for each Ri,
which specifies how the elements of Ri are to be connected into a single piece within Q.

For each j ∈ [t], Iij consists of circular intervals, each corresponding to a continuous path
in ∂Cj ∩ ∂Q along ∂Q. Let I+

ij denote the subset of Iij consisting of only those intervals with
positive length. We define I+

i =
⋃t

j=1 I+
ij and I+

Q =
⋃m

i=1 I+
i . Unlike IQ, the set I+

Q contains
only non-degenerate intervals, which are pairwise interior-disjoint. Note that {I+

i }i=1,...,m

forms a partition of ∂Q.

Sequencing subpaths of ∂Pi. For each Cj ∈ Ri, ∂Cj ∩ int(Q) consists of connected
components, each forming a continuous path connecting two points on ∂Q. By the definition
of Iij , the endpoints of these paths correspond to the endpoints of the circular intervals in
Iij . The total number of such paths in ∂Cj ∩ int(Q) is |Iij |. See Figure 5(a).

We traverse ∂Pi counterclockwise, starting at any point on ∂C1 ∩ int(Q) and completing
a full circuit. During the traversal, each path in ∂Cj ∩ int(Q) is visited exactly once for each
j ∈ [t], except for the path containing the starting point. The order in which the continuous
paths are visited is denoted by γ1 → γ2 → · · · → γl, where γ1 = γl is the path in ∂C1 ∩ int(Q)
containing the starting point, and l =

∑t
j=1 |Iij | + 1 = |Ii| + 1.

Consider two consecutive paths γk and γk+1 for any k ∈ [l − 1]. Each path is derived from
some piece in Ri; there exist j, j′ ∈ [t] such that γk ⊆ ∂Cj ∩ int(Q) and γk+1 ⊆ ∂Cj′ ∩ int(Q).
As we traverse from γk to γk+1, we exit int(Q) through an endpoint of γk and re-enter int(Q)
through an endpoint of γk+1.

▶ Lemma 5. Let (γk, γk+1) be a pair of consecutive paths for k ∈ [l − 1], where γk ⊆
∂Cj ∩ int(Q) and γk+1 ⊆ ∂Cj′ ∩ int(Q) for some j, j′ ∈ [t]. The traversal from γk to γk+1
exits and re-enters int(Q) through intervals I1 ∈ Iij and I2 ∈ Iij′ , respectively. If j = j′,
then I1 = I2. Otherwise, I1 and I2 are interior-disjoint, non-degenerate intervals.

By Lemma 5, a pair of distinct intervals in I+
i provides an exit-entry pair for each

transition between distinct pieces in Ri in the counterclockwise traversal of ∂Pi.

Construction of Gi. Based on the counterclockwise traversal of ∂Pi, we construct a directed
graph Gi = (Vi, Ei) as follows. Each vertex v ∈ Vi corresponds to an interval in I+

i , so
|Vi| = |I+

i |. Let γ1 and γ2 be consecutive paths in the traversal where γ1 ⊆ ∂Cj ∩ int(Q)
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and γ2 ⊆ ∂Cj′ ∩ int(Q) with j ̸= j′. The traversal from γ1 to γ2 encounters intervals I1 and
I2 in I+

i that contain the exit and entry points, respectively. By Lemma 5, these intervals
I1 and I2 are uniquely determined. We add a directed edge e between vertices v1 and v2
corresponding to I1 and I2, respectively.

Let p and q denote the exit and entry points of the traversal, respectively; p is the
endpoint of I1 and q is the endpoint of I2. The counterclockwise traversal on ∂Pi between
γ1 and γ2 follows a simple path along ∂Pi outside Q that starts from p and ends at q. Let
γpq ⊆ ∂Pi \ int(Q) denote this path from p to q. Observe that the exit and entry points may
coincide, i.e., p = q, if I1 and I2 are adjacent at p and I1 lies counterclockwise from I2 along
∂Q. In this case, the direction of e is assigned from v2 to v1.

Given that p ̸= q, the simple path γpq can be viewed as a simple path connecting two
distinct points on the boundary of the circle and lying outside the circle. The path γpq can be
classified into one of two types, depending on how it winds around the circle. Formally, γpq is
homotopic to a directed path in R2 \ int(Q) that winds around ∂Q in either counterclockwise
or clockwise direction. Note that it cannot wind around the boundary more than once since
γpq is simple. We assign the direction of e from v1 to v2 if the path is of the counterclockwise
type, and from v2 to v1, otherwise. Figure 5(b) illustrates γpq for both cases where p = q

and p ̸= q. The same rule is applied to assign directions to all other edges in Gi.
In summary, we construct the directed graph Gi for i ∈ [m] to represent how the disjoint

components of Ri are to be connected into a single piece within Q. Each vertex corresponds
to an interval in I+

i . Each directed edge e = (v1, v2) of Gi represents a link instruction
(I1, I2, k), but k is not specified yet. See Figure 5(c) for an illustration of the directed graph
Gi that defines three link instructions, where Pi and Q are as shown in Figure 5(a).

