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—— Abstract

Let G be a graph with a set of precolored vertices, and let us be given an integer distance parameter d
and a set of integer demands di, . ..,d.. The Distance Precoloring Extension with Demands (DPED)
problem is to compute a vertex c-coloring of G such that the following three conditions hold: (i) the
resulting coloring respects the colors of the precolored vertices, (ii) the distance of two vertices of
the same color is at least d, and (iii) the number of vertices colored by color i is exactly d;. This
problem is motivated by a program scheduling in commercial broadcast channels with constraints
on content repetition and placement, which leads precisely to the DPED problem for paths.

In this paper, we study DPED on paths and present a polynomial time exact algorithm when
precolored vertices are restricted to the two ends of the path and devise an approximation algorithm
for DPED with an additive approximation factor polynomially bounded by d and the number of
precolored vertices. Then, we prove that the Distance Precoloring Extension problem on paths, a less
restrictive version of DPED without the demand constraints, and then DPED itself, is NP-complete.
Motivated by this result, we further study the parameterized complexity of DPED on paths. We
establish that the DPED problem on paths is W{[1]-hard when parameterized by the number of
colors and the distance. On the positive side, we devise a fixed parameter tractable (FPT) algorithm
for DPED on paths when the number of colors, the distance, and the number of precolored vertices
are considered as the parameters. Moreover, we prove that Distance Precoloring Fxtension is FPT
parameterized by the distance. As a byproduct, we also obtain several results for the Distance List
Coloring problem on paths.
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1 Introduction

Vertex coloring of graphs is one of the most studied and fundamental problems in structural
and algorithmic graph theory. A k-coloring of a given graph partitions its vertices into
k subsets (color classes) such that there is no edge between two members in the same
partition. Graph coloring problems [19] have a rich research history [10, 22, 33, 7], comprising

© Arun Kumar Das, Michal Opler, and Tomé&s Valla;

licensed under Creative Commons License CC-BY 4.0
36th International Symposium on Algorithms and Computation (ISAAC 2025).
Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 23; pp. 23:1-23:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:arunkumardas@uohyd.ac.in
https://orcid.org/0000-0002-3645-4210
mailto:michal.opler@fit.cvut.cz
https://orcid.org/0000-0002-4389-5807
mailto:tomas.valla@fit.cvut.cz
https://orcid.org/0000-0003-1228-7160
https://doi.org/10.4230/LIPIcs.ISAAC.2025.23
https://arxiv.org/abs/2509.18936
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

23:2

Precoloring Extension with Demands on Paths

numerous variants and results, due to their significant applications in scheduling [4], resource
allocation [26], compiler design [30], computational biology [20], network analysis [3], and
geography [14]. We study a particular variant of the vertex coloring problem with three
additional constraints. Some of the vertices are already given precolored on input, and the
sought coloring must respect these colors. Additionally, we are given required sizes of all color
classes (called demands), and finally, we require any two vertices of the same color to lie at a
distance of at least d from each other. A vertex coloring that satisfies the last condition is
called a d-distance coloring. Hence, classical vertex colorings are exactly 1-distance colorings.
Alternatively, d-distance colorings of a graph G correspond to classical vertex colorings of
the dth power of G.
Formally, the problem we consider is stated as follows.

DISTANCE PRECOLORING EXTENSION wWITH DEMANDS (DPED)
Input: A graph G = (V, E) on n vertices, a set of colors C, a non-negative integer d, a
partial pre-coloring v': A — C' for some A C V', and a demand function n: C' — [n].
Question: Is there a d-distance coloring v: V — C that
~ extends 7' (i.e., v(v) =7/(v) for every v € A), and
for every ¢ € C, the number of vertices newly colored by color ¢ is exactly n(c), i.e.,
{ve VAN A[~(v) = c}| = nlc).

We address the problem for paths and disjoint unions of paths. Our research is motivated
by a real-world scheduling problem of a television broadcasting company: A commercial
block of a daily broadcast consists of n slots (n vertices of a path), where some slots have
already been allocated the type of commercial (precolored vertices). The commercials are
already paid for (the demands are given), and no two commercials of the same type may
be allocated close together. The task is thus to find an assignment of commercials to slots
(color the vertices) such that no two commercials of the same type are too close (vertices
being too close on the path must be colored by distinct colors), and all of the commercials
(demands) are used. This original setting leads to a lot of interesting generalizations.

A notable amount of previous research has been done in the direction of the coloring of
graphs and most of the problems are proved to be NP-hard depending on the type of the
input. There are numerous complexity results for different variants of the coloring problems,
for example, in terms of parameters like treewidth [13], distance to cluster and co-cluster [15],
number of colors and maximum degree [9], clique modulator [17], or vertex cover [18]. Bird et
al. [5] introduced the precoloring extension problem for interval graphs. They proved that the
problem is polynomial time solvable when each color is used at most once for precoloring, and
NP-complete when they are used twice or more. They also extended the results for graphs
with bounded treewidth. They mentioned the problem as a variant of the LiST COLORING
problem [11]. In this problem, each vertex is assigned with a list of colors, and they must be
colored with a color from the assigned list. The graph is called L-list colorable if there exists
a valid vertex coloring which chooses every color from the assigned lists L, and it is called
k-choosable if this is possible for any assignment of lists of size at least k. List coloring has
been studied on trees [6], planar graphs [32], and many other graph classes [29].

