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—— Abstract

We study the problem of partitioning a polygon into the minimum number of subpolygons using cuts

in predetermined directions such that each resulting subpolygon satisfies a given width constraint.
A polygon satisfies the unit-width constraint for a set of unit vectors if the length of the orthogonal
projection of the polygon on a line parallel to a vector in the set is at most one. We analyze
structural properties of the minimum partition numbers, focusing on monotonicity under polygon
containment. We show that the minimum partition number of a simple polygon is at least that of
any subpolygon, provided that the subpolygon satisfies a certain orientation-wise convexity with
respect to the polygon. As a consequence, we prove a partition analogue of the Bang’s conjecture
about coverings of convex regions in the plane: for any partition of a convex body in the plane, the
sum of relative widths of all parts is at least one. For any convex polygon, there exists a direction
along which an optimal partition is achieved by parallel cuts. Given such a direction, an optimal
partition can be computed in linear time.

2012 ACM Subject Classification Theory of computation — Computational geometry
Keywords and phrases Polygon partitioning, Width constraints, Plank problem
Digital Object Identifier 10.4230/LIPIcs.ISAAC.2025.22

Related Version Full Version: https://arxiv.org/abs/2509.09981

Funding Jaehoon Chung: Supported by a KIAS Individual Grant AP106101 via the Center for
Artificial Intelligence and Natural Sciences at Korea Institute for Advanced Study.

Kazuo Iwama: Supported in part by MOST, Taiwan, under Grants NSTC 110-2223-E-007-001 and
NSTC 111-2223-E-007-010.

Chung-Shou Liao: Supported by MOST Taiwan Grants NSTC 111-2221-E-002-207-MY 3, 114-2221-
E-002-221-MY3, and 114-2221-E-002-220-MY3.

Hee-Kap Ahn: Supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government(MSIT) (RS-2023-00219980) and the Institute of Information & communications
Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.
RS-2019-11191906, Artificial Intelligence Graduate School Program(POSTECH)).

1 Introduction

Most works in partitioning polygons have primarily focused on maximizing geometric meas-
ures, such as fatness or the minimum side length of resulting pieces [11, 13, 20]. In this
paper, we study an opposite objective: partitioning a polygon into subpolygons whose
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(b) ()

Figure 1 (a) The polygon P has a windmill shape with three arms extending from an equilateral
triangle of height 4. (b—c) The minimum partitions of P under constraints U = {vgo, Vego, Vizgo }
and W = {vsgo, Vgoo, Vis00 }, where vo = (cos6,sinf) € STt. (b) A guillotine partition of five
trapezoids. (c¢) A non-guillotine partition of four trapezoids.

widths are bounded above in certain directions. Such a width constraint commonly arises in
manufacturing and recycling industries, where materials must be cut or processed within
certain width limits. For example, wood chipping and metal shredding require pieces to
fit within the machine’s inlet. In some materials, cut directions are critical for preserving
structural strength; for example, fabric is typically cut along the fiber direction [17].

Our problem is rooted in classical questions in convex geometry, notably Tarski’s plank
problem and its affine-invariant extension by Bang [7]. The original conjecture asserts that
any covering of a convex body in R¢ by strips must have a total width at least the minimal
width of the body, which was proven by Bang. Bang further proposed the affine plank
problem, in which strip widths are measured relative to the body’s width in the same direction.
The affine version remains open in general, with only partial results [16, 4, 19, 6]. It is known
to be equivalent to the Davenport conjecture [5], which concerns partitions. Several partition
analogues have been studied [9, 3, 10].

Our work can also be viewed as a partition analogue of these problems in the plane,
where width constraints replace strips, and simple polygons substitute convex bodies.

1.1 Problem definition and results

We consider the problem of partitioning polygons into the minimum number of pieces
satisfying both a unit-width constraint and a cut constraint. Let P be a simple polygon. Let
Q be a piece in a partition of P satisfying unit-width constraint W C ST, where ST is the set
of unit vectors {(cosf,sinf) | 0 < 6 < w}. Let wy(Q) denote the width of Q in v € ST, that
is, the length of the orthogonal projection of @ on a line parallel to v. We say @) satisfies the
unit-width constraint W if w,(Q) < 1 for some vector v € W.

The process of partitioning P must satisfy a cut constraint U C ST. A cut is defined
as a line segment within P whose relative interior lies in the interior of P. A unit vector
is often used to represent a direction, such as the orientation of a cut, meaning that the
cut lies on a line parallel to the vector. We require that every cut must be in a direction
in U. If a cut extends from one edge of P to the other edge, it divides P into two distinct
pieces; such a cut is called a guillotine cut. A guillotine partition of P (also called a binary
partition) is obtained by a finite sequence of guillotine cuts; it starts from P and recursively
partitions each piece into two subpieces using a guillotine cut. A non-guillotine partition
of P is an arbitrary partition of P using cuts that are not necessarily guillotine. Figure 1
shows a guillotine partition and a non-guillotine partition.
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Given a simple polygon P, our objective is to partition P into the minimum number of
pieces using cuts constrained by U such that each piece in the partition satisfies unit-width
constraint W. We denote this minimum partition problem by wPartition(P, W, U) and its
optimum value by opt(P, W, U). Throughout this paper, we use W and U exclusively to refer
to the unit-width constraint and the cut constraint, respectively.

Related Work. Damian and Pemmaraju [14] and Damian-Iordache [15] gave a polynomial-
time algorithm for partitioning a simple polygon into the minimum number of subpolygons
without using Steiner points such that each subpolygon has diameter at most «, for a > 0.
Later, Buchin and Selbach [11] showed that this problem becomes NP-hard for polygons
with holes. Worman [22] proved NP-completeness for a variant in which each subpolygon
must be contained in an axis-aligned square of side length «. Abrahamsen and Stade [2]
showed that allowing Steiner points leads to NP-hardness for the partition problem under
axis-aligned unit-square containment, even for simple polygons without holes. This marks
the first known NP-hardness result of the minimum partition problems for hole-free polygons.
Abrahamsen and Rasmussen [1] studied the problem of partitioning simple polygons into the
minimum number of pieces such that each piece satisfies a bounded-size constraint (e.g., unit
area, perimeter, diameter, or containment within unit disks or squares).

Our Results. Our main contribution is an analysis of the minimum partition number
under constraints W, U C S*. First, we provide necessary and sufficient conditions for the
existence of feasible partitions in wPartition(P, W, U), along with a decision algorithm for
testing feasibility

Second, we study the monotonicity of the minimum partition number under polygon
containment ) C P (Sections 3, 4, and 5). We show that this monotonicity does not hold in
general, and identify a sufficient condition based on a restricted-orientation convexity, called
O-convexity, where O C ST. Theorem 3 states that opt(Q, W,U) < opt(P, W, U) holds if Q
is U-convex with respect to P for guillotine partitions, or W-convex with respect to P for
non-guillotine partitions, where W is the set of all unit vectors perpendicular to those in W.

Finally, we prove a partition analogue of Bang’s conjecture (Section 6). The statement of
Bang’s conjecture is as follows: if a convex body K C RY is covered by strips Hi, ..., H,,

then Y ." | infyes+ “;“’I((PI?)) > 1. Our theorem replaces strip coverings with arbitrary partitions

and extends the direction set to any subset W C ST.

» Theorem 1 (Bang-Type Partition Analogue). Let K C R? be a convex body, and let
KiU---UK,, = K be its arbitrary partition. Then, for any subset W C ST,

To the best of our knowledge, this is the first partition analogue that allows non-convex
pieces. We also show that, for U € W, an optimal partition of a convex polygon can be
computed in linear time using equally spaced parallel cuts (See Corollary 17). The omitted
proofs will be found in the full version of the paper at https://arxiv.org/abs/2509.09981.