4.4 Layer assignments for link instructions
For i ∈ [m], let Gi be the directed graph for Ri = {C1, C2, . . . , Ct}. Each edge in Gi

represents a link instruction that reallocates layer segments within a specific layer. The goal
is to assign layers to link instructions so that no redundant reallocation of layer segments is
allowed and all elements in Ri are eventually merged into a single piece for every i = 1, . . . , m.

The underlying graph of a digraph is its undirected version, obtained by ignoring the
directions of all edges. Consider a connected component T of the underlying graph of Gi.
We assume that T contains more than one vertex, as a component of size 1 does not indicate
any link instruction. Each vertex of T corresponds to a circular interval in I+

i . Let IT be
the subset of I+

i such that IT = {I ∈ I+
i | I corresponds to a vertex in T}.

Q
I4I1

Pi

I5

J ∈ JQ

(a) (b)

Q I4I1

I5

X ∈ Xi

I1

I5

I4

T

Figure 6 (a) The combine step merges I1, I5, and I4 to a circular interval J ∈ JQ. (b) The
interval J is derived from a connected component T of the underlying graph of Gi. This corresponds
to a connected region X ∈ Xi that is bounded by the circular intervals associated with T .
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We iteratively perform a combine step to merge all circular intervals in IT into a single
circular interval on ∂Q. The process begins with an initial set S = {u} and a circular interval
JS , where u is any vertex of T and JS is the circular interval in IT corresponding to u. At
each step, any vertex v ∈ T \ S is chosen if there exists an edge between v and some vertex
w ∈ S. Let Iv ∈ IT be the circular interval corresponding to v. We add v to S and update
JS to be the smallest circular interval on ∂Q that spans from Iv to JS in counterclockwise
direction if the edge is directed from v to w, or in clockwise direction otherwise. Once S = T ,
the process returns a single circular interval on ∂Q, denoted by JT , corresponding to the
connected component T of Gi. See Figure 6(a) for an illustration of this process.

JQ := {JT | T is a connected component of Gi with |T | > 1, for i = 1, 2, . . . , m}.

Throughout, we use I to denote intervals in IQ and J for those in JQ to emphasize their
distinct roles. Each J ∈ JQ is non-degenerate. For any J1, J2 ∈ JQ with int(J1)∩ int(J2) ̸= ∅,
there exists a proper containment between J1 and J2. To prove this, we present a lemma
relating connectivity in the underlying graph of Gi to the existence of a path contained in a
connected component of Pi \ int(Q), as illustrated in Figure 6(b).

▶ Lemma 6. The vertices corresponding to I1 and I2 in I+
i are connected in the underlying

graph of Gi if and only if there is a simple path connecting p ∈ I1 to q ∈ I2 contained in
Pi \ int(Q).

Let Xi be the set of connected components in Pi \ int(Q). Then each element in Xi is a closed
connected set. Moreover, it is a (weakly) simple polygon.

For p, q ∈ ∂Q, let Λ(p, q) denote the set of all simple paths from p to q contained in
Pi \ int(Q). For I1, I2 ∈ I+

i , we define Λ(I1, I2) =
⋃

p∈I1,q∈I2
Λ(p, q). Lemma 6 guarantees the

existence of a path between I1 and I2 whenever their corresponding vertices are connected
in the underlying graph of Gi. Furthermore, all such paths share a consistent topological
behavior, such as winding around ∂Q in the same direction.

▶ Corollary 7. Let I1, I2 ∈ I+
i with I1 ̸= I2. If Λ(I1, I2) ̸= ∅, then all paths in Λ(I1, I2) wind

around ∂Q in the same direction, and there is a unique component X ∈ Xi that contains all
such paths.

Using Lemma 6 and Corollary 7, we prove a proper containment relation.

▶ Lemma 8. For any distinct J1, J2 ∈ JQ with int(J1) ∩ int(J2) ̸= ∅, J1 ⊊ J2 or J2 ⊊ J1.

By Lemma 8, we construct the circular interval graph GJ , where each node corresponds
to a circular interval in JQ, and a directed edge from J1 to J2 is added if J1 ⊊ J2 for
J1, J2 ∈ JQ. Then, GJ is acyclic as each edge corresponds to a strict containment.

Transitive reduction of GJ . The graph GJ represents the transitive closure of the proper
containment relation. That is, for J1, J2 ∈ JQ, there is a directed edge from J1 to J2 in
GJ if there exists some J ′ ∈ JQ such that (J1, J ′) and (J ′, J2) are directed edges in GJ .
A transitive reduction of GJ is a directed graph on the same vertex set with the minimum
number of edges that preserves all reachability relations of GJ . Since the transitive reduction
of a DAG is unique [8], we denote the transitive reduction of GJ by Gtr

J . Let UGtr
J denote

the underlying graph of Gtr
J .