Yet another studied variant of coloring, the EQUITABLE COLORING problem [25], requires
the difference between the total number of vertices colored with two different colors to be at
most one. Hence COLORING WITH DEMANDS can be seen as a direct generalization of this
notion. In practice, it is common to combine multiple constraints for coloring problems in
order to address various applications, e.g., Pelsmajer [27] studied the problem of equitable
list coloring. In the DISTANCE COLORING problem, monochromatic vertices cannot occur
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within a given distance from each other. This generalization of coloring has also been
studied extensively [28, 2, 1]. As stated earlier, the problem of coloring paths is motivated
by scheduling problems and it has been studied for many other variants, including call
scheduling [12], nonrepetitive list colourings [16], radio k-colorings [8] etc.

DiSTANCE Li1sT COLORING WITH DEMANDS
W([1]-hard w.r.t number

of colors and distance DISTANCE PRECOLORING EXTENSION WITH DEMANDS
(Theorem 3, Theorem 4)

FPT
by distance
(Theorem 16)

DiSTANCE Li1sT COLORING

LisT COLORING WITH DEMANDS

I s T T T mm e T T DISTANCE PRECOLORING EXTENSION

NP-complete (Theorem 12)

Polynomial Time
LisT COLORING

PRECOLORING EXTENSION

Figure 1 A pictorial representation of the results.

In this paper, we study the complexity of DPED when G is the union of disjoint paths.
We prove that the decision version of the problem is NP-complete when the number of colors,
the number of precolored vertices, and the minimum distance d between two vertices of
the same color are part of the input. This hardness motivates the study of the problem
in terms of parameterized complexity. We reduce the problem to the problem of LisST
COLORING WITH DEMANDS. We show that both problems are W[1]-hard when parameterized
by distance and the number of colors. We prove that the hardness holds for the list coloring
problem even if we drop the condition of distance coloring. However, the problem admits an
FPT algorithm when we drop the demands and consider only the distance, implying that
DISTANCE PRECOLORING EXTENSION on paths is also FPT by distance. Both problems
remain NP-complete when the number of colors, the number of precolored vertices, and the
distance are considered a part of the input. On the positive side, we prove that DPED
is polynomial time solvable on a single path when the precolored vertices appear only at
the ends. Further, we show that DPED on path instances is FPT when the number of
colors, the distance parameter, and the number of precolored vertices are considered as
parameters simultaneously. Then we present an approximation algorithm that runs in time
pd®@ + O(nlogc) and provides an additive approximate solution with an error of O(d? - p).
Finally, we establish the NP-completeness of the problems of DISTANCE L1ST COLORING and
DISTANCE PRECOLORING EXTENSION on paths. The relationships between the problems
and the results are illustrated in Figure 1. We pose the complexity of the PRECOLORING
EXTENSION WITH DEMANDS on paths as an interesting open problem.

The paper is organized as follows. Section 2 presents a polynomial time solution for the
DPED problem on a path having only its ends precolored. In Section 3 we establish the W[1]-
hardness of DPED when the parameters are the number of colors and the distance. Section 4
contains results for special cases, when the problem parameters (number of precolored vertices,
number of colors, distance) are in some sense limited: we present an approximation algorithm
with small additive error and an exact FPT algorithm. Finally, Section 5 presents dynamic
programming algorithm and NP-completeness results for the variant without the demands.
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2  Polynomial algorithm for paths with precolored end-vertices

As our first result, we show that DISTANCE PRECOLORING EXTENSION WITH DEMANDS can
be solved in polynomial time whenever we allow precolored vertices only at the ends of the
path. In this setting, we are coloring a path G with vertices vy, ..., v, with a precoloring ~’
that assigns colors to some initial segment vy, ..., vs and some final segment vy, ..., v,. We
say that such an instance of DPED is end-precolored. We describe a greedy algorithm that
solves end-precolored instances of DPED in polynomial time, regardless of both the number
of colors and the distance parameter.

The algorithm colors the vertices in their left-to-right order along the path, starting
with the first uncolored vertex. For each vertex, it computes a set of feasible colors for the
current vertex and chooses the one with the highest remaining demand. In case of a tie, the
algorithm chooses the color that appears earlier in the precoloring of the final segment of
the path. We remark that to compute the set of feasible colors for vertex v, it is necessary
to exclude not only colors of the previous d vertices to the left of v but also the precolored
endsegment in case v is at distance at most d from it. The technique is formally described in
Algorithm 1.

Algorithm 1 Greedy algorithm for end-precolored DPED.

