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—— Abstract
We consider the problem of enumerating the irreducible closed sets of a closure system given by an
implicational base. To date, the complexity status of this problem is widely open, and it is further
known to generalize the notorious hypergraph dualization problem, even in the case of acyclic convex
geometries, i.e., closure systems admitting an acyclic implicational base. This paper studies this
case with a focus on the degree, which corresponds to the maximal number of implications in which
an element occurs. We show that the problem is tractable for bounded values of this parameter,
even when relaxed to the notions of premise- and conclusion-degree. Our algorithms rely on a
sequential approach leveraging from acyclicity, combined with the solution graph traversal technique
for the case of premise-degree. They are shown to perform in incremental-polynomial time. These
results are complemented in the long version of this document by showing that the dual problem of
constructing the implicational base can be solved in polynomial time. Finally, we argue that our
running times cannot be improved to polynomial delay using the standard framework of flashlight
search.
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1 Introduction

Finite closure systems appear in disguise in several areas of mathematics and computer
science, including database theory [29, Chapter 13], Horn logic [12, Chapter 6], or lattice
theory [13, Chapter 2], to mention but a few.

A closure system is a family of subsets of some finite ground set being closed by intersection
and containing the ground set. The study of the various representations of closure systems
and the algorithmic task of translating between them have received lots of attention in
these respective fields, and have been the topic of the Dagstuhl Seminar 14201 [1]. Most
importantly, the translation task we consider in this paper is known for being a considerable
generalization of the notorious and widely open hypergraph dualization problem, while
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also not being known to be intractable, contrary to analogous other natural generalizations
such as lattice dualization [4,14,26]. We refer the reader to the surveys [7,33,39] for more
information on this topic.

Among the several representations of closure systems, two of them occupy a central
role, namely, irreducible closed sets and implicational bases, whose formal definitions are
postponed to Section 2. Informally, irreducible closed sets are elementary sets of the closure
system from which every other can be recovered. On the other hand, implicational bases
are sets of implications of the form A — B, where A, the premise, and B, the conclusion,
are subsets of the ground set. As noted in [28], these two representations are generally
incomparable in size and usefulness. Notably, there exist instances where the minimum
cardinality of an implicational bases is exponential in the number of irreducible closed sets,
and vice versa. Moreover, the computational complexity of some algorithmic tasks such
as reasoning, abduction, or recognizing lattice properties can differ significantly depending
on the representation at hand [3,25,29]. These observations motivate the problem of
translating between the two representations, in which one representation is given, and the
other is to be computed. In this extended abstract, a focus is made on the problem of
enumerating irreducible closed sets, denoted by ICS-ENUM; the dual problem of constructing
the implicational base is only addressed in the long version of this work.

Because of the possible exponential gap between the sizes of the two representations, input
sensitive complexity is not a meaningful efficiency criterion when analyzing the performance
of an algorithm solving ICS-ENUM. Instead, the framework of algorithmic enumeration
in which an enumeration algorithm has to list without repetitions a set of solutions, is
usually adopted. The complexity of an algorithm is then analyzed from the perspective of
output-sensitive complexity, which estimates the running time of the algorithm using both
input and output sizes. In that context, an algorithm is considered tractable when it runs
in output-polynomial time, that is, if its execution time is bounded by a polynomial in the
combined sizes of the input and the output. This notion can be further constrained to
guarantee some regularity in the enumeration. Namely, we say that an algorithm runs in
incremental-polynomial time if it outputs the i*? solution in a time which is bounded by a
polynomial in the input size plus i. It is said to run with polynomial delay if the time spent
before the first output, after the last output, and between consecutive outputs is bounded
by a polynomial in the input size only. We refer the reader to [24,35] for more details on
enumeration complexity.