2 Preliminaries

Let P be a simple polygon with n vertices in the plane. We assume that the vertices of P are
given in a list sorted in counterclockwise order along its boundary. A partition of a simple
polygon is a set of connected pieces with pairwise disjoint interiors whose union equals the
polygon. The cardinality of a partition is the number of its pieces.
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For a set X C R2, we denote by X the boundary of X, by int(X) the interior of X, and
by cl(X) the closure of X. We treat a polygon as the union of its interior and boundary;
cl(P) = P, QP is the boundary, and int(P) is the interior.

For a point p € R?, let z(p) and y(p) be its - and y-coordinates, respectively. For any
two points p and ¢ in R?, we use pg to denote the line segment connecting p and ¢ with length
[pg|. We call pg a cut in P if it lies entirely in the interior of P, excluding its endpoints. If
both endpoints lie on 9P, we call it a guillotine cut.

The inner product of any two vectors u and v is denoted by (u,v). The Euclidean norm
of a vector v is denoted by ||v]|. A vector with norm 1 is called a unit vector. We use ST to
denote the set of unit vectors {(cos#,sinf) | 0 < § < w}. For a subset V C ST, we define
V={veSt|{(uv)=0 for some uc V}.

For a compact set X C R? and a vector v € S*, let wy(X) denote the length of the
orthogonal projection of X on a line parallel to v. We say X satisfies unit-width constraint
W C ST if and only if wy(X) < 1 for some v € W.

A strip is the region in the plane bounded by two parallel lines. The distance between the
bounding lines is the width of the strip, and the direction in ST orthogonal to the bounding
lines is called the normal vector of this strip. If a strip has width 1, we call it a unit strip.

We use the notation [m] = {1,2,...,m} for a positive integer m. For a finite set A, we
use |A| to denote the cardinality of A which is the number of its elements.

3 Monotonicity of minimum partition numbers

In this section, we assume that wPartition(P, W, U) has a partition satisfying the constraints.
The necessary and sufficient condition for feasibility is presented in the full version. We show
opt(Q, W, U) < opt(P,W,U) for any subpolygon @ of P that satisfies a certain condition.
For both guillotine and non-guillotine partitions, we identify sufficient conditions on @
that ensure this monotonicity. When the constraints W and U are clear from context, we
abbreviate opt(P, W,U) as opt(P).

P P I—(Z I
Lo ‘Yr/
| [

(a) (b) (¢)

Figure 2 (a) A polygon P and its subpolygon @ (gray) with opt(P, W, U) = 2 and opt(Q, W, U) > 2
for W = {(1,0)} and U = {(0,1)}. (b) Q (gray) is U-convex (or W-convex) with respect to P,
resulting in opt(Q, W,U) < opt(P,W,U). (c) Q (gray) of P is O-convex, but not O’-convex with
respect to P, where O = {(1,0), (0,1)} and O’ = {(@7 g)}

Let P be a square of side length 2, and let @ be a subpolygon of P as shown in Figure 2(a).
Consider the instance wPartition(P, W, U) with W = {(1,0)} and U = {(0,1)}. Since U
is a singleton, every cut must be a guillotine cut. Observe that neither P nor () satisfies
unit-width constraint W. A vertical cut halving P yields a feasible partition of two pieces.
No vertical cut, however, in @) partitions () into two pieces, each with horizontal width at
most 1. Thus, opt(Q) > 2 = opt(P), implying that the inclusion @ C P alone is not sufficient
to ensure opt(Q) < opt(P).
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Figure 3 A non-guillotine partition of P, where W = {(0,1)} and U = {(0,1),(1,0)}. (a)
The polygon P and a subpolygon @, both having vertical widths greater than 1. (b) An optimal
non-guillotine partition of P into two pieces, but four when restricted to Q.

Such failures are common in minimum partitioning problems, as the optimal partition
number depends on the geometric complexity of Q. Two typical approaches are restricting
the geometry of @ relative to P, and constraining the partition class to specific families, such

as the guillotine (binary) class [9]. These alter the structural properties of feasible solutions.

3.1 Restricted-orientation convexity

Rawlins [21] introduced the restricted-orientation convexity as a generalization of standard
convexity in Euclidean space. For O C S*, a set X is O-convex if, for every line ¢ parallel
to a vector in O, X N ¢ is connected (we regard an empty set as being connected). When
O = S*, O-convexity coincides with standard convexity in R?. We extend this concept to
subpolygons of simple polygons with respect to guillotine cuts.

» Definition 2. Let Q be a subpolygon of a polygon P, and O be a set of unit vectors. Then
Q is O-convex with respect to P if its intersection with every guillotine cut in P parallel to a
vector in O is connected.

Figure 2(c) shows a subpolygon @ that is O-convex with respect to P for O = {(0,1), (1,0)},
but not O'-convex for O’ = {(?7 g)} since a guillotine cut in P parallel to (%2, ¥%2
intersects @ in at least two connected components.

Observe that O-convexity with respect to a polygon P is equivalent to the geodesic
converity within P when O = S*. The following theorem gives sufficient conditions for

monotonicity of the minimum partition numbers.

» Theorem 3 (Monotonicity in Polygon Containment). Let U and W be sets of unit vectors,
and let Q be a subpolygon of a polygon P. Assume that wPartition(P, W, U) has a solution.
opt(Q) < opt(P) for guillotine partitions if Q is U-convexr with respect to P.
opt(Q) < opt(P) for non-guillotine partitions if Q is W -convex with respect to P.

Revisit the subpolygons @Q in Figure 2(a,b). In (a), Q is neither U-convex nor W-convex
with respect to P, whereas in (b), @Q satisfies both conditions, and Theorem 3 implies that
opt(Q) < opt(P) = 2, for both guillotine and non-guillotine partitions.

3.2 Monotonicity in guillotine partitions

We prove Theorem 3 for the guillotine case. Let Il = {P;,..., Py} be a guillotine partition
of P feasible to wPartition(P, W, U), and let II[Q] = {P; N Q}i=1,....m be its restriction to a
subpolygon @ that is U-convex with respect to P. Then, |J;~,(P; N Q) = Q, and thus, I1[Q]
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also forms a partition of Q). Note that each piece in IT[Q)] satisfies unit-width constraint W,
as every piece is a subset of some P; that satisfies the constraint. To show opt(Q) < opt(P),
it suffices to verify two aspects: (1) II[Q)] is a guillotine partition of @ and (2) |II[Q]| < m.

Since II is a guillotine partition, the cuts used for II are partially ordered by their
precedence in the partitioning process. Let C = (c1, ..., ¢n—1) denote a sequence of guillotine
cuts that produces II. Then each ¢; N @ is connected as ¢; is a cut in P with a direction
in U and @ is U-convex with respect to P. Let D = (dy,...,d ) be the subsequence of
(1 NQ,...,cm—1 N Q) consisting of those satisfying ¢; Nint(Q) # @ for i = 1,...,m — 1.
Note that each d; for j € [m/] is a cut in @ and m’ < m — 1. Also, observe that II[Q)] is
induced by D. It suffices to show that D is indeed a sequence of guillotine cuts in @: each
d; € D is a guillotine cut in one subpolygon obtained by applying (d1,...,d;j—1) to Q.

Let ¢ be the smallest index in [m — 1] such that ¢; Nint(Q) # 0. Since no cut in
(c1,...,ci—1) intersects int(Q), there is a subpolygon in the partition of P by (c1,...,¢;,—1)
that contains Q). Observe that ¢; is a guillotine cut in this subpolygon that is aligned with a
direction in U. Since @ is U-convex with respect to P, d; = ¢; N Q is a line segment, and
thus, d; is a guillotine cut in Q.

We proceed by induction on j with 1 < j < m/, that (di,...,d;_1) forms a sequence of
guillotine cuts in . Among the pieces of @) partitioned by the sequence, let ); denote the
one containing d;, where d; is a cut in ;. By definition, there exists an index k € [m] such
that d; = ¢, N Q. Let Py be the piece in the partition of P by (c1,...,cx—1) that contains cy.