▶ Lemma 9. Any vertex of Gtr
J has out-degree at most one, and UGtr

J is acyclic.

By Lemma 9, UGtr
J is a forest. Each directed tree T of Gtr

J has total out-degrees |T | − 1,
implying that exactly one vertex has out-degree zero and all others have out-degree one.
This structure corresponds to an in-branching tree [8].
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Layer assignment of link instructions. In each in-branching tree of Gtr
J , the unique vertex

with out-degree zero is called the root. The level of a vertex is defined as the number of edges
on the path from the root to that vertex plus one, where the level of the root is one. The
level of each interval J ∈ JQ is defined to be the level of the corresponding vertex in Gtr

J .
Recall that each circular interval J ∈ JQ is formed by merging intervals in I+

i for some
i ∈ [m]. These intervals correspond to the vertices of a connected component T of Gi, where
each edge of T encodes a link instruction that merges two elements in Ri. Let INST(J)
denote the set of link instructions corresponding to the edges of T . We assign the k-th layer
to every link instruction in INST(J) if J is at level k in Gtr

J . Note that the maximum level in
Gtr

J is at most ⌊|I+
Q |/2⌋ if each connected component of Gi has size two for all i = 1, 2, . . . , m.

Thus, we set the number of layers in the corridor A to this maximum level: h = ⌊|I+
Q |/2⌋.

For each J ∈ JQ, all link instructions in INST(J) reallocate layer segments within a
single layer Lk to a common piece Pi, where i ∈ [m] and k ∈ [h] are determined by J .
Let Ia, Ib ∈ I+

i such that J is the smallest circular interval that spans from Ia to Ib in
counterclockwise order. Let Za, Zb ⊆ Lk be the layer segments corresponding to Ia and Ib,
respectively. Applying INST(J) is equivalent to reallocating every Z ∈ Lk[Za, Zb] to Pi.

In summary, INSTQ =
⋃

J∈JQ
INST(J) defines the set of all link instructions for recon-

figuration. Applying INSTQ to Π[Q] yields a partition Q = Q∗
1 ∪ · · · ∪ Q∗

m, where each Q∗
i

is a region assigned to Pi within Q. When Q is W -convex with respect to P , each Q∗
i is

connected and satisfies both constraints W and U .

5 Analysis of reconfigured non-guillotine partitions

Assuming that the link instructions in INSTQ have been applied to Π[Q] in an arbitrary
order, we verify the following statements in order to prove Theorem 3.
(1) For each i = 1, . . . , m, the region allocated to Pi within Q forms a single connected piece.
(2) The reconfiguration of Π[Q] is a solution to the problem wPartition(Q, W, U) if Q is

W -convex with respect to P .
It follows from statements (1) and (2) that the reconfigured partition of Q satisfies the
constraints W and U while ensuring that the number of pieces does not exceed m.

5.1 Connectivity in reconfigured partitions
For i ∈ [m], let INSTi denote the subset of INSTQ consisting of instructions of the form
(I1, I2, k), where I1, I2 ∈ I+

i and k ∈ [h]. Then, INSTQ =
⋃

i∈[m] INSTi. We first show that
the link instructions in INSTi merge all elements of Ri into a single connected piece. We then
verify that applying the link instructions in INSTQ \ INSTi does not disconnect the merged
piece. Furthermore, the resulting reconfigured partition of Q is invariant under the order in
which the link instructions in INSTQ are applied to Π[Q].

Merging Ri via INSTi. We show that any two pieces Cj , Cj′ ∈ Ri are connected by some
link instructions in INSTi. During the traversal on ∂Pi, each continuous path of ∂Cj ∩ int(Q)
is encountered at least once for every j ∈ [t], and we denote the sequence of these paths
in the order they are visited as (γ1, γ2, . . . , γl), where γ1 = γl. Then, there exist indices
k, k′ ∈ [l] such that γk ⊆ ∂Cj ∩ int(Q) and γk′ ⊆ ∂Cj′ ∩ int(Q). Since it is a cyclic sequence
with γ1 = γl, we assume without loss of generality that k < k′.

Recall that an edge of Gi is added whenever two consecutive paths in the sequence are
derived from distinct elements in Ri. This indicates that a transition between them occurs
during the traversal. The link instruction associated with this edge merges the corresponding
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(a)

Q

∂P1

(b)

Q1

∂P2

(c)

Q∗
1

Figure 7 The corridor of Q has two layers, with |R1| = 3 and |R2| = 2. (a) Red regions represent
{core(C) | for C ∈ R1}, while blue and green regions indicate layer segments in Z in

1 and Zout
1 ,

respectively. (b) Q1 is formed by merging R1 according to INST1, and some layer segments in Z in
1

are reallocated by INST2. (c) Q∗
1 is obtained by applying INSTQ \ INST1 to Q1.

elements in Ri. The subsequence (γk, γk+1, . . . , γk′) contains multiple transitions between
distinct elements in Ri, starting from Cj and eventually reaching Cj′ . Applying all link
instructions associated with the transitions in (γk, . . . , γk′) results in Cj and Cj′ being merged
into a single connected piece.