In this work, we investigate acyclic convexr geometries, a particular class of closure systems.
They are the convex geometries — closure systems with the anti-exchange property — that
admit an implicational base with acyclic implication-graph. Acyclic convex geometries have
been extensively studied [8,15,23,34,37]. Even in this class though, the problem ICS-ENUM
was shown in [15] to be harder than distributive lattices dualization, a generalization of
hypergraph dualization. On the other hand, the authors in [15] show that if, in addition to
acyclicity, the implication graph admits a rank function, then the problem can be solved
using hypergraph dualization. Using this result, they derive a tractable algorithm for so-
called ranked convex geometries admitting an implicational base of bounded premise size.
It should be noted that, even under these restrictions, the problem generalizes the one of
enumerating all maximal independent sets of a graph (in fact of hypergraphs of bounded edge
size) a central and notorious problem in enumeration [24,36]. These results have then been
extended to a more general setting in [32]. Other related results in the literature include the
work [5] which deals with k-meet-semidistributive lattices, and closure systems of bounded
Caratheodory number, see e.g., [39].
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In this paper, we continue the line of research of characterizing tractable cases of acyclic
convex geometries, by identifying for which parameters k one can derive tractable algorithms
for ICS-ENUM for fixed values of k. We note that in this research, finding an algorithm
running in quasi-polynomial time should already be considered a success, since no sub-
exponential time algorithms are known to date. We focus on the degree, which is defined as
the maximum number of implications in which an element participates, and its two obvious
relaxations which are the premise- and conclusion-degree; these parameters are defined in
Section 2. The principal message of this work is that bounding one of these two relaxed
notions of degree suffices to provide not only quasi-polynomial but polynomial algorithms
for the translation. More specifically, as the first of our two main theorems, we obtain the
following, whose quantitative formulation is postponed to Sections 4 and 5.

» Theorem 1. There is an incremental-polynomial time algorithm enumerating the irreducible
closed sets of an acyclic convex geometry given by an acyclic implicational base of bounded
premise- or conclusion-degree.

Our algorithms for acyclic convex geometries of bounded degree rely on several steps
which combine structure and enumeration techniques. We give a rough description which
highlight the techniques used, and refer to the appropriate sections for more details.

First, we use the fact that each irreducible closed set is attached to an element of the
ground set, and that this element is unique in convex geometries; this is detailed in Section 2.
Then, leveraging from acyclicity, our algorithm relies on a sequential procedure which consists
of enumerating, incrementally and in a top-down fashion according to a topological ordering
Z1,...,T, of the elements of the ground set, all the irreducible closed sets attached to x;.
This step can be seen as enumerating the irreducible closed set attached to z; with additional
information as an input, namely, the irreducible closed sets of ancestor elements. Finally, it
remains to solve this later task, which we can do either by brute forcing minimal transversals
of a carefully designed hypergraph in case of bounded conclusion-degree, or performing
a solution graph traversal in case of bounded premise-degree. In the end, the resulting
algorithms run in incremental-polynomial time, where the dependence in the number of
solutions principally arises from the sequential top-down procedure.

Let us note that Theorem 1 also has implications on the dual problem of constructing an
implicational base of minimum cardinality. Namely it allows us to obtain the following result
whose description is detailed in the long version of this work [16] and included here for the
reader familiar with closure systems.

» Theorem 2. There is a polynomial-time algorithm constructing a minimum implicational
base of an acyclic conver geometry of bounded premise- or conclusion-degree given by its
irreducible closed sets.

We note that in this direction, our algorithm is (input) polynomial thanks to the fact
that the output has polynomial cardinality because of the bounded degree.

The remainder of the paper is organized as follows. Section 2 introduces the concepts and
notations used throughout the paper. Section 3 presents the top-down approach that we use
as the key ingredient in our algorithms. Sections 4 and 5 are devoted to proving Theorem 1
in the respective cases of bounded conclusion- and premise-degree. In Section 6 we discuss
possible generalizations and open problems related to the current work, and also argue that
our running times cannot be improved to polynomial delay using the standard framework of
flashlight search.

Due to space constraints, the proofs of our different statements are not included in the
present extended abstract: the interested reader is referred to [16] for more details.
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2 Preliminaries

All the objects we consider in this paper are finite. If X is a set, P(X) is its powerset. The
size of X is denoted | X|. A set system, or hypergraph, over a ground set X is a pair (X, F)
where F is a (non-empty) collection of subsets of X, that is F C P(X). Its size is | X| + | F|;
note that the binary length of any standard encoding of a hypergraph is polynomially related
to its size. Thus, for simplicity, we shall consider this measure for families as input sizes in
the different problems we will consider. If X is clear from the context, we may identify F
with (X, F). In examples, if there is no ambiguity, we may write a set as the concatenation of
its elements, for instance 123 instead of {1,2,3}. Similarly, to avoid cumbersome notations,
we sometimes withdraw brackets when dealing with singletons, e.g., we may write say ¢(x)
instead of ¢({z}).