Input: End-precolored path instance (G, C,d,~’,n) of DPED, where G has vertices
v1,...,v, and v precolors the segments vy,...,vs and vy, ..., v,.
Output: A d-distance coloring v of G that extends ' and satisfies the demands 7, if
it exists, and “null” otherwise.

for a € C do > compute tie-breakers depending on the final segment
| pos(a) <= minimum j > t such that 4'(v;) = a, or oo if no such j exists.
v > initialize v with the precoloring '
fori+s+1tot—1do > iterate over non-precolored vertices
Ct <+ C\ Y({Vmax(i—-d,1)s - - » Umin(i+d,n) }) > the set of feasible colors for v;
if Cy =0 or n(a) =0 for every a € Cy then
return null > no feasible color with positive demand
a < a color in Cy with the largest demand 7(a) that, moreover, minimizes pos(a)
v(v;) < a > v; receives the color a
n(a) < n(a) =1 > demand of a is decreased
return

» Theorem 1. Algorithm 1 solves DPED on end-precolored paths in time O(nlogc) where
n is the number of vertices and c is the number of colors.

Proof. For contradiction, assume that Algorithm 1 fails, that is, there exists a feasible
solution to the instance, and the algorithm does not find any. Let us denote the vertices
of the path P as vy,vs,...,v, from left to the right and let R = {vs,...,v,} be the right
precolored segment of P. Let the algorithm produce a partial coloring v and let 7/ be a
feasible solution where the index ¢ satisfying v(v;) = 7/(v;) for all j < i and y(v;) # 7' (v;)
is the maximum possible. We are going to modify 7’ such that we obtain another feasible
solution that agrees with v even on ~(v;).

Let a = v(i) and b = +/(4). By alternating ba-sequence starting at v; we denote a maximal
subsequence S = (s1, S2, ... sy) of the vertices v;, vi11,...,v, such that s; = v;, ¥/(s;) =b
for odd j and +/(s;) = a for even j, the distance of s; and s;41 is at most d for every
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Jj € [k — 1], and no vertex s; is precolored. Observe that when the algorithm was assigning
color to v;, the remaining demand of the color a was at least the remaining demand of the
color b, and that there is no color a in the distance less than d of the vertex v;. Also note
that for an alternating ba-sequence si, ..., Sk, there can be no vertex of P between any s;
and s;4+1 colored by a or b, as this would break the distance property. Let us distinguish
several cases.

First, consider the case when the last element of the sequence S is closer than d to the
right precolored part R of P. In this case the sequence S must contain all occurrences of
color a and b among the vertices from v; to v,, in 4’. This implies that S is an even sequence,
as the demand of a was at least the demand of b. If the vertices from R contain neither color
a nor color b, we can freely swap the colors @ and b in S. Suppose now the vertices from R
contain color a (or b). If there is no occurrence of a or b in R that is within distance d of sy,
then the colors a and b can be swapped in «/. If the first occurrence of a or b in R is within
distance d of sy, it must be b because sy, is colored a by +/, but this contradicts the fact that
the algorithm has colored s; with a instead of b.

Next, assume that the alternating ba-sequence S starting at v; has even length and its
last element is more than d vertices away from the precolored right part R of P. We can
freely swap the colors a and b at the vertices of S as there is no conflict both to the left and
right of S, thus obtaining a feasible solution " with greater index i.

It remains to solve the case when S has odd length and its last element is more than d
vertices far from the precolored right part R of P. The sequence S contains one more color
b than a and as the algorithm has chosen the color a for v; (which means the remaining
demand of b was not greater than a), there must exists alternating ab-sequence S’ starting at
some vertex w of odd length, S’ disjoint from .S, which thus contains one more color a than
b. We may assume that S’ is not within distance d to the right precolored part R: if this is
the case, we either obtain a contradiction if a occurs before b in R and a and b had the same
demand, or we can recolor S and S’ without problems. We may now swap the colors a and b
both in S and S/, which does not change the total number of colors used. This produces a
feasible solution v with greater index i.

We obtained the contradiction in all cases, which shows the correctness of the algorithms.

The time complexity O(nlogc) follows from using a smarter data structure for assigning the
available colors: we may dynamically maintain a binary heap containing the set of feasible
colors C'y with the key being a combination of the remaining demand with position (pos(-))
and the value stored being the color label. <

3 Few colors and small distance

In this section, we focus on solving general instances of DPED when both the number of
colors and the distance parameter are not too large. We stress that this additional assumption
is very natural, e.g., for the original scheduling motivation.

First, we observe that we can solve DPED in this regime in polynomial time, provided
that the number of colors and the distance parameter d are constant. The algorithm follows
a standard dynamic programming approach for coloring and thus, we provide here only a
brief sketch with all the details available in the full version.

» Proposition 2. An instance (G,C,d,~',n) of DPED on paths can be solved in time
O .t where n is the number of vertices and ¢ is the number of colors.

Proof sketch. Let «; be a d-distance coloring of an initial segment {vy,...,v;} of the path G.

The signature of 7; consists of the colors of the rightmost d vertices together with the
frequencies of individual colors as used by ;. The algorithm sequentially computes for each
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i € [n] all possible signatures of d-distance colorings of {v1,...,v;} that, moreover, extend
the precoloring +4'. At the end, this suffices to check whether there is a d-distance coloring of
{v1,...,v,} that extends 7" and the frequencies of colors used equal the demands. |

It is only natural to ask whether we can achieve a polynomial runtime in this regime
where the degree of the polynomial is independent of both ¢ and d. We answer this question
negatively, under standard theoretical assumptions, by showing that DPED is W[1]-hard
with respect to both of these parameters.