Let Qi denote the subregion of Q resulting from merging elements of Ri via INSTi, with
no other instructions applied. Then, Qi consists of all elements in Ri and layer segments
reallocated from other pieces: Qi =

(⋃
j∈[t] Cj

)
∪Zout

i , where Zout
i is the set of layer segments

reallocated to Pi by INSTi.
The region L = L1 ∪ · · · ∪ Lh denotes the union of all layers in Q. For each Cj ∈ Ri,

L ∩ Cj consists of layer segments within Cj . By construction of layers, Cj \ L is connected
and non-empty. We refer to this region as a core of Cj , denoted by core(Cj) = Cj \ L.
Each Cj consists of its core together with the layer segments it contains. Let Z in

i denote
the set of all layer segments in L ∩ Cj over all Cj ∈ Ri. Therefore, for i ∈ [m], we have
Qi =

(⋃
j∈[t] core(Cj)

)
∪ Z in

i ∪ Zout
i . Figure 7(a) illustrates the parts of Qi: cores and layer

segments. The shapes are drawn schematically to reflect the topological structure, rather
than an exact polygonal description.

We now turn to the link instructions in INSTQ \ INSTi that are applied to Qi. Let Q∗
i

be a subregion of Qi that is obtained by applying all link instructions in INSTQ \ INSTi to
Qi. Note that any part of Qi reallocated by INSTQ \ INSTi lies within Z in

i ∪ Zout
i , and thus

the cores remain unchanged. We show that Q∗
i is well-defined, meaning that Q∗

i is invariant
under the order in which the instructions in INSTQ are applied.

▶ Lemma 10. Let (I1, I2, k) ∈ INSTi be a link instruction, and let Z1 and Z2 be the layer
segments in Lk corresponding to I1 and I2, respectively. Then, the layer segments Lk[Z1, Z2]
remain assigned to Pi under any link instruction in INSTQ \ INSTi.

Lemma 10 implies that no layer segment is reassigned by more than one link instruction. As
a consequence, we obtain the following corollary, which states that Q∗

i is well-defined.

▶ Corollary 11. In the reconfiguration of Π[Q], each layer segment in Q is reallocated at
most once.

Corollary 11 ensures that each layer segment may be reallocated to a different piece at most
once, and no chains of reallocations such as Pi1 → Pi2 → Pi3 with i1 ̸= i2 and i2 ̸= i3 occur.
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This lemma further implies that layer segments in Zout
i are preserved, while only those

in Z in
i are reallocated by INSTQ \ INSTi. Let Z in∗

i be the subset of Z in
i that consists of layer

segments preserved under INSTQ\INSTi. Then, Q∗
i is the subpolygon that is obtained from Qi

by removing those layer segments in Z in
i \ Z in∗

i . Then Q∗
i =

(⋃
j∈[t] core(Cj)

)
∪ Z in∗

i ∪ Zout
i ,

where Z in∗
i ⊆ Z in

i . Figure 7(b–c) illustrates the construction of Q∗
i , in which only layer

segments in Z in
i are reallocated by INSTQ \ INSTi.

Path-Connectivity of Q∗
i . To prove that Q∗

i forms a connected piece, it suffices to verify
two types of path-connectivity among its constituent parts, which must be preserved during
the reallocation induced by INSTQ \ INSTi.

Each layer segment in Z in∗
i ∪ Zout

i is path-connected to some core(Cj) within Q∗
i for

Cj ∈ Ri.
The cores {core(Cj) | Cj ∈ Ri} are mutually path-connected within Q∗

i .
Here, two sets A, B ⊆ X are said to be path-connected within a region X if there exists a
path in X joining some a ∈ A and b ∈ B.

▶ Lemma 12. Each layer segment in Z in∗
i ∪ Zout

i is path-connected within Q∗
i to the core of

some Cj ∈ Ri.

By Lemma 12, every layer segment in Z in∗
i ∪ Zout

i has a path to some core within Q∗
i . It

remains to show that core(C1), . . . , core(Ct) are mutually path-connected within Q∗
i .

▶ Lemma 13. All cores of elements in Ri are mutually path-connected within Q∗
i .

By Lemmas 12 and 13, each Q∗
i is connected. Thus, applying INSTQ to Π[Q] yields the

partition Π∗[Q] = {Q∗
1, Q∗

2, . . . , Q∗
m}, where each Q∗

i is a connected subregion of Q.

Remarks. Applying link instructions in INSTQ may induce holes within merged pieces in
the reconfigured partition of Q. When Q∗

i contains holes, reallocating them to Pi does not
increase ωv(Q∗

i ) for every v ∈ S+. Therefore, each Q∗
i can be regarded as a simple polygon.