Independent and hitting sets, hypergraph parameters. Let H = (X, ) be a hypergraph.
We call vertices of H the elements in X, and edges the sets in £. We say that H is Sperner
if any two of its edges are pairwise incomparable by inclusion. An independent set of H
is a set I C X that contains no edges of H, i.e., E ¢ I for every E in £. The family of
inclusion-wise maximal independent sets of H is denoted MIS(H). Formally, MIS(H) =
maxc{l : I C X, E ¢ I for every E in £}. Dually, a hitting set, or transversal, of H is a
subset T" of X that intersects each edge of H. The collection of inclusion-wise minimal hitting
sets of H is MHS(H) = minc{T : T C X, TNE # () for every E in £}. The hypergraph
MHS(H) is usually called the dual hypergraph of H. Observe that I C X is independent if
and only if T := X \ I is a hitting set. Consequently, MHS(H) = {X \ I : I € MIS(H)}.
Moreover, if H is not Sperner, then its minimal hitting sets (resp. maximal independent sets)
are precisely those of the hypergraph formed by the inclusion-wise minimal edges of H. The
two equivalent generation problems associated to maximal independent sets and minimal
hitting sets read as follows:

Maximal Independent Sets Enumeration (MIS-ENUM)
Input: A (Sperner) hypergraph H = (X, £).
Output: the family MIS(H).

Minimal Hitting Sets Enumeration (MHS-ENUM)
Input: A (Sperner) hypergraph H = (X, £).
Output: the family MHS(H).

To date, the best algorithm for these tasks runs in output-quasi-polynomial time and
is due to Fredman and Khachiyan [21]. However, a number of output-polynomial time
algorithms have been proposed for particular cases, especially when bounding structural
parameters [19], in particular the dimension of H being the size of its largest edge, and the
dual dimension, being the dimension of the dual hypergraph of H.

Closure systems, closure spaces. A closure system is a set system (X,C) that satisfies
X € C, and CNC’" € C whenever C,C’ € C. The sets in C are called closed (sets). A
closure space is a pair (X, ¢) where ¢: P(X) — P(X) is a mapping that satisfies for every
A,BC X: (1) AC¢(A), (2) ¢(A) C¢(B) if AC B, and (3) ¢(p(A)) = ¢(A). The map ¢
is a closure operator. Closure spaces and closure systems are in one-to-one correspondence.
More precisely, if (X,¢) is a closure space, the family C = {C : C C X, ¢(C) = C}
defines a closure system. Dually, if (X,C) is a closure system, the map ¢ defined by
$(A) =minc{C :CeC, ACC}=N{C:C e, ACC} isa closure operator whose
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associated closure system is precisely (X,C). In this paper, if (X, ¢) is a closure space, we
call (X,C) the corresponding closure system and vice-versa. Moreover, we assume without
loss of generality that () € C, a standard assumption.

Let (X,C) be a closure system. The poset (C, C) of closed sets ordered by inclusion is a
(closure) lattice where CAC' =CNC" and CVC' =¢(CUC’). Let M € C, M # X. The
closed set M is irreducible if it is not the intersection of other distinct closed sets, that is,
M = CnNC for some C,C" € C only if C = M or C' = M. We denote by irr(C) the family of

irreducible closed sets of (X,C). For every C € C, we have C = (\{M : M € irr(C), C C M}.

Moreover, irr(C) is the unique minimal subset of C from which C can be reconstructed using
intersections. Let x € X. We denote by irr(z) the inclusion-wise maximal closed sets not
containing x, i.e., irr(x) = maxc{M : M € C, z ¢ M}. Observe that irr(z) C irr(C) for
every € X. An irreducible closed set M in irr(z) is said to be attached to z. In fact, it is
well known that irr(C) = (J,¢ y irr(z) (see, e.g., [29,38]) and this union will even be disjoint
for us (see Proposition 3). An example of a closure system and its irreducible closed sets is
depicted in Figure 1.

Figure 1 A closure system over X = {1,2,3,4,5} represented via the Hasse diagram of its
closure lattice. Black dots are irreducible closed sets which can be seen by the fact that they
have a unique successor. We have, for instance, ¢(25) = 235 and ¢(4) = 14, irr(3) = {5,2, 14}
and mingen(3) = {25,15,24,45}. An implicational base for this closure system is for instance
Y={4—1,25 3,12 — 3,15 — 23}.