To see that d; is a guillotine cut of @, recall that d; = ¢ N Q;, where ¢, is a guillotine
cut of P, and Q; C Py. Let ¢} be the guillotine cut in P obtained by extending ¢ until
it touches OP. Since Q is U-convex, ¢, N Q is connected, and hence so is its subsegment
¢ NQ = d;. Moreover, as ¢y, spans 0Py, its restriction to @); necessarily touches 9Q); at both
endpoints. Thus, d; is a guillotine cut in @;. We conclude that D = (d1, ..., dy,) induces a
guillotine partition of Q. Since m’ < m, we have |II[Q]| < m.

» Lemma 4. Let P be a polygon and let 11 = {Py,..., P} be a solution to the problem
wPartition(P, W,U) for guillotine cuts. If a subpolygon @ of P is U-convex with respect to
P, the restricted partition {Q N P;}i=1,...m is a solution to wPartition(Q, W,U) for guillotine
cuts with at most m pieces.

4 Reconfiguration of restricted non-guillotine partitions

Let Q be a subpolygon of P that is W-convex with respect to P. The monotonicity
opt(Q) < opt(P) trivially holds when opt(Q) = 1. Also, any feasible partition is guillotine
when U is a singleton. Assume that opt(Q)) > 1 and U contains at least two distinct vectors.
Let IT = {Py,..., Py} be any feasible partition of P to wPartition(P, W, U). Its restriction
to @, defined as II[Q] = {P; N Q}i=1,... m, is a feasible partition of @ to wPartition(Q, W, U).
However, some regions P; N Q may be disconnected, even when @ is W-convex with respect
to P (See Figure 3(a—b)). To address this, we modify the cuts in II[Q] to reconnect disjoint
fragments into connected regions while preserving feasibility for wPartition(Q, W, U).
Consider any element P; in the partition II of P such that int(P;) Nint(Q) # 0. The
intersection int(P;) Nint(Q) consists of open connected components. We define R; as

R; = {cl(X)| X is a connected component of int(P;) Nint(Q) with c(X)NoQ £ 0 }.

Let R; = {C1,C>,...,C.}. Note that each C; is a subpolygon of @) with positive area
that touches Q. To connect elements in R; into a single piece, we reconfigure II[Q] by
iteratively performing a process, called reallocation. Let X be a connected region in ). We
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Figure 4 (a) A layer segment Z of R; is bounded by e1, ez € Ef’d, and it corresponds to I € Z;.

(b) A link instruction A = (I, I2, k) reallocates the layer segments in Ly[Z1, Z2] to P;. (c) Applying
A merges C; and Cj/ into a single piece through layer segments in Ly, where I1 € Z;; and I2 € Z;j
for some 3,5’ € [t].

define the reallocation of X to P; as the operation that modifies ITI[Q)] by expanding the
region assigned to P; so that it includes X. This can be done by adding new boundaries
along 0X \ P; and removing those along OP; \ X. If X and P; intersect in their interiors, or
share a boundary segment of positive length, then X U P; appears as a single piece in the
resulting partition. We say that the region X is reallocated to P;.

4.1 Construction and layering of corridor of QQ

We first construct a narrow corridor along 9Q). This corridor lies entirely within @, closely
following 0Q), and provides the space needed to link elements of R;.

The corridor is an annular region bounded by two simple closed curves: the outer curve
0@ and an inner curve that lies at a small distance § inward. The region between the two
curves is called the d-corridor of @@, where ¢ denotes its width. In our construction, we set ¢
to be a sufficiently small positive value and denote the resulting corridor by .A.

Consider the edges of each C; € R; that have one endpoint on 0Q and intersect int(Q).
Let E?jd denote the set of such edges of C;. We define EP? := U;Zl E})jd and Egd =, EPL.
The corridor A is subdivided into a sequence of nested subregions, which we refer to as layers.

Let h € Z~o denote the number of layers which will be determined in Section 4.4. For each
k € [h], we construct a simple closed curve T’y lying entirely within int(A), such that the
curves I'y,..., 'y are pairwise disjoint and arranged sequentially inward from 0Q. Each T'y
follows a zigzag pattern using the two directions in U, and intersects every edge in Egd once
or twice, depending on whether the edge is a guillotine cut in (. Details on the construction
of the corridor A and simple curves are provided in the full version.

These h curves subdivide A into h nested subregions, called layers: for each k € [h], the
k-th layer is the annular region bounded by I'y_; and 'y, where we define I'g = 0Q).

4.2 Link instructions with circular intervals and layers

Let C; and Cjs be two elements in R; with j # j'. For k € [h], let Ly, denote the k-th layer.

Each connected component of L, N C; for C; € R; is a subregion of () referred to as a layer
segment of C; (and of R;) in Lj. Each layer segment is bounded by four parts: continuous
portions of the inner and outer boundaries of L, and two edges from Elbjd. Removing any
layer segment from Lj alters its topological structure from an annulus to a weakly simple
polygon. All layer segments in Ly can be arranged in cyclic order along Li. Figure 4(a)
illustrates a layer segment of R; in Ly.

22:7
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(a) (b) (c)

Figure 5 (a) int(P;) Nint(Q) induces R; = {C1,C2,Cs}, and each 9C; Nint(Q) induces simple
paths {y1,...,75}. (b) ps serves as both an entry and exit point for the transition C; — C>. The
simple paths outside int(Q), from p7 to ps and from ps to p1, represents the transitions C> — Cf
and C3 — C1, respectively. (c) The directed graph G, constructed based on P; and @ shown in (a).

We use an interval notation over layer segments that are cyclically ordered. For two
layer segments Z, Z5 in Ly, we denote by Li[Z1, Zs] the set of layer segments encountered
in counterclockwise traversal from Z; to Zs in Ly, where Zy,Zy € Li[Z1, Z5]. Similarly,
Ly(Zy,Z5), Ly[Z1, Z2), and Li(Z1, Z3] denote the open and half-open intervals over layer
segments between Z; and Zs in Ly.

Assume that Z; C C; and Z; C Cj are layer segments of R; in Ly, for j,j' € [t] with
j # j'. The reallocation of Li[Z1, Zs] to P; merges C; and Cj into a single piece within L.
We refer to such an ordered pair (Z1, Z2) as a link instruction of R;. See Figure 4(b—c).

Decomposition of 9@ into circular intervals. For C; € R;, C; is a subpolygon of @) that
touches 0Q). The intersection 9C; N Q) consists of continuous paths on 9. Specifically, it
can be the loop 0@ itself if 0Q C 0C};, implying that @ satisfies unit-width constraint W.
However, assuming opt(Q) > 1, this case does not occur. Thus, every connected component
of 0C; N 0Q must be a continuous path on 0@ that is not a loop. We define Z;; as

Z;j ={I COQ | I is a connected component of C; N IQ} .

We then define the aggregate sets Z; = U;:1 T;; and Zg = U~ , Z;.

Let I € Z;; be a continuous path along 0¢) with endpoints p and g such that I corresponds
to the portion of 0Q from p to ¢ in counterclockwise order. Since Q) is a simple closed curve,
topologically equivalent to a circle, we regard each path I as a circular interval on 0Q). As Z;;
contains no loops, the case p = g occurs only when 9C; touches 0Q at a single point p, and
no other portion of C; near p intersects Q. Such intervals are called degenerate intervals.

For i € [m], Z; may contain both degenerate and non-degenerate intervals. Since P; is
simple, all intervals in Z; are pairwise interior-disjoint. Figure 5(a) shows a piece P; and
the subpolygon @, from which the circular intervals in Z; are defined. These intervals are
illustrated in Figure 5(b).

Note that a degenerate interval at some point p € dQ may appear in multiple Z;’s. In
such cases, each occurrence is treated as a distinct element in Zg. Since II = {Py,..., P} is
a partition of P and @) C P, every point on 0@ belongs to some interval of Zg, and no two
intervals in Z¢ intersect each other in their interiors. Thus, Zg forms a decomposition of 0Q).