» Theorem 3. DPED is W[1]-hard on paths with respect to the number of colors and the
distance d.

We first show W[1]-hardness of a related coloring problem, namely LisT COLORING WITH
DEMANDS. We define the problem formally as follows.

LisT COLORING WITH DEMANDS (LCD)

Input: A graph G = (V, E) on v vertices, a set of colors C, a function L: V' — 2¢ that
assigns a list of colors L(v) to each vertex, and a demand function n: C' — [n].
Question: Is there an L-list coloring v: V — C' that satisfies the demands 7?

An instance (G,C,n, L) of LCD is a path instance if the graph G is a disjoint union of
paths. Moreover, a path instance of LCD is non-alternating if there does not exist a color
¢ € C and three consecutive vertices v;_1,v;,v;+1 on some path such that ¢ ¢ L(v;) and
simultaneously ¢ € L(v;—1) N L(v;41).

The LCD problem has already been shown to be W[1]-hard on paths with respect to the
number of colors by Gomes, Guedes, and dos Santos [15] albeit under a different name of
NuMBER LisT COLORING. However, the produced instances of LCD therein are very far
from having the non-alternating property that is crucial in proving Theorem 3. We devise
a novel reduction from a multidimensional version of the subset problem that, moreover,
produces non-alternating path instances of LCD. Due to the space constraints, we omit the
proof which can be found in the full version.

» Theorem 4. LCD is W[1]-hard with respect to the number of colors even when restricted
to non-alternating path instances.

Theorem 3 is obtained through a polynomial-time reduction from LCD on non-alternating
path instances. Crucially, both the distance parameter and the number of colors in the
produced DPED instance are linear in the number of colors in the original LCD instance.

Proof of Theorem 3. For technical reasons, we first modify the LCD instance to guarantee
that it is a single path, and both of its endpoints have a list identical to its only neighbor v.
That is achieved by introducing two extra colors a, b and concatenating all paths in arbitrary
order with two extra vertices in between consecutive pairs and two extra vertices at the very
beginning and end where we add {a, b} to the list of all vertices and set L(v) = {a,b} for
each new vertex. Finally, we set n(a) = n(b) = p + 1 where p is the total number of paths
in G. It is easy to see that the modified instance is equivalent. Furthermore, the modified
instance remains non-alternating because there are two extra new vertices between any pair
of original paths, and the colors a,b are included in the list of every vertex.

From now on, we assume that G is a single path with vertices vq,...,v, and edges
€1,...,en—1 such that e; = {v;, v;41} for each i € [n — 1]. Moreover, we have L(v1) = L(v2)
and L(v,—1) = L(vy).
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F() : {01702703-} {ca, cs} {cs} {c2, 05}
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Figure 2 Representation of LCD with forbidden colors when C = {c1,ca,...,cs,a, b}.

Now, we show that the lists of such a non-alternating LCD path instance can be
alternatively represented by lists of forbidden colors for each edge. It is crucial that the
instance of LCD is non-alternating, as otherwise, this may not be possible. Moreover, we
will also guarantee that any fixed color can be contained in the forbidden sets of at most two
consecutive edges.

> Claim 5. We can compute in polynomial time an assignment of color sets to edges
F: E(G) — 29 such that for every vertex v, we have L(v) = C \ (F(e) U F(¢)) where

e, e’ are the two edges incident to v, or L(v) = C'\ F(e) if v is incident to a single edge e.

Moreover, there are no three consecutive edges e;_1, e; and e; 1 such that the intersection
F(ei_l) N F(ez) N F(€i+1) is non—empty.

Proof. We define the assignment inductively along the path. We set F(e;) = C\ L(vy)
and F(en—1) = C'\ L(v,). Recall that we first modified the instance to guarantee that
each endpoint of the path has an identical list to its neighbor, i.e., L(v;) = L(ve) and
L(vp—1) = L(v,). For i € {2,...,n — 2}, we let F(e;) contain a color ¢ € C' if and only if

c v;) U L(v;11) and moreover, either (i) c e;_1),or (ii) c € L(v;12). See Figure 2.
¢ L(vi) U L(vi41) and ; either (i) ¢ ¢ F(ei-1), or (i) ¢ € L(vit2). See Figure 2

Clearly, F' can be computed in polynomial time.

Let us verify the properties of F. For the endpoints v1 and vy, we have L(v1) = C'\ F(e1)
and L(v,) = C \ F(e,—1) by definition. Now, fix arbitrary ¢ € {2,...,n — 1} and a color
¢ € C. If we have ¢ € L(v;), then neither F(e;_1) nor F(e;) contain ¢ by definition and
c € C\(F(e;—1)UF(e;)). On the other hand, if ¢ ¢ L(v;), it follows from the non-alternating

property that either ¢ ¢ L(v;_1) or ¢ ¢ L(v;41). We consider the three possible cases.