Implicational bases. An implication over X is a statement A — B where A, B are subsets
of X. In A — B, A is the premise and B the conclusion. An implicational base (IB) is a
pair (X,X) where X is a collection of implications over X. Given an IB (X, X), |¥| is the
cardinality of 3, that is the number of implications in 3. The size of the IB is the value
|X| + |2]. The degree of an element x € X, denoted deg(z), is the number of implications
of ¥ in which = appears. We refine this notion by defining the premise-degree of = as
pdeg(z) :=|{A: A— B e X, z € A}|, and its conclusion-degree as cdeg(z) := |[{A — B :
A — B € X, x € B}. Then deg(z) < pdeg(z) + cdeg(x). Equality may not hold in general
because an element can belong to both premise and the conclusion of an implication. In this
paper though, we avoid this degenerate case by always considering the premise and conclusion
of an implication are disjoint. Moreover, we will mainly use the degree, premise-degree, and
conclusion-degree of ¥ defined by pdeg(X) := max,cx pdeg(x), cdeg(X) := max,cx cdeg(x),
deg(X) := max,cx deg(z). Note that deg(X) < pdeg(X)+cdeg(X) for any X. As an example,
for the implicational base given in Figure 1, we have pdeg(2) = 2 and cdeg(2) = 1.

We now relate IBs to closure systems. Let (X, X) be an IB. A set C' C X is closed for
(X, Y) if for every implication A — B € XX, A C C implies B C C. The pair (X,C) where
C is the family of closed sets of (X,X) is a closure system. An IB (X, X) thus induces a
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closure operator ¢(-) that can be computed in polynomial time using the forward chaining
algorithm. This procedure starts from a set Y and produces a sequence of sets Y =Y, C
ViC--CYi=¢Y)suchthat Y; =Y, U {B:A—-BeX,ACY,_1,BZY, 1} for
1 < ¢ < k. On the other hand, any closure system (X,C) can be represented by several
equivalent IBs. For instance, 3 = {A — ¢(A) : A C X} constitutes an IB for (X,C) as well
as ¥ ={CU{z} = ¢(CU{z}): C €C,x ¢ C} (recall that we assume ) € C). If (X,X)
is an IB, we use the notation irr(3) to denote the irreducible closed sets of the associated
closure system. An implicational base for the closure system of Figure 1 is given in Figure 2.

The degree of a closure system is the least integer k such that it admits an implicational
bases of degree k. The premise- and conclusion-degree are defined analogously.

Convex geometries, acyclic convex geometries. A closure system (X,C) is a convex
geometry if for every closed set C' distinct from X there exists z ¢ C such that C U {z} is
closed. Equivalently, (X,C) is a convex geometry if the corresponding closure operator ¢ has
the anti-exchange property: for every closed set C' and each distinct z,y ¢ C, x € ¢(C U {y})
entails y ¢ ¢(C U {z}). The closure system depicted in Figure 1 is a convex geometry.
Convex geometries have been rediscovered in several fields and, as such, enjoy several
characterizations [31]. In particular, they can be characterized by their irreducible closed
sets, as recalled in the subsequent statement:

» Proposition 3 (see e.g., [18, Theorem 2.4]). A closure system (X,C) is a convex geometry
if and only if each irreducible closed set is attached to a unique element, i.e., {irr(z) : x € X}
is a partition of irr(C).

Let T C X. We call irreducible selection for T a family of sets obtained by choosing, for
each t € T, one M € irr(t). Note that since we are dealing with convex geometries, and
by Proposition 3, the closed sets M are all distinct and the resulting family has the same
cardinal as T'. In the following, we denote by S(T') the family of all irreducible selections for
a given set T'. We will use irreducible selections as a way to forbid elements, as stated in the
following observation.

» Observation 4. For any T C X and any selection S € S(T), the intersection (S of all
sets in S is disjoint from T, i.e., it contains not € T.

Let us now turn our attention to acyclic convex geometries. They have been studied
under various names such as poset-type convex geometries [34], G-geometries [37], or as
acyclic Horn functions from the perspective of Horn CNFs [8,23]. Let (X, X) be an IB. The
implication-graph [8,23] of (X, X) is the directed graph G(X) = (X, F) where there is an arc
ab in E if there exists A — B in ¥ such that a € A and b € B. The IB (X, X) is acyclic
if G(X) is. In this case, G(X) can be seen as a poset, and naturally induces an ancestor
relation over X defined for all € X as follows:

anc(z) ={y:y € X, x # y, and there exists a directed path from y to z in G(X)}

Equivalently, anc(x) is the set of in-neighbors of z in the transitive closure of G(X). An
element x of X is thus maximal if it has no ancestors, and minimal if it has no descendants.
As an example, Figure 2 illustrates the implication-graph of the IB given in Figure 1. A
closure system that admits an acyclic IB is acyclic and it is a well-known fact that acyclic
closure systems are convex geometries [34,37].
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Figure 2 The implication-graph G(X) of the IB (X, X) of Figure 1. This directed graph is acyclic,
which makes the closure system an acyclic convex geometry. The ancestors of 2, highlighted in green,
are 1,4, 5, i.e., anc(2) = {1,4,5}. Maximal elements are 4, 5 and the unique minimal element is 3.
Here, an example of topological order that we will refer to in the next section is 4,1, 5,2, 3.

Irreducible closed sets enumeration. To conclude the preliminaries, we formally present
the enumeration problem we study in this paper and review its main aspects.

Irreducible Closed Sets Enumeration (ICS-ENUM)
Input: An implicational base (X, ).
Output: The irreducible closed sets of the associated closure system.

Let us stress the fact that in ICS-ENUM, only an implicit (and possibly compact)
description of the closure system is provided, namely, the implicational base. Typically, the
output of ICS-ENUM may be of exponential size with respect to the input size, as illustrated
in Example 5 below. Hence, the problem is studied through the lens of output-sensitive
complexity.

» Example 5. Let X = {a;,...,a,} U{by,..., by} U{a}, and & = {a;b; > 2 :1 <i < n}.

Denoting (X,C) the associated closure system, we have irr(C) = {X \{y} : y € X, y #
2y U{{er,.. . en} e €{as, b}, 1 <i<n}. Therefore, |irr(C)| = 2" 4+ 2n while |X| = n.

As explained in the introduction, this problem has been studied in different fields
[3,17,22,28,38] and its complexity remains unsettled to date. Yet it is harder than MIS-ENUM,
in the sense that an output-polynomial time algorithm for one of ICS-ENUM implies one for
MIS-ENuM. Moreover, ICS-ENUM reduces to the problem of enumerating the irreducible
closed sets attached to a point, which we call ACS-ENUM, and that will be considered in
this paper:

Attached Irreducible Closed Set Enumeration (ACS-ENUM)
Input: An implicational base (X, %) and z € X.
Output: The family irr(x) of irreducible closed sets attached to x.

Indeed, an algorithm solving ACS-ENUM in output-polynomial time can be applied to
each element x to produce all irreducible closed sets of a closure system, with at most a linear

number of repetitions in general, and no repetitions in convex geometries by Proposition 3.

Unfortunately, it was shown by Kavvadias et al. [26] in the language of Horn CNFs that the
problem ACS-ENUM admits no output-polynomial time algorithm unless P = NP.

Nevertheless, in the remaining of the paper, we will show that a variation of the problem
taking profit of the acyclicity of the input allows us to obtain tractable algorithms for acyclic
convex geometries of bounded degree.
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3 Top-down procedure

We describe the general sequential procedure that we use to solve ICS-ENUM. We use a
similar approach to tackle the dual problem of constructing the implicational base in the
long version of this work [16]. Intuitively, it consists in enumerating, incrementally and in a
top-down fashion according to a topological ordering x1, ..., x, of the implicational base, all
the irreducible closed sets attached to x;.

Recall that the ancestors of an element x in an acyclic implicational base are the elements
that participate in a path of implications to z, and which can be identified in polynomial time;
see Section 2. More formally, we show that ICS-ENUM reduces to the following version of
ACS-ENUM in which we are given ancestors’ irreducible closed sets as additional information.

Attached Closed Sets Enumeration with Ancestors’ solutions (ACS+A-ENUM)

Input: An acyclic implicational base (X, X)), an element x € X, and the family irr(y)
for every ancestor y of z in X.

Output: The set irr(z).

Clearly, an algorithm for ACS-ENUM can be used to solve ACS+A-ENUM, while the
reverse may not be true. We argue that by iteratively using an algorithm for ACS+A-ENUM
on a maximal element of the implicational base among those that have not been selected yet,
we obtain an algorithm for ICS-ENUM. Note that the base case corresponds to computing
the irreducible closed set of maximal elements z verifying irr(z) = {X \ {z}}. Moreover,
this procedures preserves incremental-polynomial bounds. In terms of difficulty, ACS+A-
ENUM may thus be seen as standing as an intermediate problem between ACS-ENUM and
ICS-ENUM in acyclic convex geometries. More formally, we obtain the following.