Finally, we relate these circular intervals to layer segments so as to define a link instruction
formally. For any j € [¢] and any k € [h], consider the component C; € R; and the layer Ly.
Each connected component of ANC; (or Ly N Cj) is bounded by four parts: continuous
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portions of the inner and outer boundaries of A (or L), and two edges from E,})jd. Each
connected component of Ly N C; is entirely contained within a unique connected component
of AN C;. Moreover, the portion of 9Q that bounds each connected component of AN C;
corresponds to a circular interval in Z;;. Thus, each layer segment of C; in Lj is uniquely
associated with a circular interval in Z;;, in a one-to-one correspondence. The number of
layer segments in ANC; (or Ly N Cj) is |Z;;] - h (or |Z;;]).

We revisit the link instruction that merges two layer segments Z; C L, N C; and
Zy C LN Cy for j,j" € [t] along layer Li. The link instruction reallocates the region
in L; spanned counterclockwise from Z; to Z;. Since Z; and Z, correspond to circular
intervals in Z;; and Z;;, respectively, each link instruction can be represented by a triple
(I, Is, k), where I, I» € T and k € [h] (See Figure 4). Note that (I1, I2, k) # (I2,I1, k), as
the counterclockwise span from Z; to Zs differs from that in the reverse order.

4.3 Graph for encoding link instructions

Recall that R; = {C1,Cs,...,C} is the set of closures of connected pieces of int(P;) Nint(Q)
such that each C; has a positive area and touches 9Q). We construct a graph for each R;,
which specifies how the elements of R; are to be connected into a single piece within Q.

For each j € [t], Z;; consists of circular intervals, each corresponding to a continuous path
in 0C;NOQ along Q. Let I;; denote the subset of Z;; consisting of only those intervals with
positive length. We define Z;" = (J_, Z,\ and ) = U, Z;". Unlike Zg, the set I, contains
only non-degenerate intervals, which are pairwise interior-disjoint. Note that {Z;" }i=1, .m
forms a partition of 9Q.

Sequencing subpaths of dP;. For each C; € R;, 0C; N int(Q) consists of connected
components, each forming a continuous path connecting two points on 9Q. By the definition
of Z;;, the endpoints of these paths correspond to the endpoints of the circular intervals in
Z;;. The total number of such paths in 0C; Nint(Q) is |Z;;|. See Figure 5(a).

We traverse OF; counterclockwise, starting at any point on dCy N int(Q) and completing
a full circuit. During the traversal, each path in 9C; Nint(Q) is visited exactly once for each
j € [t], except for the path containing the starting point. The order in which the continuous
paths are visited is denoted by v4 — 2 — - -+ — v, where 1 = ; is the path in 0C; Nint(Q)
containing the starting point, and [ = 22:1 |Zij| +1=1|Z;| + 1.

Consider two consecutive paths v, and ;41 for any & € [l — 1]. Each path is derived from

some piece in R;; there exist 7,7’ € [¢] such that v, C 0C; Nint(Q) and 41 C ICy Nint(Q).

As we traverse from g to Yr11, we exit int(Q) through an endpoint of v, and re-enter int(Q)
through an endpoint of 1.

» Lemma 5. Let (Vi,Yk+1) be a pair of consecutive paths for k € [l — 1], where vy, C
0C; N int(Q) and vi41 C OCy Nint(Q) for some j,j" € [t]. The traversal from i to Y1
exits and re-enters int(Q) through intervals Iy € Z;; and Iy € I;j, respectively. If j = j’,
then Iy = Iy. Otherwise, Iy and Iy are interior-disjoint, non-degenerate intervals.

By Lemma 5, a pair of distinct intervals in Z;" provides an exit-entry pair for each
transition between distinct pieces in R; in the counterclockwise traversal of 0P;.

Construction of G;. Based on the counterclockwise traversal of 9P;, we construct a directed
graph G; = (V;, E;) as follows. Each vertex v € V; corresponds to an interval in Ii* , SO
|Vi| = |Z;|. Let 71 and 72 be consecutive paths in the traversal where v, C 9C; Nint(Q)
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and v2 C 9C; Nint(Q) with j # j'. The traversal from 7; to 2 encounters intervals I; and
I in I;r that contain the exit and entry points, respectively. By Lemma 5, these intervals
I and I, are uniquely determined. We add a directed edge e between vertices v; and vs
corresponding to I; and I, respectively.

Let p and g denote the exit and entry points of the traversal, respectively; p is the
endpoint of I; and ¢ is the endpoint of I5. The counterclockwise traversal on 0P; between
~1 and 7o follows a simple path along JP; outside @ that starts from p and ends at q. Let
Ypg C OP; \ int(Q) denote this path from p to g. Observe that the exit and entry points may
coincide, i.e., p = q, if I; and I, are adjacent at p and I lies counterclockwise from I along
0Q. In this case, the direction of e is assigned from vy to v;.

Given that p # ¢, the simple path ~,, can be viewed as a simple path connecting two
distinct points on the boundary of the circle and lying outside the circle. The path +,, can be
classified into one of two types, depending on how it winds around the circle. Formally, v, is
homotopic to a directed path in R?\ int(Q) that winds around 9Q in either counterclockwise
or clockwise direction. Note that it cannot wind around the boundary more than once since
Ypq is simple. We assign the direction of e from v; to v if the path is of the counterclockwise
type, and from vy to vy, otherwise. Figure 5(b) illustrates -y,, for both cases where p = ¢
and p # q. The same rule is applied to assign directions to all other edges in G;.

In summary, we construct the directed graph G; for i € [m] to represent how the disjoint
components of R; are to be connected into a single piece within ). Each vertex corresponds
to an interval in I;' . Each directed edge e = (v1,v2) of G; represents a link instruction
(I1, I, k), but k is not specified yet. See Figure 5(c) for an illustration of the directed graph
G; that defines three link instructions, where P; and ) are as shown in Figure 5(a).

4.4 Layer assignments for link instructions

For i € [m], let G; be the directed graph for R; = {C1,Cs,...,C:}. Each edge in G;
represents a link instruction that reallocates layer segments within a specific layer. The goal
is to assign layers to link instructions so that no redundant reallocation of layer segments is
allowed and all elements in R; are eventually merged into a single piece for every t =1,...,m.

The underlying graph of a digraph is its undirected version, obtained by ignoring the
directions of all edges. Consider a connected component 7" of the underlying graph of G;.
We assume that T contains more than one vertex, as a component of size 1 does not indicate
any link instruction. Each vertex of T corresponds to a circular interval in Z;". Let Zr be
the subset of Z;” such that Zr = {I € Z;\ | I corresponds to a vertex in T'}.

Figure 6 (a) The combine step merges I1, I5s, and I4 to a circular interval J € Jg. (b) The
interval J is derived from a connected component 7" of the underlying graph of ;. This corresponds
to a connected region X € X; that is bounded by the circular intervals associated with 7.
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We iteratively perform a combine step to merge all circular intervals in Zy into a single
circular interval on 9Q. The process begins with an initial set S = {u} and a circular interval
Jg, where u is any vertex of T" and Jg is the circular interval in Zr corresponding to u. At
each step, any vertex v € T'\ S is chosen if there exists an edge between v and some vertex
w € S. Let I, € Zr be the circular interval corresponding to v. We add v to .S and update
Js to be the smallest circular interval on 0Q that spans from I, to Jg in counterclockwise
direction if the edge is directed from v to w, or in clockwise direction otherwise. Once S =T,
the process returns a single circular interval on 0@, denoted by Jr, corresponding to the
connected component T of G;. See Figure 6(a) for an illustration of this process.

Jo = {Jr | T is a connected component of G; with |T'| > 1, for i =1,2,...,m}.

Throughout, we use I to denote intervals in Zg and J for those in Jg to emphasize their
distinct roles. Each J € Jg is non-degenerate. For any .Jy, Jo € Jg with int(J1) Nint(J2) # 0,
there exists a proper containment between J; and Js. To prove this, we present a lemma
relating connectivity in the underlying graph of G; to the existence of a path contained in a
connected component of P; \ int(Q), as illustrated in Figure 6(b).

» Lemma 6. The vertices corresponding to I and Iy in I are connected in the underlying
graph of G; if and only if there is a simple path connecting p € I to q € Iy contained in
P\ int(Q).