5.2 Feasibility of reconfigured partitions
We first observe that the reconfigured partition Π∗[Q] = {Q∗

1, Q∗
2, . . . , Q∗

m} remains as a valid
partition of Q. By construction, the cut constraint U is also preserved: each layer segment is
bounded by the boundaries of layers and the cuts from Π[Q], all aligned with directions in U .
It remains to check the unit-width constraint W .

Since Π = {P1, . . . , Pm} is a solution to wPartition(P, W, U), there exists a vector vi ∈ W

such that ωvi(Pi) ≤ 1. In other words, there exists a unit strip Hi with normal vector vi
that contains Pi. If every layer segment reallocated by INSTi is contained within Hi, then
Q∗

i also satisfies unit-width constraint W .
Assume that λ = (I1, I2, k′) is a link instruction associated with a directed edge from

v1 to v2 in Gi for I1, I2 ∈ I+
i and k′ ∈ [h]. Let j, j′ ∈ [t] be two distinct indices such that

I1 ∈ I+
ij and I2 ∈ I+

ij′ . Recall that the edge between v1 and v2 is added to Gi if and only if
there is a transition between ∂Cj and ∂Cj′ during the counterclockwise traversal on ∂Pi.

For each k ∈ [h], let Zk
1 and Zk

2 denote the layer segments in Lk corresponding to I1 and
I2, respectively. The link instruction λ reallocates the layer segments in Lk′(Zk′

1 , Zk′

2 ) to Pi,
where Zk′

1 and Zk′

2 are already assigned to Pi in Π[Q]. We define Zλ :=
⋃

k∈[h]
⋃

Z∈Zk Z,

where Zk := Lk(Zk
1 , Zk

2 ). It suffices to show that Zλ ⊆ Hi. If this inclusion holds, every layer
segment reallocated by λ lies within Hi, and thus the unit-width constraint W is preserved.
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Q

∂Pi

p1

q1

q2

p2

r1r2

(a) (b)

z

γ

∂P

Q

Pi \Q

I1I2

Zλ
q1p2

Figure 8 (a) The link instruction λ = (I1, I2, k) is derived from the traversal of ∂Pi from p1 to q2 or
from p2 to q1, where I1 = ∂Q[p1, q1] and I2 = ∂Q[p2, q2]. ∂Zλ consists of ∂Q[q1, p2], ∂Qϕ[r1, r2], q1r1,
and p2r2. (b) The path γ from p2 to q1 must pass through z when ∂P intersects ∂Q at z.

Decomposition of ∂Zλ. The region Zλ is connected and bounded by four parts: two
continuous portions of the inner and outer boundaries of A, and two subsegments of edges
from Cj and Cj′ . The outer boundary of A is ∂Q and its inner boundary is ∂Qϕ, where Qϕ

is the inner ϕ-offset polygon of Q.
For the sake of clarity, we introduce interval notation to represent subpaths of ∂Q

and ∂Qϕ. For any two points x, y ∈ ∂Q, we denote by ∂Q[x, y] the portion of ∂Q from
x to y in counterclockwise order, including both endpoints. Let ∂Q(x, y] = ∂Q[x, y] \
{x}, ∂Q[x, y) = ∂Q[x, y] \ {y}, and ∂Q(x, y) = ∂Q[x, y] \ {x, y}. Similarly, we define
∂Qϕ[x, y], ∂Qϕ(x, y], ∂Qϕ[x, y), and ∂Qϕ(x, y) as portions of ∂Qϕ.

Since I1 and I2 are non-degenerate intervals on ∂Q, let I1 = ∂Q[p1, q1] and I2 = ∂Q[p2, q2]
for some points p1, q1, p2, q2 ∈ ∂Q with p1 ̸= q1 and p2 ̸= q2. The portion of ∂Zλ contained
in ∂Q is ∂Q[q1, p2]. Let r1, r2 ∈ ∂Qϕ be the endpoints of the portion of ∂Zλ lying on ∂Qϕ,
which we denote by ∂Qϕ[r1, r2]. Finally, the parts of ∂Zλ along the edges of Cj and Cj′

correspond to the segments q1r1 and p2r2, respectively. Thus, ∂Zλ decomposes into the four
parts ∂Q[q1, p2], ∂Qϕ[r1, r2], q1r1, and p2r2. This decomposition is shown in Figure 8(a).

Since Hi is convex, Zλ ⊆ Hi if and only if all parts of ∂Zλ are contained in Hi. Note
that q1r1 and p2r2 lie in Hi, as both Cj and Cj′ are contained in Pi. To prove Zλ ⊆ Hi, it
remains to show that ∂Q[q1, p2] and ∂Qϕ[r1, r2] are contained in Hi.

Containment of ∂Q[q1, p2] in int(P ). During the transition between ∂Cj and ∂Cj′ in the
counterclockwise traversal on ∂Pi, it follows a simple path, denoted by γ, which lies outside
int(Q). The path γ exits and re-enters int(Q) through the endpoints of I1 and I2.

