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Abstract
We study the online service with deadlines (or delays) problem, in which a server must serve requests
for points in a metric space while balancing travel distance and promptness of service. While the
problem has been extensively studied (STOC 2017), (FOCS 2019), (FOCS 2023), the main open
question whether a constant competitive ratio can be achieved remains wide open. We prove a
logarithmic lower bound for a natural class of algorithms already on uniform line metrics. Our lower
bound applies to, and is tight for, the best known algorithms for general metrics and uniform line
metrics.
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1 Introduction

In the online service with delay (OSD) problem, introduced by Azar et al. [1], requests for
points of a metric space are released over time in online fashion and need to be served by
a single server. The server initially occupies a point of the metric space (its state) and
must serve each request, once it has been released, by transitioning to the requested point.
Crucially, requests do not have to be served immediately, but come with individual delay
cost functions that assign a waiting cost to the amount of time between release and serving
of the request. The objective is to minimize the sum of the total distance traveled by the
server in the metric space (service cost) and the waiting costs of all requests (delay cost).
Note that the service cost does not depend on time and the delay cost does not depend on
traveled distance, i.e., in particular, state transitions of the server are instantaneous.

The OSD problem formalizes in a natural way the tradeoff between batching of requests
to reduce overall effort and quick response to minimize individual delay, and has sparked
a series of strong results that have been very well received. In their seminal paper, Azar
et al. [1] initiated the competitive analysis of OSD and presented an O(log4 n)-competitive
randomized algorithm for metric spaces with n points, based on a randomized embedding
of the metric space into a hierarchically separated tree (HST). Later, Azar and Touitou [2]
improved this result to a randomized O(log2 n)-competitive algorithm, still relying on HSTs
but simultaneously addressing several other problems with delay. For uniform line metrics,
Bienkowski et al. [6] defined a deterministic algorithm Bckt that further improves the
competitive ratio to O(log n). Finally, the current state of the art was achieved in a
remarkable contribution by Touitou [21], who proved a deterministic bound of O(log n) for
general metric spaces, by presenting a deterministic algorithm (we call it Touitou) that no
longer relies on HSTs.

While there is a significant body of work on OSD with meaningful advances in terms of
upper bounds, still no super-constant lower bounds on the competitive ratio are known. The
question of whether a constant competitive ratio is possible is raised as the main open question
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for OSD in [1, 14, 21], and the authors see evidence that a logarithmic competitive ratio might
be best-possible in the fact that no better algorithms are known even for prominent special
cases. For example, no better competitiveness is known even for the multilevel aggregation
problem [3], a further specialization of OSD on a tree.

We consider the important special case online service with deadlines, where requests
do not incur any waiting costs if they are served until their respective deadlines, and an
unbounded cost otherwise. Note that this variant is important in its own right and no better
guarantee than O(log n) via Bckt [6] and Touitou [21] is known, even for uniform line
metrics. We give a tight lower bound for a natural class of algorithms that, in particular,
only uses uniform line metrics and applies to Bckt and Touitou.

Our Results. We consider the online service with deadlines problem on a line metric with
n equidistant points. We prove a lower bound of Ω(log n/ log λ) for the competitive ratio of
a class of (possibly randomized) online algorithms which we call λ-lazy. These algorithms
only perform actions once a request has reached its deadline, and do not serve requests
that are more than λ-times farther away than this critical request. This includes every
algorithm that allows only λ-times the cost of critical service (i.e., the cost of serving requests
whose deadlines expired) for preemptive service to other requests. Since online service with
deadlines can be seen as a special case of online service with delay, our lower bound is also
valid for the online service with delay problem.

▶ Theorem 1. Every λ(n)-lazy algorithm has a competitive ratio of at least Ω(log n/ log λ(n))
for online service with deadlines (or delays), even on a line metric with n equidistant points.

Importantly, the notion of λ-laziness applies to the two best algorithms that are known
for online service with deadlines: the Bckt algorithm by Bienkowski et al. [6] for line metrics,
and the general algorithm by Touitou [21] (which we call Touitou). Since both algorithms
are λ-lazy for constant λ, we can derive a logarithmic lower bound for their competitive
ratios that matches the known upper bounds of O(log n) for the Bckt algorithm and for
the Touitou algorithm, yielding an asymptotically tight bound for the competitive ratio of
these algorithms.