Let X; be the set of connected components in P; \ int(Q). Then each element in &X; is a closed
connected set. Moreover, it is a (weakly) simple polygon.

For p,q € 9Q, let A(p,q) denote the set of all simple paths from p to ¢ contained in
P;\int(Q). For I, I, € Z;7, we define A(I1, I5) = Uper, ger, AP, @) Lemma 6 guarantees the
existence of a path between I; and I; whenever their corresponding vertices are connected
in the underlying graph of G;. Furthermore, all such paths share a consistent topological
behavior, such as winding around 9@ in the same direction.

» Corollary 7. Let 1,15 € Ij' with Iy # L. If A(I1, 1) # 0, then all paths in A(I1, I5) wind
around 0Q) in the same direction, and there is a unique component X € X; that contains all
such paths.

Using Lemma 6 and Corollary 7, we prove a proper containment relation.
» Lemma 8. For any distinct Jy, Jo € Jg with int(Jy) Nint(J2) # 0, J1 C Jo or Jo C Ji.

By Lemma 8, we construct the circular interval graph G 7, where each node corresponds
to a circular interval in Jg, and a directed edge from J; to Jy is added if J; € Jy for

=

J1,J2 € Jg. Then, Gy is acyclic as each edge corresponds to a strict containment.

Transitive reduction of G 7. The graph G 7 represents the transitive closure of the proper
containment relation. That is, for Ji, Js € Jg, there is a directed edge from J; to J; in
Gy if there exists some J' € Jg such that (J1,J’) and (J', J3) are directed edges in G 7.
A transitive reduction of G 7 is a directed graph on the same vertex set with the minimum
number of edges that preserves all reachability relations of G 7. Since the transitive reduction
of a DAG is unique [8], we denote the transitive reduction of Gz by G%. Let UG*; denote
the underlying graph of G.

» Lemma 9. Any vertex of Gf} has out-degree at most one, and UGf; is acyclic.

By Lemma 9, UGY is a forest. Each directed tree T' of G has total out-degrees |T'| — 1,
implying that exactly one vertex has out-degree zero and all others have out-degree one.
This structure corresponds to an in-branching tree [8].
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Layer assignment of link instructions. In each in-branching tree of G'7, the unique vertex
with out-degree zero is called the root. The level of a vertex is defined as the number of edges
on the path from the root to that vertex plus one, where the level of the root is one. The
level of each interval J € J is defined to be the level of the corresponding vertex in G'.

Recall that each circular interval J € Jg is formed by merging intervals in I;r for some
i € [m]. These intervals correspond to the vertices of a connected component 7' of G;, where
each edge of T encodes a link instruction that merges two elements in R;. Let INST(J)
denote the set of link instructions corresponding to the edges of T. We assign the k-th layer
to every link instruction in INST(.J) if .J is at level k in G*;. Note that the maximum level in
G"; is at most L|IZ§|/2J if each connected component of G; has size two for all i = 1,2,...,m.
Thus, we set the number of layers in the corridor A to this maximum level: h = L|I$ 1/2].

For each J € Jg, all link instructions in INST(J) reallocate layer segments within a
single layer L) to a common piece P;, where i € [m] and k € [h] are determined by J.
Let I,, 1, € If such that J is the smallest circular interval that spans from I, to I, in
counterclockwise order. Let Z,, Z, C L be the layer segments corresponding to I, and I,
respectively. Applying INST(J) is equivalent to reallocating every Z € Li[Z,, Zp] to P;.

In summary, INSTg = ¢ Jo INST(J) defines the set of all link instructions for recon-
figuration. Applying INST¢ to II[Q] yields a partition @ = QF U --- U QF,, where each Q;
is a region assigned to P; within Q. When @ is W-convex with respect to P, each Qj is
connected and satisfies both constraints W and U.

5 Analysis of reconfigured non-guillotine partitions

Assuming that the link instructions in INSTg have been applied to II[Q] in an arbitrary

order, we verify the following statements in order to prove Theorem 3.

(1) For each i =1,...,m, the region allocated to P; within ) forms a single connected piece.

(2) The reconfiguration of II[Q)] is a solution to the problem wPartition(Q, W,U) if Q is
W-convex with respect to P.

It follows from statements (1) and (2) that the reconfigured partition of @) satisfies the

constraints W and U while ensuring that the number of pieces does not exceed m.

5.1 Connectivity in reconfigured partitions

For i € [m], let INST; denote the subset of INSTq consisting of instructions of the form
(I, I, k), where I1,I> € Z;” and k € [h]. Then, INSTg = Uie[m] INST;. We first show that
the link instructions in INST; merge all elements of R; into a single connected piece. We then
verify that applying the link instructions in INSTq \ INST; does not disconnect the merged
piece. Furthermore, the resulting reconfigured partition of @ is invariant under the order in
which the link instructions in INSTg are applied to II[Q].

Merging R; via INST;. We show that any two pieces C},C} € R; are connected by some
link instructions in INST;. During the traversal on dF;, each continuous path of 0C; Nint(Q)
is encountered at least once for every j € [t], and we denote the sequence of these paths
in the order they are visited as (y1,72,...,7), where 71 = ~;. Then, there exist indices
k. k' € [l] such that v, C 0C; Nint(Q) and vy C IC; Nint(Q). Since it is a cyclic sequence
with v = 5;, we assume without loss of generality that k < k.

Recall that an edge of G; is added whenever two consecutive paths in the sequence are
derived from distinct elements in R;. This indicates that a transition between them occurs
during the traversal. The link instruction associated with this edge merges the corresponding
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Figure 7 The corridor of @ has two layers, with |R:| = 3 and |R2| = 2. (a) Red regions represent
{core(C) | for C € R1}, while blue and green regions indicate layer segments in Zi* and Z{"*,
respectively. (b) Q1 is formed by merging R; according to INSTi, and some layer segments in Z
are reallocated by INST2. (c¢) Q7 is obtained by applying INSTq \ INST: to Q1.

elements in R;. The subsequence (7, Vk+1,---,7Vk) contains multiple transitions between
distinct elements in R;, starting from C; and eventually reaching Cj. Applying all link
instructions associated with the transitions in (yg, ..., v&) results in C; and Cj being merged
into a single connected piece.

Let @Q; denote the subregion of @ resulting from merging elements of R; via INST;, with
no other instructions applied. Then, Q); consists of all elements in R; and layer segments
reallocated from other pieces: Q; = (U el Cj) UZPut, where Z9U is the set of layer segments
reallocated to P; by INST;.

The region L = Ly U --- U L, denotes the union of all layers in Q. For each C; € R;,
L N C; consists of layer segments within C;. By construction of layers, C;; \ L is connected

and non-empty. We refer to this region as a core of C;, denoted by core(C;) = C; \ L.

Each C; consists of its core together with the layer segments it contains. Let Z™ denote
the set of all layer segments in L N C; over all C; € R;. Therefore, for i € [m], we have
Qi = (Uje[t] core(C’j)) U ZinU Zo". Figure 7(a) illustrates the parts of Q;: cores and layer
segments. The shapes are drawn schematically to reflect the topological structure, rather
than an exact polygonal description.

We now turn to the link instructions in INSTq \ INST; that are applied to ;. Let QF
be a subregion of @); that is obtained by applying all link instructions in INSTg \ INST; to
Q;. Note that any part of Q; reallocated by INSTq \ INST; lies within Z!" U Z2", and thus
the cores remain unchanged. We show that @} is well-defined, meaning that Q)7 is invariant
under the order in which the instructions in INST( are applied.

» Lemma 10. Let (I, I, k) € INST; be a link instruction, and let Zy and Zy be the layer
segments in Ly corresponding to Iy and Iz, respectively. Then, the layer segments Ly[Z1, Zs)
remain assigned to P; under any link instruction in INSTg \ INST;.

Lemma 10 implies that no layer segment is reassigned by more than one link instruction. As
a consequence, we obtain the following corollary, which states that ) is well-defined.

» Corollary 11. In the reconfiguration of 11|Q], each layer segment in @Q is reallocated at
most once.