First, assume that ¢ appears in none of the lists L(v;—1), L(v;), and L(v;11). Then either
¢ € F(e;—1) or we have ¢ ¢ F(e;_1) which triggers the condition (i) in the definition of F'(e;)
and either way, we get that ¢ € F(e;—1) U F(e;). Second, assume that ¢ appears in the list
L(vi41) but not in L(v;_1). In this case, we have ¢ € F(e;_1) by condition (ii) in the definition
of F(e;—1) and again, we see that ¢ € F(e;_1) U F(e;). Finally, assume that ¢ appears in the
list L(v;—1) but not in L(v;4+1). In this case, we have ¢ ¢ F(e;—1), which implies ¢ € F(e;)
by condition (i) in the definition. In all cases, we obtained ¢ € F(e;—1) U F(e;).

Assume for a contradiction that there are three consecutive edges e;_1, e; and e;41 such
that the intersection F(e;—1) N F(e;) N F(e;4+1) is non-empty and let ¢ be an arbitrary color
in the intersection. However, observe that in the definition of F'(e;) neither condition (i) nor
(ii) holds for ¢ and thus, we must have ¢ ¢ F(e;). <

With this assignment F', we are finally ready to define the path instance (G’,C’,d,~',n’)
of DPED. Let ¢ denote the size of the color set C and let C' = {cy,..., ¢} be an arbitrary
enumeration of the colors. We set d = 2t + 1. We take the graph G’ to be a path of length
nd + 1 on vertices v, ..., V)4, in this order along the path. To simplify the exposition, we
partition the vertices into two distinct sets. Every vertex v(; ), for some k € [n] is a

main vertex and we denote it alternatively by xy. All the remaining vertices are auxiliary.
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F(): {01702763-} {es, o5} {es} {e2,c5}

€4, Cs5, Co

o o0 OO

Figure 3 Construction of G’ from G. Extending from Figure 2, v'(y3 ) = 7*(y: ), except for

2 2
Yg,2 and Ys,2-

For i € [n—1], j € [t] and « € [2], the vertex véi_l)d+2j+a_1 is an auxiliary vertex associated
to color ¢; and we alternatively denote it by y; ,. Observe that every two consecutive main
vertices x; and x;41 are separated by exactly 2¢ auxiliary vertices that are grouped into pairs
associated to colors ¢q,..., ¢ in this order. More specifically, the segment between x; and
x;+1 contains the auxiliary vertices y;a for all j € [t] and « € [2], ordered lexicographically
by the pairs (j,«). See Figure 3.

Our goal is to define a pre-coloring of all the auxiliary vertices such that there is a one-to-
one correspondence between feasible colorings of the main vertices and feasible colorings of
the original LCD instance. As a final ingredient, we need to be able to assign extra colors to
certain vertices without affecting the rest of the instance. To that end, we set ¢/ = C U C*

where C* = {cf,...,cj} is a set of auziliary colors disjoint from C. Moreover, we define
an auxiliary coloring v*: V(G') — C* where v*(vj) = ¢} ,,q (a41) for each i € [nd + 1].

Informally, the coloring v* simply cyclically iterates through the sequence of auxiliary colors
cgs - - -,y along the path, starting with cj. Clearly, v*
We define the pre-coloring v’ of every auxiliary vertex. For ¢ € [n — 1] and j € [t], we set

is a proper d-distance coloring of G’.

J ¢; if ¢; € F(e;) and ¢; ¢ F(ej—1).
Y (W5a) = /i .
v*(y;,) otherwise.
¢; if ¢; € F(e;) N F(ej—1).

Y*(yk,) otherwise.

’Y/(y;‘,g) = {

where we additionally define F'(eg) = @ for simplicity.
First, observe that the pre-coloring + exactly encodes the assignment of forbidden colors
to edges.

» Observation 6. A color ¢; € C appears in the pre-coloring v’ on the segment between
main vertices x; and x;+1 if and only if c; € F(e;).

Moreover, we show that 4/ distributes the occurrences of a fixed color at a sufficient
distance from each other.

> Claim 7. The pre-coloring 7' does not contain any monochromatic pair of vertices at a
distance at most d.



A. K. Das, M. Opler, and T. Valla

Proof. Assume for a contradiction that 7" does contain such a pair of monochromatic vertices.

We have already observed that v* is a proper d-coloring on a disjoint set of auxiliary colors
and thus, this pair must use some color ¢; € C. We cannot have +/(y} ) = 7/ (y} ) = ¢; for
any fixed 4, 7 since the respective conditions in the definition of 7/ are mutually exclusive.
For any different 4,7’ € [n — 1] with ¢ < ¢’ and arbitrary a,a’ € [2], the distance
between yj‘a and y;-:a, is at most d if and only if / —¢ = 1 and o/ < a. We cannot
have 'y'(y;l) = ’y’(yﬁl) = ¢; by definition of ’y’(yﬁl). So the only option left is that
V' (Y52) = ’Y'(y;:zl) = ¢; for either o € [2]. But in that case, we have ¢; € F(e;—1) N F(e;)
since 7/ (Y} 5) = ¢; and simultaneously, ¢; € F(e;11) since ’y'(y;";}) = ¢;. Thus, we reached a
contradiction since F' does not contain the same color in the sets F'(e;—1), F(e;), F(ej+1) of
three consecutive edges. <

To finish the construction, it remains to define the demand function 1. We set 1'(¢;) =
n(c;) for every original color ¢; € C' and we set 7)’(c}) = 0 for every auxiliary color ¢ € C*.