» Theorem 6. Let f: N> = N be a function. Let us assume that there is an algorithm that,
given an instance of ACS+A-ENUM of size N, produces its it" solution in f(N,i)-time. Then
there is an algorithm that, given an acyclic instance of ICS-ENUM of size N', produces its
3t solution in O(poly(N') + f(N' +34,7)) time.

We note that an analogous statement to the one in Theorem 6 holds by relaxing the
required and obtained time bounds to output-polynomial times. On the other hand, improving
the complexity of an algorithm for ACS+A-ENUM to polynomial delay (or even input-
polynomial as we will provide later for the case of bounded conclusion-degree) does not
generally ensure polynomial delay (or incremental-linear) for ICS-ENUM, since the size of
an instance of ACS+A-ENUM grows with the number of already obtained solutions for
ICS-ENuM, which typically becomes exponential in the size of the implicational base.

Further limitations related to the top-down approach — in particular on the hardness of
ACS-ENUM on implicational bases of height at most two — are discussed in the long version of
this work [16]. Nevertheless, we shall argue in the remaining of the paper that this approach
yields tractable algorithms when bounding structural parameters such as the premise- and
conclusion-degree.

4 Bounded conclusion-degree

We show that the top-down approach successfully provides an incremental-polynomial time
algorithm for ICS-ENUM whenever the implicational base has bounded conclusion-degree,
proving one of the two cases of Theorem 1.
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In the following, let us consider an instance of ACS+A-ENUM, i.e., we fix some acyclic
implicational base (X,¥), an element z € X, and assume that we are given irr(y) for all
ancestors y of x in X. Let us consider the hypergraph defined by

& ={A: A-Be€ZX, z€ B}, and

Hoi= (& 8)

The intuition behind the following lemma is that, in order to get an irreducible closed set
attached to x, one should remove at least one element a in the premise of each implication
having x in the conclusion, which can be done by considering the intersection with an
irreducible closed set attached to a. Recall that S(T') denotes the family of irreducible
selections; see Section 2.

» Lemma 7. For every M € irr(z) there exists a minimal transversal T of H, and an
irreducible selection S € S(T') such that M = (N S) \ {z}.

Note that, by definition, the number of edges in H, is exactly cdeg(z), which is at
most cdeg(X). Moreover, since the ground set of H, is a subset of the ancestors of xz, the
selections of Lemma 7 are part of the input we consider for ACS+A-ENUM. By brute-forcing
the irreducible selections for every transversal, we derive a polynomial-time algorithm for
ACS+A-ENUM whenever the conclusion-degree of x is bounded by a constant.

» Theorem 8. There is an algorithm solving ACS+A-ENUM in NO®) time on inputs of size
N and mazimum conclusion-degree k.

We conclude to the following, as a corollary of Theorems 6 and 8, and proving the case
of bounded-conclusion degree in Theorem 1.

» Theorem 9. There is an incremental-polynomial time algorithm solving ICS-ENUM on
acyclic implicational bases of bounded conclusion-degree.

Let us remark that in our algorithm, we actually do not need the knowledge of irr(a) for
all ancestors of x, but only for those in a premise which has = in conclusion. This however
makes no asymptotic difference on the final complexity we get for ICS-ENUM.

Also, it appears in the proof of Theorem 8 that we only need a constant upper bound
on the size k of a minimal transversal of H,, to derive an input-polynomial time algorithm
solving ACS+A-ENUM. We immediately derive the following generalization of Theorem 9
dealing with hypergraphs of bounded dual-dimension (admitting minimal transversals of
bounded size) who define complements of conformal hypergraphs [6].

» Theorem 10. There is an incremental-polynomial time algorithm solving ICS-ENUM if,
for any element x of the ground set, the hypergraph of premises having x in their conclusion
has bounded dual-dimension.

We end the section by showing the limitations of this approach in order to get output-
polynomial time bounds whenever we drop the condition of bounded conclusion-degree.

First, note that the key step of the approach is to compute all possible intersections
as provided in Lemma 7. However, there are cases where the number of possible such
intersections is exponential in |irr(X)|, which typically occurs if minimal transversals of #,,
are of unbounded size, or if MHS(#,,) is of exponential size in irr(x).