Corollary 11 ensures that each layer segment may be reallocated to a different piece at most

once, and no chains of reallocations such as P;, — P;, — P, with i1 # is and is # i3 occur.
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This lemma further implies that layer segments in ZP"* are preserved, while only those
in ZI" are reallocated by INSTq \ INST;. Let Zi"* be the subset of Z" that consists of layer
segments preserved under INSTg \ INST;. Then, @} is the subpolygon that is obtained from @;

by removing those layer segments in ZI"\ Zi"*. Then QF = (Uje[t] core(C’j)) U Zinxy Zput,
where ZI™* C Zin. Figure 7(b—c) illustrates the construction of QF, in which only layer
segments in Z™ are reallocated by INST( \ INST;.

Path-Connectivity of Q7. To prove that )7 forms a connected piece, it suffices to verify
two types of path-connectivity among its constituent parts, which must be preserved during
the reallocation induced by INSTg \ INST;.
Each layer segment in Z!™* U Z9" is path-connected to some core(C;) within @} for
Cj € R;.
The cores {core(C;) | C; € R;} are mutually path-connected within Q.
Here, two sets A, B C X are said to be path-connected within a region X if there exists a
path in X joining some a € A and b € B.

» Lemma 12. Each layer segment in Z™* U Z2% is path-connected within Q to the core of
some C; € R;.

By Lemma 12, every layer segment in Z* U Z2U* has a path to some core within Q7. It
remains to show that core(C1),...,core(Ct) are mutually path-connected within Q7.

» Lemma 13. All cores of elements in R; are mutually path-connected within Q.

By Lemmas 12 and 13, each Q} is connected. Thus, applying INSTg to II[Q] yields the
partition IT*[Q] = {Q7, @5, ..., Q% }, where each QF is a connected subregion of Q.

Remarks. Applying link instructions in INSTg may induce holes within merged pieces in
the reconfigured partition of Q. When @} contains holes, reallocating them to P; does not
increase wy (Q;) for every v € ST. Therefore, each QF can be regarded as a simple polygon.

5.2 Feasibility of reconfigured partitions

We first observe that the reconfigured partition II*[Q] = {Q7, Q3, ..., QF,} remains as a valid
partition of @. By construction, the cut constraint U is also preserved: each layer segment is
bounded by the boundaries of layers and the cuts from II[Q)], all aligned with directions in U.
It remains to check the unit-width constraint W.

Since IT = {P,..., Py} is a solution to wPartition(P, W, U), there exists a vector v; € W
such that wy,(P;) < 1. In other words, there exists a unit strip H; with normal vector v;
that contains P;. If every layer segment reallocated by INST; is contained within H;, then
Q7 also satisfies unit-width constraint W.

Assume that A = (I, I, k') is a link instruction associated with a directed edge from
v1 to vy in G; for I, I, € Z,” and k' € [h]. Let 7,5’ € [t] be two distinct indices such that
I € Ii‘; and Iy € Ii‘;,. Recall that the edge between v and vs is added to G; if and only if
there is a transition between 0C; and 0Cjs during the counterclockwise traversal on 0P;.

For each k € [h], let ZF and Z% denote the layer segments in Ly, corresponding to I; and
I, respectively. The link instruction X reallocates the layer segments in Ly (ZF | ZE') to P;,
where ZF' and Z}' are already assigned to P; in II[Q]. We define Zy = Uren Uzezx 2,
where Z¥ := L;,(Z¥, Z5). Tt suffices to show that Zy C H;. If this inclusion holds, every layer
segment reallocated by A lies within H;, and thus the unit-width constraint W is preserved.
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Figure 8 (a) The link instruction A\ = (I1, I2, k) is derived from the traversal of OP; from p1 to g2 or
from pe to g1, where I = 0Q[p1, q1] and I> = OQ[p2, g2]. OZx consists of dQ[q1, p2], Q% [r1, 2], GiT1,
and pa7z. (b) The path v from p2 to ¢ must pass through z when 9P intersects 9Q at z.

Decomposition of 3Z,. The region Z) is connected and bounded by four parts: two
continuous portions of the inner and outer boundaries of A, and two subsegments of edges
from C; and Cj:. The outer boundary of A is dQ and its inner boundary is 0Q?, where Q?
is the inner ¢-offset polygon of Q.

For the sake of clarity, we introduce interval notation to represent subpaths of 9@
and 0Q?. For any two points z,y € dQ, we denote by dQ[z,y] the portion of dQ from
x to y in counterclockwise order, including both endpoints. Let 0Q(z,y] = 9Q|z,y] \
{z}, 0Q[z,y) = 0Q[z,y] \ {y}, and 9Q(z,y) = 9Q|x,y] \ {z,y}. Similarly, we define
0Q%[x,y], 0Q?(x,y], 0Q%[x,y), and OQ?(x,y) as portions of IQ?.

Since I and I are non-degenerate intervals on 90Q, let Iy = 0Q|p1, ¢1] and I = 9Q[p2, ¢2]
for some points p1, g1, p2, g2 € 0Q with p; # ¢1 and py # ¢2. The portion of 9Z) contained
in 0Q is 9Q[q1,p2]. Let r1,70 € AQ? be the endpoints of the portion of 9Zy lying on 0Q?,
which we denote by dQ?[r1,r2]. Finally, the parts of 9Z, along the edges of C; and Cj/
correspond to the segments q171 and Pars, respectively. Thus, 0Z) decomposes into the four
parts 0Q[q1, p2], 0Q®[r1, 7], @71, and pars. This decomposition is shown in Figure 8(a).

Since H; is convex, Zy C H; if and only if all parts of 0Z) are contained in H;. Note
that g171 and pars lie in H;, as both C; and Cj/ are contained in F;. To prove Z) C H,, it
remains to show that 9Q[qy, p2] and dQ?[ry, 2] are contained in H;.

Containment of dQ|[q1, p2] in int(P). During the transition between dC; and 0C;s in the
counterclockwise traversal on JF;, it follows a simple path, denoted by ~y, which lies outside
int(Q). The path 7 exits and re-enters int(Q) through the endpoints of I; and Is.

Let v; and vo denote the vertices in G; corresponding to I; and I3, respectively. The link
instruction A = (I, I, k') is derived from the directed edge (vy,vs) in G;. The direction of
the edge is determined by how v winds around 9@ (either clockwise or counterclockwise) and
whether the path exits int(Q) through the endpoint of I; or that of I5. If v winds around
0@ counterclockwise, it exits int(Q) from p; and re-enters at go. Otherwise, it exits int(Q)
from p, and re-enters at g;. Figure 8(a) illustrates both cases.

Up to this point, we consider both clockwise- and counterclockwise-type instructions.
However, counterclockwise ones can be omitted in the reconfiguration. Assume that v winds
around 0@ counterclockwise. By Corollary 7, there exists a unique component X € X;
whose boundary contains I7, Is, and the path 7. Since X is a weakly simple polygon, we
can traverse 0X in counterclockwise order. This traversal encounters a sequence of circular
intervals in Z;", and, from the construction of G, each consecutive pair of intervals in this
sequence corresponds to an edge in G; whose direction is determined by whether the subpath
of 0X between the intervals winds around 9@ clockwise or counterclockwise.

22:15

ISAAC 2025



22:16

Minimum Partition of Polygons Under Width and Cut Constraints

Since the traversal of X follows the path ~ from I; to I> that winds around 0Q
counterclockwise, the other subpath of X runs from Is back to I;, and winds around 9Q
clockwise. This path encounters a sequence of intervals in I;r starting from I5 to I, where
each consecutive pair of intervals induces a clockwise-type edge in G;. In Figure 6(b), the
counterclockwise-type path from I to I; corresponds to the sequence of clockwise-type paths
I — I and Is — I4. Thus, link instructions associated with counterclockwise-type edges
can be omitted without affecting the resulting partition IT*[Q].