▶ Corollary 2. Bckt and Touitou have a competitive ratio of Θ(log n) for online service
with deadlines (or delays) on a line metric with n equidistant points.

Finally, we address natural generalizations of Bckt and Touitou that increase λ with
growing n, by refining our notion of laziness to more accurately capture these types of
algorithms. We show that the resulting class of stricly λ-lazy algorithms does not allow for
better competitive ratios than Ω(log n) either, showing that algorithms that aim to achieve
a sublogarithmic competitive ratio must employ more complex strategies for preemptive
service.

Related work. A natural extension of the OSD problem is to consider k-OSD with any
number k ∈ N of servers. The initial result of Azar et al. [1] extends to k-OSD and yields
an upper bound of O(k log5 n). For uniform metric spaces, Krnetić et al. [17] improved
this to a deterministic competitive ratio of exactly 2k + 1. We can recover the classic
k-server problem [18] as a special case of k-OSD by giving all requests immediate deadlines,
which means that deterministic algorithms for k-OSD cannot avoid a linear dependence
on k (or on n ≥ k) in the competitive ratio [16, 18]. Note that this also applies to the
algorithm of Azar et al. [1], since it only uses randomization when initially embedding the
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metric in an HST. Gupta et al. [13] used randomization on weighted star metrics to obtain
an O(log k log n)-competitive algorithm, and Gupta et al. [14] gave an O(poly log(∆, n))-
competitive randomized algorithm for k-OSD with deadlines, where ∆ denotes the aspect
ratio between largest and smallest interpoint distance in the metric space. Note that this is
compatible with weaker forms of the recently disproved randomized k-server conjecture [7],
since n ≥ k.

Another natural generalization of OSD arises when the (continuous) delay functions are
revealed in online fashion, i.e., when the cost of a delay in time is only revealed once this delay
has irrevocably been incurred. Azar et al. [1] showed that in this non-clairvoyant setting, even
for weighted star metrics, the competitive ratio is at least Ω(

√
n). For uniform line metrics,

Bienkowski et al. [6] were able to show that their algorithm is O(log n)-competitive, despite
not requiring clairvoyance. Recently, Touitou [22] proposed an O(

√
n log n)-competitive

algorithm for non-clairvoyant OSD on general metric spaces.
Problems closely related to OSD arise in network design with deadlines or delay, where

instead of requests to visit a point in space, connectivity requests in a graph require
transmitting a subgraph. Azar and Touitou [3] introduced a deterministic framework for
such problems, avoiding randomized HST embeddings, while Touitou [20] proposed one for
the non-clairvoyant setting.

A prominent problem that falls in this framework is the multilevel aggregation (MLA)
problem, where leaves of a rooted tree are requested and can be served in bulk by paying for
a subtree that includes them and the root. This problem is a specialization of OSD on a
tree, where we force the server to return to the root after each service (via urgent requests).
The problem was introduced by Charikar et al. [4] with an O(D42D)-competitive algorithm,
where D is the depth of the tree, which was later improved to O(log n) [2, 3, 9]. Special
cases of MLA include TCP acknowledgment [10, 15] and joint replenishment [5, 8], with the
underlying rooted tree being of depth 1 and 2, respectively.

Other related network design problems include node-weighted Steiner forest and directed
Steiner tree with deadlines or delay, also with logarithmic upper bounds [3]. In contrast to
MLA, super-constant lower bounds are known for these problems [19].

The reordering buffer management (RBM) problem is also closely related to OSD but
limits the number of waiting requests instead of charging delay costs. It has been studied in
general metrics by Englert et al. [11] and on line metrics by Gamzu and Segev [12], with a
best known upper bound of O(log n), similar to OSD.

2 Preliminaries

We consider online service with deadlines, where requests rj∈{1,...,m} for points of a metric
space (M, d) are issued over time and need to be served by a single server. Each request r is
associated with a tuple (xr; ar, tr) consisting of its location xr ∈M, its arrival time ar ≥ 0
and its deadline tr ≥ ar. To make notation more concise, we identify each request with its
location.