To get one such example, consider k¥ € N and the implicational base defined by X =
{a1,b1,...,ak, bk, 2} and ¥ = {a;b; > x: 1 <i < k}U{b; = b1 : 1 <i < k}; see Figure 3
for an illustration. Then irr(z) = {(a;)1<i<;U(b:i)j+1<i<k : 0 < j < k} so Jirr(z)| = k+1, and
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the other elements in X \ {z} are easily seen to have a single attached closed set. Therefore,
irr(¥) is of polynomial size in |X| = 2k + 1 and |%| = 2k — 1. However, [IMHS(H,)| = 2*
and computing this set would fail in providing an output-polynomial time algorithm for
enumerating irr(z).

Figure 3 An instance where [MHS(#H,)| = 2* but |irr(X)| = 3k + 1 and |¥| = 2k — 1.

At last, we note that this example has bounded premise-degree. We will show however
in the next section that such instances can actually be efficiently solved by solution graph
traversal.

5 Bounded premise-degree

We provide an incremental-polynomial time algorithm solving ICS-ENUM whenever the
given implicational base has bounded premise-degree. Our algorithm relies on the top-down
approach from Section 3 and solves ACS+A-ENUM relying on the solution graph traversal
technique.

In the solution graph traversal framework, one has to define a digraph called solution
graph, whose nodes are the solutions we aim to enumerate, and whose arcs (F, F’) consists
of ways of reconfigurating a given solution F into another solution F’. Then, the goal is
not to build the solution graph entirely, but rather to traverse all its nodes efficiently and
avoiding repetitions of nodes. This general technique has been fruitfully applied to numerous
enumeration problems, see e.g., [9,27,40], and generalized to powerful frameworks [2,10,11].
In the following we will use the next folklore result which states conditions for such a
technique to be efficient; see [20] for a quantitative statement and a proof.

» Theorem 11 (Folklore). Let F C P(X) be a solution set over a ground set X, and let us

denote by n the size of the input. Then there is a poly(n)-delay algorithm enumerating F

whenever:

1. one member of F can be found in poly(n)-time;

2. there is a function N : F — P(F) called neighboring function mapping every solution to
a set of solutions that can be computed in poly(n) time given F € F;

3. the directed solution graph (F,{(F,F'): F' € N(F)}) is strongly connected.

In the following, let us consider an instance of ACS+A-ENUM, i.e., we fix some acyclic
implicational base (X, ), an element z € X, and we assume that we are given irr(y) for all
ancestors y of x.

We first argue that Condition 1 holds for ACS+A-ENuM. Let GC, be a function which
maps any E C X such that ¢ ¢(F) to a maximal set M D F with this property. We
call the resulting set the greedy completion of E. Note that GC,(F) can be computed in
polynomial time in the size of (X,Y), and that the obtained set lies in irr(x); see Section 2.
We derive the following.
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» Lemma 12. A first solution GC,(0) € irr(z) can be obtained in poly(|X|+ |X|) time.

We now turn on showing the existence of a polynomial-time computable neighboring
function satisfying Conditions 2 and 3. Given some irreducible closed set M € irr(z), and
some element y € X \ M, we define

Emy ={A: A= BeXwith A\M={y}, BZ M},

VM7y = U(SM’y and 'HM,y = (VM,y,SM,y).
In other words, Has,y is the hypergraph of premises of 3 not included in M, triggered by
adding y, and with a conclusion not in M. Note that |Ear,,| < pdeg(y) < pdeg(X). Also,

because every premise in €y, implies a b ¢ M, hence an ancestor of z, we derive the
following observation by transitivity.

» Observation 13. Every vertex in Vi is an ancestor of x.

Regarding Condition 2, we first need the following statement, which holds the same idea
as Lemma 7.

» Lemma 14. Let M, M* be two distinct sets in irr(x). Then there exist y € M*\ M,
T € MHS(H,y), and S € S(T) such that M* C(S.

We are now ready to define the aforementioned neighboring function. Given M € irr(z)

and y ¢ M, we define
B - S€eS(T) and T € MHS(Har,y)
N(ny) = { GGy ((M N ﬂ8> Y {y}) " such that z ¢ qb((MﬂﬂS) U {y}) }

and put V(M) := [J, g, N(M,y). We prove that Conditions 2 and 3 hold for this function.

» Observation 15. By definition, the greedy completion in the definition of N'(M,y) is well
defined and N (M) C irr(z).

» Lemma 16. Let N be the sum of the sizes of X, X, and irr(a) for all a € anc(x). Then,
for all M € irr(x), N (M) can be computed in NO¥) time where k is the premise-degree of .