Let v1 and v2 denote the vertices in Gi corresponding to I1 and I2, respectively. The link
instruction λ = (I1, I2, k′) is derived from the directed edge (v1, v2) in Gi. The direction of
the edge is determined by how γ winds around ∂Q (either clockwise or counterclockwise) and
whether the path exits int(Q) through the endpoint of I1 or that of I2. If γ winds around
∂Q counterclockwise, it exits int(Q) from p1 and re-enters at q2. Otherwise, it exits int(Q)
from p2 and re-enters at q1. Figure 8(a) illustrates both cases.

Up to this point, we consider both clockwise- and counterclockwise-type instructions.
However, counterclockwise ones can be omitted in the reconfiguration. Assume that γ winds
around ∂Q counterclockwise. By Corollary 7, there exists a unique component X ∈ Xi

whose boundary contains I1, I2, and the path γ. Since X is a weakly simple polygon, we
can traverse ∂X in counterclockwise order. This traversal encounters a sequence of circular
intervals in I+

i , and, from the construction of Gi, each consecutive pair of intervals in this
sequence corresponds to an edge in Gi whose direction is determined by whether the subpath
of ∂X between the intervals winds around ∂Q clockwise or counterclockwise.
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Since the traversal of ∂X follows the path γ from I1 to I2 that winds around ∂Q

counterclockwise, the other subpath of ∂X runs from I2 back to I1, and winds around ∂Q

clockwise. This path encounters a sequence of intervals in I+
i starting from I2 to I1, where

each consecutive pair of intervals induces a clockwise-type edge in Gi. In Figure 6(b), the
counterclockwise-type path from I4 to I1 corresponds to the sequence of clockwise-type paths
I1 → I5 and I5 → I4. Thus, link instructions associated with counterclockwise-type edges
can be omitted without affecting the resulting partition Π∗[Q].

Without loss of generality, we restrict our analysis to clockwise type instructions. In
this case, γ is a path from p2 to q1. The path γ can be continuously deformed into a path
γ̃ = ∂Q[q1, p2] on ∂Q while preserving its endpoints. As illustrated in Figure 8(b), if ∂P

intersects Q at a point z ∈ ∂Q[q1, p2], then γ must pass through z. This implies that ∂Pi

intersects itself at z, contradicting that Pi is a simple polygon.

▶ Lemma 14. All points on ∂Q[q1, p2] lie within the interior of P .

Note that a point p ∈ int(P ) if and only if there exists a sufficiently small ball B(p)
centered at p such that B(p) ⊆ int(P ). We slightly extend the polygonal chain ∂Q[q1, p2]
beyond its endpoints and denote the resulting chain by ∂Q[q−

1 , p+
2 ] for q−

1 ∈ ∂Q(p1, q1)
and p+

2 ∈ ∂Q(p2, q2). Since ∂Q[q1, p2] ⊆ int(P ) by Lemma 14, ∂Q[q−
1 , p+

2 ] also lies in
int(P ). Furthermore, as I1 and I2 are non-degenerate, the slight extension guarantees that
∂Q[q−

1 , p+
2 ] ⊆ ∂Q[p1, q2].

Turning points on ∂Q[q−
1 , p+

2 ]. Without loss of generality, assume Hi is a vertical strip,
meaning that its boundary consists of two vertical lines. A portion of ∂Q is a polygonal chain,
consisting of a sequence of line segments. As we traverse a polygonal chain from one endpoint
to the other, these line segments are encountered sequentially. A point z ∈ ∂Q(q−

1 , p+
2 ) is

called a turning point of ∂Q[q−
1 , p+

2 ] if the traversal changes its horizontal direction (from
leftward to rightward or vice versa) at z. Since q−

1 and p+
2 lie sufficiently close to q1 and p2

along ∂Q, every turning must occur on ∂Q[q1, p2].
When ∂Q[q−

1 , p+
2 ] contains vertical edges, the above definition of turning points is not

sufficient. Consider a path that initially moves in the positive (or negative) x-direction, then
follows a vertical segment, and subsequently moves in the negative (or positive) x-direction.
We define the lowest point on the vertical segment as the unique turning point on that
segment. See Figure 9(a).

Note that the number of turning points is invariant under the traversal direction; that
is, it remains unchanged whether we traverse ∂Q[q−

1 , p+
2 ] from q−

1 to p+
2 or in the reverse

direction. As illustrated in Figure 9(b), if there are two turning points on ∂Q[q−
1 , p+

2 ], we
can draw a vertical guillotine cut c in P such that c ∩ Q is disconnected, since all points on
∂Q[q−

1 , p+
2 ] lie within int(P ). This implies that Q cannot be W -convex with respect to P .

▶ Lemma 15. If Q is W -convex with respect to P , then the number of turning points on
∂Q[q−

1 , p+
2 ] is at most one.