A solution to this problem is given by a schedule π = ((pi, ti) ∈M×R≥0)i∈{0,...,N}, where
p0 is the origin of the server, we demand 0 = t0 ≤ t1 ≤ · · · ≤ tN , and the interpretation is that
the server moves (instantaneously) from pi−1 ∈M to pi ∈M at time ti for i ∈ {1, . . . , N}.
For each request r, we define π(r) ∈ R≥0 to be the earliest time that the server visits its
location after time ar, and consider r served at time π(r); in particular, requests that arrive
at the server’s location are served immediately. Our goal is to minimize

ISAAC 2025
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min
N∑

i=1
d(pi, pi−1)

s.t. π(rj) ≤ trj
∀j ∈ {1, . . . , m}.

Note that the constraints can be modeled by an additive term
∑m

j=1 crj (π(rj)− arj ) in the
objective, where the delay cost functions cr are given by cr(t) = 0 if t ≤ tr−ar and cr(t) =∞
otherwise. In that sense, the online service with deadlines problem is a specialization of the
more general online service with delay problem.

For clarity, we assume that deadlines are distinct among all requests, otherwise a total
order may be chosen by arbitrary tie-breaking. The events at a time t occur in the following
three phases: First, all new requests arrive, then the server moves (instantaneously), serving
each request it visits, and, finally, the requests’ deadlines expire. We denote the position
of the server at the start of time t by sstart

t , and the position at the end of time t by send
t .

We use St to refer to the set of points that the server visits during time t, i.e., formally
St = {pi | i ∈ 0, . . . , N : ti = t}. The set of open (i.e., released but unserved) requests after
release of new requests but before the server’s movements is denoted by Rt.

Once a request has reached its deadline, we refer to it as critical. We say that a request
is served preemptively if it is served strictly before its deadline.

Online service with deadlines is an online problem in the sense that requests are only
revealed once they are released. We evaluate the performance of an online algorithm Alg in
terms of competitive analysis, i.e., for each request sequence σ, we compare the cost Alg(σ)
of its solution to the cost Opt(σ) of an optimum offline solution that uses knowledge
of the entire input from the beginning. The competitive ratio ρ of Alg is then defined
as ρ := supσ[Alg(σ)/Opt(σ)].

3 A logarithmic lower bound

We show a lower bound on the competitive ratio for a class of algorithms for online service
with deadlines which we call λ-lazy algorithms (see Algorithm 1). These algorithms only
move the server once some request is critical, which is without loss of generality, since
delaying actions while no deadline has expired does not incur any additional cost, but reveals
more information about the input sequence. If there is no other request within λ-times the
distance between server and critical request, the algorithm serves only the critical request
and moves towards it. Note that this definition allows for preemption, e.g. in the case where
we allocate a budget of λ-times the cost of critical service for preemptive service. We say that
an algorithm for online service with deadlines is λ(n)-lazy for a given function λ : N→ N
(possibly on a specific class of metric spaces) if it fits this description with parameter λ(n) on
metric spaces with n points. Note that we allow randomization, e.g., in choosing requests for
preemptive service or the next server position. The procedure UponDeadline in Algorithm 1
is triggered at the beginning of the second phase of time tr for each request r, i.e., after new
requests are already released, but before the server has to move and deadlines expire.

▶ Definition 3. We call a request r ∈ Rt λ-isolated at time t if every q ∈ Rt \ {r} satisfies
d(q, sstart

t ) ≥ λd(r, sstart
t ).
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Algorithm 1 λ-Lazy Algorithm.

Function UponDeadline(r):
if r is λ-isolated :

serve only r

move server to some send
t with d(send

t , r) = 0 or d(send
t , r) < d(sstart

t , r)
else

(do something else, e.g. serve requests or move the server)

▶ Remark 4. The requirement to strictly reduce the distance to the critical request can be
relaxed to allow any end position satisfying d(send

t , r) ≤ d(sstart
t , r) by repeating requests in

the construction below that lure the algorithm to a specific position. For this, observe that
any competitive algorithm must eventually move the server to the position of the repeated
requests. To simplify presentation, we will analyze only the case where the distance to
isolated requests strictly decreases.

3.1 Adversarial construction

For given λ ∈ N, we define adversarial constructions Cℓ
λ of a level ℓ ∈ N0 that determines

the number of points on the line: Cℓ
λ uses (4λ + 4)ℓ + 1 =: wℓ + 1 points. Additionally, we

denote by C̃ℓ
λ a variation of Cℓ

λ that is used to recursively construct adversarial inputs of
higher levels. For the start location of the server, we choose position wℓ.