Note that Condition 2 is ensured by Observation 15 and Lemma 16. We are thus left
to prove Condition 3, which we obtain by proving that for any pair of solutions, there is a
neighbor of the first one with greater intersection with the second.

» Lemma 17. Let M, M* be two distinct sets in irv(x). Then there exists M’ € N(M) such
that M N M* C M' N M*.

» Corollary 18. The solution graph (irr(x), {(M,M’) : M' € N(M)}) is strongly connected.

Combining Theorem 11, Lemma 12, Lemma 16, and Corollary 18, we obtain a polynomial-
delay algorithm for ACS+A-ENUM by solution graph traversal for acyclic implicational bases
of bounded premise-degree. This, together with Theorem 6, in turn implies the following
theorem, proving the remaining case of bounded premise-degree in Theorem 1.

» Theorem 19. There is an incremental-polynomial time algorithm solving ICS-ENUM on
acyclic implicational bases of bounded premise-degree.

As in the previous section, we only needed to bound the size of a minimal transversal of
Ha,y in the proof of previous theorem to derive an input-polynomial time algorithm solving
ACS+A-ENuM. This gives the following result, analogous to Theorem 10.

» Theorem 20. There is an incremental-polynomial time algorithm solving ICS-ENUM if, for
any irreducible closed set M and y ¢ M, the hypergraph Has,, has bounded dual-dimension.
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Figure 4 An illustration of the construction from Theorem 21. Black edges correspond to the
incidence bipartite graph of a given CNF with clauses’ size at most 3, and variable occurring in at

—_- ---—>@ ]

most 3 clauses. There is a blue implication for each such edge (partially represented). The green
implications represent conflicting literals. With this reduction, there is an irreducible closed set
attached to t and avoiding the red set if and only if the formula is satisfiable.

6 Conclusion

In this paper, we described two incremental-polynomial time algorithms for the enumeration
of irreducible closed sets in acyclic convex geometries of bounded (premise- or conclusion-)
degree. This solves one of the two translation task for this class, the other one being addressed
in the long version of this work [16]. We note that the delay of our algorithms is intrinsically
not polynomial since our algorithm rely on a sequential top-down procedure which reduces
the enumeration to an auxiliary enumeration problem whose instance grows with the total
number of solutions output so far. This suggests the following question.

» Question 1. Can ICS-ENUM be solved with polynomial delay for acyclic convex geometries
of bounded degree?

Toward this direction, we now argue that the classic flashlight search framework may
not be used in a straightforward way to obtain a positive answer to this question. In the
flashlight search technique, the goal is to construct solutions one element at a time, according
to a linear order x1,...,z, on the ground set, and deciding at each step whether x; should
or should not be included in the solution. For this approach to be tractable, the framework
requires to solve the so-called “extension problem” in polynomial time: given two disjoint
subsets K, F' of the ground set, decide whether there exists a solution including K and
avoiding F. We refer to, e.g., [9,30] for a more detailed description of this folklore technique.
More formally, this technique reduces the enumeration to the following decision problem.

Irreducible Closed Set Extension (ICS-EXT)
Input: An implicational base (X,¥) and K, F C X.
Question: Does there exist M € irr(C) such that K C M and M N F = (?

We show that this problem is NP-complete even for acyclic implicational bases of bounded
degree with K = (), suggesting that this framework may not be used in a straightforward
way to improve our results. Let us however remark that this does not rule out the possibility
of a polynomial-delay algorithm for the problem, using a different approach or relying on
particular vertex orderings. We refer to [16] for the proof of this result, the construction of
which is hinted in Figure 4.
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» Theorem 21. The extension problem for ICS-ENUM is NP-complete even for acyclic
implicational bases with degree, premise-degree, conclusion-degree and dimension (i.e., the
mazximum size of a premise) simultaneously bounded by 4, 4, 2 and 2, respectively.

Note that, as an intermediate step, one may wonder whether there exists an incremental-
polynomial time algorithm for ICS-ENUM where the degree of the polynomial in the number
of solutions is independent of the premise degree.

Among other directions, it is natural to ask whether our results extend to broader classes
of closure systems or to parameters that generalize the degree. We include a thorough
discussion on the relevant classes and parameters in the long version of this work [16] as well
as some considerations related to parameterized enumeration. In particular, we argue that
without acyclicity the degree alone is not helpful anymore as ICS-ENUM for instances with
bounded degree becomes as general as ICS-ENUM.
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