Since both ∂Q[p1, q1] and ∂Q[p2, q2] lie in Pi, q−
1 , p+

2 ∈ Hi. If there are no turning points
on ∂Q[q−

1 , p+
2 ], then the points with the largest and smallest x-coordinates along ∂Q[q−

1 , p+
2 ]

appear at q−
1 and p+

2 . Since Hi is a vertical slab, all points on ∂Q[q−
1 , p+

2 ] lie in Hi.
Consider the case that ∂Q[q−

1 , p+
2 ] has a turning point at z ∈ ∂Q[q1, p2], and it is unique

by Lemma 15. Then, the point with the largest or smallest x-coordinate along ∂Q[q−
1 , p+

2 ]
may appear at z. Without loss of generality, we assume that z is the point with the largest
x-coordinate. The point with the smallest x-coordinate lies at q−

1 ∈ Hi or p+
2 ∈ Hi.
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Figure 9 (a) The turning points on ∂Q[q−
1 , p+

2 ] are z1 and z2. (b) For the guillotine cut c along
x = x(z) + ε, the intersection c ∩ Q consists of at least two maximal line segments. (c) γ contains a
point with x-coordinate larger than that of the turning point z. The sequence of edges on ∂Qϕ[r1, r2]
from eϕ

1 to eϕ
2 corresponds to a subsequence of those of ∂Q[p1, q2].

Recall that the path γ follows from p2 to q1 outside int(Q) and is deformed into the
path γ̃ that traverses ∂Q[q1, p2]. Note that z is a convex vertex of Q with locally largest
x-coordinate, and γ encloses z from outside int(Q). It follows that γ must pass through a
point with x-coordinate at least x(z). Since γ ⊆ Pi ⊆ Hi, the x-coordinate of z is smaller
than that of the right boundary of Hi. Thus, ∂Q[q−

1 , p+
2 ] ⊆ Hi. See Figure 9(c).

Containment of Zλ within Hi. Revisiting the boundary of Zλ, we have shown that three
parts, r1q1, r2p2, and ∂Q[q1, p2], are contained in Hi. The remaining part is ∂Qϕ[r1, r2]
which is the portion of the inner ϕ-offset polygon of Q. By definition of the offset polygon,
each edge of Qϕ is parallel to its corresponding edge in Q and the edges of Qϕ appear in the
same cyclic order along its boundary as the edges of Q.

We traverse the chain ∂Q[q−
1 , p+

2 ] from q−
1 to p+

2 . Let e1 and e2 be the edges of Q that
contain the first and last segments of this chain, respectively. Likewise, traversing ∂Qϕ[r1, r2]
from r1 to r2 gives edges eϕ

1 , eϕ
2 of Qϕ incident to r1 and r2, respectively. We claim that the

edges of Q corresponding to eϕ
1 and eϕ

2 appear along the traversal of ∂Q[q−
1 , p+

2 ].
The segments r1q1 and r2p2 lie on edges of Cj and Cj′ , respectively. Since ϕ < ϕij and

ϕ < ϕij′ , the edges of Q corresponding to eϕ
1 and eϕ

2 are incident to q1 and p2, respectively.
Recall that we work on the extended chain ∂Q[q−

1 , p+
2 ], obtained by slightly extending

∂Q[q1, p2]. This guarantees that the corresponding edges of Q appear along ∂Q[q−
1 , p+

2 ].
Consequently, the sequence of line segments forming ∂Qϕ[r1, r2] corresponds to a subsequence
of those forming ∂Q[q−

1 , p+
2 ]. See Figure 9(c) for an illustration of this correspondence. Thus,

by Lemma 15, the number of turning points of ∂Qϕ[r1, r2] is also at most one.
Assuming that the largest x-coordinate of ∂Q[q−

1 , p+
2 ] occurs at its turning point, the

largest x-coordinate of ∂Qϕ[r1, r2] is smaller than that of ∂Q[q−
1 , p+

2 ]. The argument is
symmetric when the smallest x-coordinate is attained at the turning point. It follows that
∂Qϕ[r1, r2] is also contained in Hi, which completes the proof that ∂Zλ ⊆ Hi. Hence, the
reconfigured partition Π∗[Q] = {Q∗

1, . . . , Q∗
m} is a solution to the problem wPartition(Q, W, U)

with at most m connected pieces; thus, by definition, opt(Q) ≤ m = opt(P ).

6 Bang-type theorem for partitions of a convex body

We adapt the reconfiguration technique in Section 4 to prove Theorem 1. We then show that,
when W ⊆ U , an optimal partition of a convex polygon P is achieved by equally spaced
parallel cuts, which can be computed in linear time.
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Let K be a convex body in R2, and let P1 ∪ P2 ∪ · · · ∪ Pm be its arbitrary partition. Note
that each Pi is compact and possibly non-convex. Let CH(X) denote a convex hull of a set
X in R2. A pocket of CH(X) is defined as a closure of a connected component of CH(X) \ X.
Each pocket is bounded by a subpath along ∂Pi and a unique line segment lying outside Pi.
We refer to this segment as the hull-edge of the pocket.