Correctness (“only if”). Suppose that (G,C,n, L) is a yes-instance of LCD and let
p: V(G) — C be an L-list coloring that meets the demands. We define a coloring
~v: V(G'") — C' by simply setting v(x;) = p(v;) for every main vertex z; and 'y(y;a) = ’y'(y;-)a)
for every auxiliary vertex y;a The coloring ~ is an extension of 4" by definition, and it
meets the demands because the demand functions i and 7’ are equal when restricted to the
color set C'. Thus, it remains to show that « is a proper d-distance coloring.

Assume for a contradiction that v contains a pair of monochromatic vertices v and w
at a distance at most d. At least one of these vertices has to be a main vertex since the
colors of all auxiliary vertices are fixed by 4’ and there is no such monochromatic pair of
pre-colored vertices by Claim 7. First, assume that both v and w are main vertices. Two
main vertices are in distance at most d if and only if they are consecutive, i.e., we have
without loss of generality u = x; and w = x;41 for some i € [n — 1]. But then they cannot
share the same color since v(x;) = p(v;), Y(zi+1) = p(vi+1) and p is a proper list-coloring
of GG. Otherwise, suppose without loss of generality that u is a main vertex x; and w is an
auxiliary vertex. The coloring v can use only the colors from C' on the main vertices and
thus, we have y(z;) = y(w) = ¢; for some ¢; € C. Moreover, the vertex w lies either on
the segment between z;_; and x; or on the segment between z; and x;; as those are the
only auxiliary vertices at a distance at most d from x;. Observation 6 then implies that we
have either ¢; € F(e;—1) or ¢; € F(e;). But we know that L(x;) = C'\ (F(e;—1) N F'(e;)) by
Claim 5. In particular, the color ¢; does not appear in the list L(v;), which is a contradiction
with p being a proper list-coloring since p(v;) = v(z;) = ¢;.

Correctness (“if”). Now suppose that (G',C’,d,~',n’) is a yes-instance of DPED and let
v: V(G') = C’ be a witnessing d-distance coloring, i.e., v extends the pre-coloring 7' and
meets the demands given by 1’. We define a coloring p: V(G) — C by simply restricting
to the main vertices, that is we set p(v;) = y(z;). First, observe that the range of p is indeed
only the color set C since the demand 7’ (c;) of any auxiliary color is zero and thus, v uses
only the colors from C on the main vertices. Moreover, we have p(v;) # p(v;41) for every
i € [n — 1] because the main vertices x; and x;41 are at distance d in G’. The demands are
also satisfied by p because the demand functions 1 and #’ are equal when restricted to the
color set C.

It remains to check that p is an L-list coloring, i.e., we have p(v;) € L(v;) for all i € [n].
Assume for a contradiction that this does not hold for a vertex v; with p(v;) = vy(x;) = ¢;.
By Claim 5, the color ¢; belongs to at least one of the sets F'(e;—1) and F(e;). Observation 6
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implies that the color c; is used by v on some auxiliary vertex from the segment between
x;—1 and z;11. But all these vertices are at a distance at most d from z; and we reach a
contradiction with + being a proper d-distance coloring. |

4 Few precolored vertices

In this section, we consider the regime when we are given only a few precolored vertices.
We present two effective algorithms for DPED in this regime. We first show that an
approximation FPT algorithm with small additive error is possible even in the case of many
colors. Afterwards, we present an exact FPT algorithm when the number of colors is small
as well.

4.1 Approximation

Next, we show there is an approximation algorithm for DPED with additive error, which is
bounded by a polynomial function of the distance parameter and the number of colors. By
having additive error & we mean that for the set of colors C' and demands 7: C — [n] the
algorithm produces coloring «v: V' — C such that

S Jne) = )\ Al < a

ceC

» Theorem 8. Let us have an instance of DPED on path P of length n with p precolored
vertices, and let ¢ = |C| > d 4+ 2. There is an approximation algorithm that runs in time
pd® @ + O(nlogc) and outputs a coloring with an additive error at most O(pd?).

Proof. The approximation algorithm is as follows. We ignore all precolored vertices and
we run the greedy Algorithm 1 to color the path P. Let the precolored vertices be denoted
wr, ..., Wy, respectively, along the path P, which consists of vertices v1,..., v, from left to
right. Let b = 2(d + 1)2. Then we remove the colors in the neighborhood of diameter b
around each precolored vertex w; (that is, for the vertices v; whose distance to some w; is at
most b). The idea is now to reassign the colors to these discolored vertices while introducing
only a small additive error.