Without loss of generality, we restrict our analysis to clockwise type instructions. In
this case, 7 is a path from ps to ¢;. The path v can be continuously deformed into a path
4 = 0Q|q1, p2] on 9Q while preserving its endpoints. As illustrated in Figure 8(b), if 0P
intersects @ at a point z € 9Q|g1, p2], then v must pass through z. This implies that 0P,
intersects itself at z, contradicting that P; is a simple polygon.

» Lemma 14. All points on 0Q|q1, p2] lie within the interior of P.

Note that a point p € int(P) if and only if there exists a sufficiently small ball B(p)
centered at p such that B(p) C int(P). We slightly extend the polygonal chain 9Q]q1, p2]
beyond its endpoints and denote the resulting chain by 9Q[q; ,ps] for ¢; € 9Q(p1,q1)
and py € 9Q(pa2,q2). Since dQ[q1,p2] C int(P) by Lemma 14, dQ[q; ,p5] also lies in
int(P). Furthermore, as I; and I» are non-degenerate, the slight extension guarantees that
9Qlqy . p3] C 0QIp1, ¢2.

Turning points on 9Q[q; , p;' ]. Without loss of generality, assume H; is a vertical strip,
meaning that its boundary consists of two vertical lines. A portion of 0Q) is a polygonal chain,
consisting of a sequence of line segments. As we traverse a polygonal chain from one endpoint
to the other, these line segments are encountered sequentially. A point z € 9Q(q; , p3 ) is
called a turning point of dQ[q; ,p3] if the traversal changes its horizontal direction (from
leftward to rightward or vice versa) at z. Since ¢; and p; lie sufficiently close to ¢; and ps
along 9Q), every turning must occur on 9Q|q1, pa].

When 9Q|q; ,p5 ] contains vertical edges, the above definition of turning points is not
sufficient. Consider a path that initially moves in the positive (or negative) z-direction, then
follows a vertical segment, and subsequently moves in the negative (or positive) z-direction.
We define the lowest point on the vertical segment as the unique turning point on that
segment. See Figure 9(a).

Note that the number of turning points is invariant under the traversal direction; that
is, it remains unchanged whether we traverse dQ[q; ,p5] from ¢; to pj or in the reverse
direction. As illustrated in Figure 9(b), if there are two turning points on 9Q[q; , p3], we
can draw a vertical guillotine cut ¢ in P such that ¢ N @ is disconnected, since all points on
0Q|q; ,p3] lie within int(P). This implies that @ cannot be W-convex with respect to P.

» Lemma 15. If Q is W-convex with respect to P, then the number of turning points on
0Qlqy ,ps] is at most one.

Since both dQ(p1, 1] and Q[pz, ¢2] lie in Pi, q; ,p5 € H;. If there are no turning points
on 9Q[q; ,p3], then the points with the largest and smallest z-coordinates along 0Qlq; , 7 |
appear at ¢, and py. Since H; is a vertical slab, all points on 9Q[q; , p5] lie in H;.

Consider the case that dQ[q; , p5] has a turning point at z € dQ[qy, ps], and it is unique
by Lemma 15. Then, the point with the largest or smallest z-coordinate along 9Q|q; , ps ]
may appear at z. Without loss of generality, we assume that z is the point with the largest
x-coordinate. The point with the smallest z-coordinate lies at ¢; € H; or p2Jr € H;.



J. Chung, K. Ilwama, C.-S. Liao, and H.-K. Ahn

int(P) ! Vi

21

o

@

(a) (b) (c)

Figure 9 (a) The turning points on dQ[q, ,p5 ] are 21 and z». (b) For the guillotine cut ¢ along
x = xz(z) + €, the intersection ¢ N @ consists of at least two maximal line segments. (c) v contains a
point with z-coordinate larger than that of the turning point z. The sequence of edges on 9Q%[r1, 2]
from e(f to eg’ corresponds to a subsequence of those of Q[p1, g2].

Recall that the path ~ follows from py to g1 outside int(Q) and is deformed into the
path 4 that traverses 9Q[q1,p2]. Note that z is a convex vertex of @ with locally largest
z-coordinate, and v encloses z from outside int(Q). It follows that v must pass through a
point with z-coordinate at least z(z). Since v C P; C H;, the z-coordinate of z is smaller
than that of the right boundary of H;. Thus, dQ[q; ,p3] C H;. See Figure 9(c).

Containment of Z, within H;. Revisiting the boundary of Z), we have shown that three
parts, 71q1, 7op2, and dQ[q1,p2), are contained in H;. The remaining part is 9Q%[ry, o]
which is the portion of the inner ¢-offset polygon of ). By definition of the offset polygon,
each edge of Q? is parallel to its corresponding edge in @) and the edges of Q¢ appear in the
same cyclic order along its boundary as the edges of Q.

We traverse the chain dQ[q; ,p5 ] from g; to p5. Let e; and e be the edges of @ that
contain the first and last segments of this chain, respectively. Likewise, traversing 0Q®[r, r2]
from 71 to ro gives edges e‘f, eg) of Q% incident to r; and 7y, respectively. We claim that the
edges of @) corresponding to ef and eg appear along the traversal of 0Q[q; , p3]-

The segments 71q1 and 72p; lie on edges of C; and (), respectively. Since ¢ < ¢;; and
¢ < ¢y, the edges of @) corresponding to e‘f and eg are incident to ¢; and pa, respectively.
Recall that we work on the extended chain dQ[g; ,p3], obtained by slightly extending
0Q|q1,pa]. This guarantees that the corresponding edges of @ appear along 9Q|q; ,p3 |-
Consequently, the sequence of line segments forming dQ?[r;, 3] corresponds to a subsequence
of those forming 0Q[q; , p3]. See Figure 9(c) for an illustration of this correspondence. Thus,
by Lemma 15, the number of turning points of 9Q?[r1, 5] is also at most one.

Assuming that the largest 2-coordinate of dQ[q; ,p3] occurs at its turning point, the
largest z-coordinate of dQ®[ry,rs] is smaller than that of dQ[q; ,pg]. The argument is
symmetric when the smallest z-coordinate is attained at the turning point. It follows that
0Q®[r1,r2] is also contained in H;, which completes the proof that 0Zy C H;. Hence, the
reconfigured partition IT*[Q] = {Q%, ..., Q%,} is a solution to the problem wPartition(Q, W, U)
with at most m connected pieces; thus, by definition, opt(Q) < m = opt(P).

6 Bang-type theorem for partitions of a convex body

We adapt the reconfiguration technique in Section 4 to prove Theorem 1. We then show that,
when W C U, an optimal partition of a convex polygon P is achieved by equally spaced
parallel cuts, which can be computed in linear time.
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Let K be a convex body in R?, and let P, U P, U---U P,, be its arbitrary partition. Note
that each P; is compact and possibly non-convex. Let CH(X) denote a convex hull of a set
X in R%. A pocket of CH(X) is defined as a closure of a connected component of CH(X)\ X.
Each pocket is bounded by a subpath along 0F; and a unique line segment lying outside P;.
We refer to this segment as the hull-edge of the pocket.

To convexify P;, we iteratively reallocate its pockets to P;. However, such a reallocation
may split other pieces P; with j # . Accordingly, we perform a reconfiguration step to
merge such fragments into a single piece in K, ensuring that each piece remains connected.

This configuration mirrors Section 4, but with spatial roles reversed. Previously, we
considered the restriction of a partition to a subpolygon @, and reconnected the fragments
of other pieces within ). Here, we restrict the partition to the complement of a pocket, and
consider the fragments of other pieces that lie outside the pocket. The circular intervals in
the earlier setting now correspond to the intervals along the hull-edge of the pocket.

» Lemma 16. Let {P,...,P,} be a partition of a convexr body K C R?. Then, there exists

a convex partition K = Py U---U Py, such that wy(P;) > wy(P}) for all v € ST and i € [m].

m?’

By Lemma 16, we have a convex partition K = P U ---U P such that wy(P;) >
wy(PF) for all v € ST and i € [m]. Given this convex partition, Akopyan [4] showed that
S rk(PF) > 1, where rg(PF) = sup{h > 0 | 3t € R? such that hK +¢ C P;}. For
any direction v € ST, we have rx (P}) < wy(P/)/wy(K). Thus, for any subset W C ST,

mo o wy (P; m . wy (P m *
> iy infyew wv((K)) > iy infyew wv((K)) Z i rk(P) = 1.