To convexify Pi, we iteratively reallocate its pockets to Pi. However, such a reallocation
may split other pieces Pj with j ̸= i. Accordingly, we perform a reconfiguration step to
merge such fragments into a single piece in K, ensuring that each piece remains connected.

This configuration mirrors Section 4, but with spatial roles reversed. Previously, we
considered the restriction of a partition to a subpolygon Q, and reconnected the fragments
of other pieces within Q. Here, we restrict the partition to the complement of a pocket, and
consider the fragments of other pieces that lie outside the pocket. The circular intervals in
the earlier setting now correspond to the intervals along the hull-edge of the pocket.

▶ Lemma 16. Let {P1, . . . , Pm} be a partition of a convex body K ⊆ R2. Then, there exists
a convex partition K = P ∗

1 ∪ · · · ∪ P ∗
m, such that ωv(Pi) ≥ ωv(P ∗

i ) for all v ∈ S+ and i ∈ [m].

By Lemma 16, we have a convex partition K = P ∗
1 ∪ · · · ∪ P ∗

m such that ωv(Pi) ≥
ωv(P ∗

i ) for all v ∈ S+ and i ∈ [m]. Given this convex partition, Akopyan [4] showed that∑m
i=1 rK(P ∗

i ) ≥ 1, where rK(P ∗
i ) = sup{h ≥ 0 | ∃t ∈ R2 such that hK + t ⊆ P ∗

i }. For
any direction v ∈ S+, we have rK(P ∗

i ) ≤ ωv(P ∗
i )/ωv(K). Thus, for any subset W ⊆ S+,∑m

i=1 infv∈W
ωv(Pi)
ωv(K) ≥

∑m
i=1 infv∈W

ωv(P ∗
i )

ωv(K) ≥
∑m

i=1 rK(P ∗
i ) ≥ 1.

Optimal partition for a convex polygon. Let P be a convex polygon with n vertices, and let
W, U ⊆ S+ such that W ⊆ U . Choose an arbitrary vector u ∈ W ; without loss of generality,
assume that u = (1, 0). Let q be the leftmost vertex of P , and partition P by vertical lines
along xi = x(q) + i for all i = 1, . . . , ⌈ωu(P )⌉ − 1. This partitions P into ⌈ωu(P )⌉ pieces,
each of horizontal width at most 1, and it is a feasible solution to wPartition(P, W, U). Since
u is chosen arbitrarily, opt(P ) ≤ minv∈W ⌈ωv(P )⌉.

Suppose, for the sake of contradiction, that the optimal partition has fewer than
minv∈W ⌈ωv(P )⌉ pieces. Let P = P1∪· · ·∪Pm be an optimal partition for wPartition(P, W, U),
with m = opt(P ). By Theorem 1, we have 1 ≤

∑m
i=1 infv∈W (ωv(Pi)/ωv(P )). Since each

Pi satisfies unit-width constraint W , there exists ui ∈ S+ such that ωui
(Pi) ≤ 1. Thus,

1 ≤
∑m

i=1 infv∈W (ωv(Pi)/ωv(P )) ≤
∑m

i=1(ωui(Pi)/ωui(P )) ≤
∑m

i=1(1/ωui(P )).
We analyze two cases depending on whether ωv(P ) attains a minimum over W . If it

does, we have 1 ≤
∑m

i=1(1/ minv∈W ωv(P )), and minv∈W ωv(P ) ≤ m. As m is an integer,
minv∈W ⌈ωv(P )⌉ ≤ m. If no minimum is attained over W , 1 <

∑m
i=1(1/ infv∈W ωv(P )) and

infv∈W ωv(P ) < m. Then minv∈W ⌈ωv(P )⌉ = infv∈W ⌈ωv(P )⌉ ≤ m. Both cases contradict
our assumption, and thus opt(P ) = minv∈W ⌈ωv(P )⌉.

Let u ∈ W be a vector minimizing ⌈ωu(P )⌉, computed in O(n) time for W = S+ [18].
Assume that u is given. For the vertices of P given in counterclockwise order, such m − 1
parallel cuts can be computed in O(min{n, m log n

m }) time [12]. Since x/(1+x) < log(1+x) <

x for all x > 0, min{n, m log n
m } = Θ(m log(1 + n

m )). For fixed n, f(m) = m log(1 + n
m )

starts at Θ(log n) when m = 1 and increases monotonically, approaching Θ(n) as m → ∞.

▶ Corollary 17. Let P be a convex polygon with n vertices, and let U, W ⊆ S+ be sets of unit
vectors such that W ⊆ U . Then an optimal partition for the problem wPartition(P, W, U) is
achieved by equally spaced parallel cuts orthogonal to u ∈ W that minimizes ⌈ωu(P )⌉. Given
such a direction u, the partition can be computed in O(ωu(P ) log(1 + n

ωu(P ) )) time.
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Remarks. We work in the Real RAM model, which supports unit-cost arithmetic (+, −, ×, ÷)
and comparisons on real numbers. Our algorithms perform integer rounding via comparisons.
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