First we handle all pairs of vertices (w;, w;4+1) such that dist(w;,w;+1) < 2b as follows.
If |C| > 2d + 1, it is easy to find the coloring of the gap between w; and w; 1 in a greedy
manner. If |C| < 2d + 1, we produce d-distance coloring of each segment of consecutive gaps
of size at most 2b by dynamic programming in time pd®(®. We may thus further assume that
all remaining uncolored gaps between pairs of vertices (w;, w;+1) have dist(w;, w;11) > 2b.
For a precolored vertex w;, which equals to some v;, let us denote by left neighborhood
of w; those vertices vy, where dist(vg,v;) < b and k < j. Similarly, we define the right
neighborhood as vertices vi, where dist(vi,v;) < band k > j. We now describe the procedure
that colors the diameter b neighborhood of each w;, first the left neighborhood and then the
right neighborhood (provided that the respective neighborhood is still uncolored). Observe
that if the right neighborhood of w; and left neighborhood of w;; are both uncolored then
they are disjoint as dist(w;, w;+1) > 2b. We split the b vertices of the left neighborhood into
2(d +1) blocks By, ..., Byg41) of size d + 1. Let us denote the d 4 1 vertices immediately
preceding block By as Bp and let the d + 1 vertices after By(441) be denoted as Bag3. Here,
the vertex w; is the first vertex of Bygi3 and we choose the coloring of Bygi3 to consist
of the precoloring of w; followed by arbitrarily chosen valid coloring of the rest of Bagys.
Denote by Bf the color of the vertex u; of the block B; = uq,...,uqd1.
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We proceed by partial modification of the coloring of each block B; into the block B;y1,
for i =0,...,2d+ 1. Let the coloring of By be, without loss of generality, 0,1,...,d. For
the block Bj, we copy the coloring from By, where we remove the occurrence of color B;d 135
shift the colors to the right, and introduce a new first color to be d 4+ 1 (that is, an extra
color). For the block Bs, we copy the coloring from By, where we replace the first color d + 1
into B, 13- Note that by these two steps, we did not create any color conflict for vertices
closer than d. For i = 2,...,d + 1 we now continue in a similar manner: let the coloring
of the block Bs;_1 be copied from the block Bs;_», where we remove the occurrence of the
color B, 4, shift the colors to the right and set Bj;_; to d. The coloring of By; is copied
from Bg;_1, but we set Bj; to By, 5. Note that the number of blocks is enough to correctly
replace all colors such that at the end the coloring of the block Bagys is reached and no
coloring conflict is created.

After the coloring of the left neighborhood of w;, we proceed similarly with the right
neighborhood (with the difference that the block Byio may now inherit the coloring from the
first (greedy) phase. The total running time is clearly pd®(® + O(nlogc). The additive error
introduced by this coloring routine is at most the size of all neighborhoods of the precolored
vertices wy, ..., w,, which is O(pd?). <

4.2 Exact algorithm for few colors

We have already seen that DPED is W[1]-hard when parameterized by both the number of
colors and the distance, which rules out the existence of an FPT algorithm parameterized
by these parameters alone under standard assumptions. We have also seen that an FPT
approximation algorithm with additive error is possible if there are few precolored vertices
and the distance parameter is small, even for an unbounded number of colors. Here, we
build on these results and show that an exact FPT algorithm is possible when the number of
colors, the distance parameter, and the number of precolored vertices are all small. In some
ways, it can also be seen as an extension of the greedy algorithm from Theorem 1 in the case
of few colors and small distance. Our approach exploits an intriguing connection between
d-distance colorings of paths and regular languages.

A non-deterministic finite automaton (NFA) A is a tuple (3, Q, 0, qo, F), where ¥ is a
finite alphabet, @ is a finite set of states, g9 € () is an initial state, FF C @ is the set of
final states, and § C @ x X x @ is a transition relation. A word w = wy - --w, over the
alphabet Y is accepted by A if there exists a sequence of states po, .- ., P, such that pg is the

initial state qo, p, is some final state in F' and we have (p;—1,w;,p;) € 0 for every i € [n].

We denote by L(A) the language of all words accepted by A.

For a word w € ¥* and a letter o € X, we let |w|, denote the number of occurrences of «
in w. We assume that ¥ = {«1,...,ar} and we define the Parikh image P(w) of a word
w € ¥* to be the tuple (|w|a,, - -, |w|a,) € N*. In other words, the Parikh image of a word
w captures exactly the number of occurrences of each letter from ¥ in w. Moreover, for a set
of words L C ¥*, we let P(L) denote the set of all Parikh images of words in L.

It is known that given a small NFA A over a small alphabet ¥ together with a tuple b, it

is possible to efficiently decide whether there exists a word in w € L(A) such that P(w) = b.

» Theorem 9 ([21, 31]). Given an NFA A with n states over the alphabet ¥ of size k, and a
tuple b € N¥, checking whether b € P(L(A)) can be done in time 20 loa(kn)Hloglogd) yypere
b= [bllo-

The main theorem of this section follows by reducing DPED to membership for Parikh
images of a regular language given by a small NFA. In order to make the argument easier
to follow, we use an intermediate problem that asks whether there exists a word in the
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Figure 4 The NFA Ay, that accepts exactly the 2-distance colorings of paths using col-
ors {1,...,4}. The initial state € is in the center, all its states are final and for improved readability,
we omit all transitions from states with two colors except for 12, 13 and 14.

regular language with a given Parikh image that, moreover, has predetermined letters in
some positions. Let P be a relation P C N x ¥ where ¥ is a finite alphabet. We say that a
word w is P-constrained if we have w; = « for every (i,a) € P.