Optimal partition for a convex polygon. Let P be a convex polygon with n vertices, and let
W,U C St such that W C U. Choose an arbitrary vector u € W; without loss of generality,
assume that u = (1,0). Let ¢ be the leftmost vertex of P, and partition P by vertical lines
along z; = x(q) + ¢ for all i = 1,..., [wy(P)] — 1. This partitions P into [wy(P)] pieces,
each of horizontal width at most 1, and it is a feasible solution to wPartition(P, W, U). Since
u is chosen arbitrarily, opt(P) < minyew [wy(P)].

Suppose, for the sake of contradiction, that the optimal partition has fewer than
minyew [wy (P)] pieces. Let P = PyU---UP,, be an optimal partition for wPartition(P, W, U),
with m = opt(P). By Theorem 1, we have 1 < > infyew (wv(P;)/wy(P)). Since each
P; satisfies unit-width constraint W, there exists u; € ST such that wy, (P;) < 1. Thus,
LSS infvenw (o (Pr) oy (P)) < S0 (@, (P) fiu, (P)) < S04 (1 /e, (P)).

We analyze two cases depending on whether wy (P) attains a minimum over W. If it
does, we have 1 < > (1/ minyew wy(P)), and minyew wy(P) < m. As m is an integer,
minyew [wy(P)] < m. If no minimum is attained over W, 1 < > | (1/ infyew wy(P)) and
infyew wy(P) < m. Then minycw [wy(P)] = infyew [wy(P)] < m. Both cases contradict
our assumption, and thus opt(P) = minyew [wy(P)].

Let u € W be a vector minimizing [wy(P)], computed in O(n) time for W = S* [18].
Assume that u is given. For the vertices of P given in counterclockwise order, such m — 1
parallel cuts can be computed in O(min{n, mlog 2 }) time [12]. Since z/(14+x) < log(1+x) <
x for all 2 > 0, min{n,mlog 2} = O(mlog(l + )). For fixed n, f(m) = mlog(l + =)
starts at ©(logn) when m = 1 and increases monotonically, approaching ©(n) as m — oo.

» Corollary 17. Let P be a convex polygon with n vertices, and let U,W C St be sets of unit
vectors such that W C U. Then an optimal partition for the problem wPartition(P,W,U) is
achieved by equally spaced parallel cuts orthogonal to u € W that minimizes [wy(P)]. Given

such a direction u, the partition can be computed in O(wy(P)log(1 + ﬁ)) time.
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Remarks. We work in the Real RAM model, which supports unit-cost arithmetic (+, —, x, =)
and comparisons on real numbers. Our algorithms perform integer rounding via comparisons.

—— References

1

10

11

12

13

14

15

16

17

18

19

20

Mikkel Abrahamsen and Nichlas Langhoff Rasmussen. Partitioning a polygon into small pieces.
In Proc. 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ). Society for
Industrial and Applied Mathematics, 2025.

Mikkel Abrahamsen and Jack Stade. Hardness of packing, covering and partitioning simple
polygons with unit squares. In Proc. 65th IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE, 2024. doi:10.1109/F0CS61266.2024.00087.

Arseniy Akopyan and Roman Karasev. Kadets-type theorems for partitions of a convex body.
Discrete € Computational Geometry, 48:766—776, 2012. doi:10.1007/S00454-012-9437-1.
Arseniy Akopyan, Roman Karasev, and Fedor Petrov. Bang’s problem and symplectic invariants.
Journal of Symplectic Geometry, 17(6):1579-1611, 2019.

Ralph Alexander. A problem about lines and ovals. The American Mathematical Monthly,
75(5):482-487, 1968.

Keith Ball. The plank problem for symmetric bodies. Inventiones Mathematicae, 104:535-543,
1991.

Thgger Bang. A solution of the “plank problem”. Proc. American Mathematical Society,
2(6):990-993, 1951.

Jorgen Bang-Jensen and Gregory Z. Gutin. Digraphs: Theory, Algorithms and Applications.
Springer Science & Business Media, 2008.

Andras Bezdek and Karoly Bezdek. Conway’s fried potato problem revisited. Archiv der
Mathematik, 66(6):522-528, 1996.

Kaéroly Bezdek. Plank theorems via successive inradii. In Discrete Geometry and Algebraic
Combinatorics, Contemporary Mathematics, volume 625, pages 1-8. American Mathematical
Society, 2013. URL: http://www.ams.org/books/conm/625/12489.

Maike Buchin and Leonie Selbach. Decomposing polygons into fat components. In Proc. 33rd
Canadian Conference on Computational Geometry (CCCG), pages 175-184, 2021.

Jaehoon Chung, Sang Won Bae, Chan-Su Shin, Sang Duk Yoon, and Hee-Kap Ahn. Approx-
imating convex polygons by histogons. In Proc. 34th Canadian Conference on Computational
Geometry (CCCG), 2022.

Mirela Damian. Exact and approximation algorithms for computing optimal fat decompositions.
Computational Geometry: Theory and Applications, 28(1):19-27, 2004. doi:10.1016/J.COMGEQ.
2004.01.004.

Mirela Damian and Sriram V. Pemmaraju. Computing optimal diameter-bounded polygon
partitions. Algorithmica, 40(1):1-14, 2004. doi:10.1007/S00453-004-1092-3.

Mirela Damian-lordache. Shape constrained polygon decomposition and graph domination
problems. PhD thesis, University of Iowa, Iowa City, IA 52242, 2000.

Richard John Gardner. Relative width measures and the plank problem. Pacific Journal of
Mathematics, 135(2):299-312, 1988.

J. W. S. Hearle. The structural mechanics of fibers. Journal of Polymer Science Part C:
Polymer Symposia, 20:215-230, 1967.

Michael B. Houle and Godfried T. Toussaint. Computing the width of a set. In Proc. 1st
Annual Symposium on Computational Geometry (SCG), pages 1-7, 1985.

Henry F. Hunter. Some special cases of bang’s inequality. Proc. American Mathematical
Society, 117(3):819-821, 1993.

Joseph O’Rourke and Geetika Tewari. The structure of optimal partitions of orthogonal
polygons into fat rectangles. Computational Geometry, 28(1):49-71, 2004. doi:10.1016/J.
COMGEQD.2004.01.007.

22:19

ISAAC 2025


https://doi.org/10.1109/FOCS61266.2024.00087
https://doi.org/10.1007/S00454-012-9437-1
http://www.ams.org/books/conm/625/12489
https://doi.org/10.1016/J.COMGEO.2004.01.004
https://doi.org/10.1016/J.COMGEO.2004.01.004
https://doi.org/10.1007/S00453-004-1092-3
https://doi.org/10.1016/J.COMGEO.2004.01.007
https://doi.org/10.1016/J.COMGEO.2004.01.007

22:20 Minimum Partition of Polygons Under Width and Cut Constraints

21

22

Gregory J. E. Rawlins. Explorations in restricted orientation geometry. PhD thesis, Indiana
University, Department of Computer Science, Bloomington, 1987.

Chris Worman. Decomposing polygons into bounded diameter components. In Proceedings of
the 15th Canadian Conference on Computational Geometry (CCCG), pages 103-107, 2003.



	1 Introduction
	1.1 Problem definition and results

	2 Preliminaries
	3 Monotonicity of minimum partition numbers
	3.1 Restricted-orientation convexity
	3.2 Monotonicity in guillotine partitions

	4 Reconfiguration of restricted non-guillotine partitions
	4.1  Construction and Layering of Corridor of Q
	4.2 Link instructions with circular intervals and layers
	4.3 Graph for encoding link instructions
	4.4 Layer assignments for link instructions

	5 Analysis of reconfigured non-guillotine partitions
	5.1 Connectivity in reconfigured partitions
	5.2 Feasibility of reconfigured partitions

	6 Bang-type theorem for partitions of a convex body