CONSTRAINED MEMBERSHIP FOR PARIKH LANGUAGES OF NFAs (CMPL)
Input: An NFA A over alphabet X of size k, a tuple b € N¥ and a relation P C N x X.
Question: Is there a P-constrained word w € L(A) such that P(w) = b?

» Theorem 10. CMPL can be solved in time 20((k+p)*log((k+p)n)+loglogb) yhere 1 is the
number states of the NFA A, b = ||b||ec and p = |P|.

Due to the space constraints, we omit the proof of Theorem 10.

» Theorem 11. DPED can be solved on path instances in time O(n) + 20(d-(c+)* log(c+a)) .
(log n)o(l) where ¢ is the number of colors, d is the distance parameter and q is the number
of precolored vertices.

Proof. Let (G,C,d,~',n) be an instance of DPED. As we have observed before, we can
assume that G is in fact a single path on vertices vy, ..., v, in this order along the path.

We start by showing that proper d-distance colorings of paths form a regular language
over C'. But first, we need some notation. For an alphabet 3 and a positive integer t, we let
Y=* denote the set of all words of length at most ¢ over ¥ with no repeated letters, including
the empty word . Moreover for word w € X=! and letter a ¢ w, we let ¥ (w, ) be an
operation which appends the letter o at the end of w and then possibly deletes the first
letter if w already has length ¢.

Now we can define the NFA Ay, = (¥, %%, 6,6, 5=) where (w,,w’) € § if and only if
i (w, ) = w’. The language L(Ay ;) clearly contains exactly those words over ¥ that do
not contain two occurrences of the same letter at a distance less than ¢t + 1 from each other.
See Figure 4. Therefore, the NFA Ac¢ 4 accepts exactly valid d-distance colorings of paths,
and we can solve DPED with no precolored vertices by invoking Theorem 9 for the NFA
Ac,q where the tuple b encodes the demand function 7.
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Moreover, we can encode the precolored vertices as additional constraints. In particular,
we define a set of constraints P where (i,«) € P if and only if the vertex v; is precolored

and 7/(v;) = a. Additionally, we set b € N¢ where b; = n(j) + |[y'~!(j)| for each j € [c].

Observe that the mapping w — v, where 7,,(v;) = w; is a bijection between P-constrained
words with P(w) = b and proper distance d-colorings of G that extend ' and satisfy the
demands 5. In other words, (G, C,d,~',n) is yes-instance of DPED if and only if (A¢ 4, b, P)
is a yes-instance of CMPL.

To finish the proof, it remains to invoke the algorithm of Theorem 10 on the produced
NFA A, the tuple b, and the set of constraints P. The desired runtime follows since the
automaton Ac 4 has O(c?) states and the alphabet is exactly the set of colors C of size c. <

5 Coloring without demands

In this section, we focus on variants of the two problems (PRECOLORING EXTENSION and
LisT COLORING) on paths where we no longer specify demands for each color, but we still
require vertices at distance at most d to receive different colors. We refer to these problems
as DISTANCE PRECOLORING EXTENSION (DPE) and D1STANCE LisT COLORING (DLC).
Due to the space constraints, we defer most proofs from this section to the full version.

We show that DPE is NP-complete on paths by reduction from PRECOLORING EXTENSION
on unit interval graphs [24]. We remark that unit interval graphs are a suitable source of
hardness since it is known that unit interval graph are precisely the induced subgraphs of
path powers [23]. As a consequence, we obtain the NP-completeness of DPED on paths.

» Theorem 12. DPE is NP-complete even when restricted to paths.
» Corollary 13. DPED is NP-complete even when restricted to paths.

Proof of Corollary 13. Let (G,C,d,~') be an instance of DPE where G is a path with n
vertices. We construct an instance (G',C,d,~',n) where G’ is simply obtained by adding
(IC| = 1) - n isolated vertices (paths of zero length) to G and setting n(a) = n for every
a € C. Clearly, every d-distance coloring of G’ that extends 4’ induced the desired d-distance
coloring of G, regardless of the demands. On the other hand, we can extend any d-distance
coloring v of G to G’ by coloring exactly n — |y~(a)| of the isolated vertices with each color
a € C to satisfy all demands.

Finally, we construct an equivalent instance of DPED on a single path. It suffices to
concatenate all the disjoint paths in G’ to a single path while adding d auxiliary vertices
between each consecutive pair of original paths. These auxiliary vertices are then greedily
precolored with 2d + 1 new auxiliary colors disjoint from C' that have zero demands. In this
way, the d-distance colorings of individual paths from G’ are independent from each other,
and the equivalence follows. <

In contrast, we show that the problem DISTANCE PRECOLORING EXTENSION without
demands becomes FPT by the distance parameter d even for an unbounded number of colors.
Recall that DISTANCE PRECOLORING EXTENSION WITH DEMANDS is W[1]-hard with respect
to d by Theorem 3. In fact, we show the existence of an FPT algorithm for the more general
problem of DISTANCE LisT COLORING where the task is to find a list coloring that assigns
different colors to every pair of vertices at distance at most d.

» Theorem 14. DISTANCE LIsST COLORING can be solved on paths in time d°D - n where n
is the number of vertices.
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