We will show later on that every λ-lazy algorithm serves each request at the time of
its deadline, while the offline optimum solution can strategically serve some requests at an
earlier time, when the server is closer to these requests.

Intuitively, both Cℓ
λ and C̃ℓ

λ are designed to move the algorithm from the right end of the
line to the left, while incurring additional cost logarithmic in the distance between right and
left end. The offline optimum solution can serve all requests of the adversarial constructions
at cost linear in the number wℓ of points of the line segment. The construction C̃ℓ

λ mainly
consists of repeating Cℓ−1

λ and C̃ℓ−1
λ to create a sequence of requests that move the algorithm

through a larger number of points at roughly the same competitive ratio as Cℓ−1
λ . The

request sequence Cℓ
λ includes additional requests compared to C̃ℓ

λ that cause the algorithm
to move the full length of the line segment again after initially reaching the left end. That
way, the algorithm suffers an additional penalty linear in the number of points on the line
segment, i.e., a constant is added onto the competitive ratio. As the number of points grows
exponentially in the level ℓ and the competitive ratio grows linearly, the resulting competitive
ratio is logarithmic in the number of points on the line.

Base case (ℓ = 0)

We define

C0
λ := C̃0

λ := {(0; 0, 0)} .

The deadline and the arrival time of the request coincide, meaning that every algorithm has
to serve the request upon arrival. The server’s starting position is at w0 = 1.

For the remainder of the construction, we define tℓ := |Cℓ
λ| and t̃ℓ := |C̃ℓ

λ| as the duration
of Cℓ

λ and C̃ℓ
λ, respectively. The inputs Cℓ

λ and C̃ℓ
λ will be constructed in such a way that

every request reaches its deadline in the time interval [0, tℓ) or [0, t̃ℓ), respectively.

ISAAC 2025
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Recursive construction (ℓ > 0)

We define Cℓ
λ and C̃ℓ

λ based on the constructions C̃ℓ−1
λ and Cℓ−1

λ of the previous level. Refer
to Figures 1 and 2 for an illustration of the recursive construction. We denote by Cℓ−1

λ +(x, t)
(resp. C̃ℓ−1

λ + (x, t)) the input sequence that results from shifting all requests of Cℓ−1
λ

(resp. C̃ℓ−1
λ ) by x points on the line and delaying the requests’ arrival time and deadline by t

time units, i.e.

C + (x, t) := {(xr + x; ar + t, tr + t) | r ∈ C} .

We define

C̃ℓ
λ :=

2λ+1⋃
i=0

(
C̃ℓ−1

λ +
(
wℓ − (i + 1) · wℓ−1, i · t̃ℓ−1

))
∪

4λ+3⋃
i=2λ+2

(
Cℓ−1

λ +
(
wℓ − (i + 1) · wℓ−1, (i− 2λ− 2) · tℓ−1 + (2λ + 2)t̃ℓ−1

))
.

The adversarial input Cℓ
λ has an additional request at the starting position that reaches

its deadline towards the end of the construction. We call this request the background
request rbg = (wℓ; 2λ + 2, t̃ℓ). This request can be served early by an offline algorithm at
small additional cost, while a λ-lazy algorithm will serve it only upon its deadline, incurring
large additional cost. Multiple later requests then force the server back to point 0:

Cℓ
λ :=C̃ℓ

λ ∪ {rbg} ∪
{

(0; t̃ℓ + i, t̃ℓ + i) | i = 1, . . . , 2wℓ

}
.

The definition of λ-lazy algorithms only requires the server to move towards the critical
request by at least one unit of distance. Therefore, it is necessary to issue multiple requests
at the end of the construction (namely, as many as the maximal possible distance of the
server to point 0) to ensure that the server is stationed in point 0 after the construction is
finished.

3.2 Analysis
We now analyze the cost of the offline optimum solution, as well as a λ-lazy algorithm on
the adversarial inputs, proving Theorem 1. We start by showing that the cost of the offline
optimum solution grows linearly with the number of points on the line, while every λ-lazy
algorithm has to take a detour to serve additional requests from Cℓ

λ, thus incurring Ω(ℓ)
times the cost of the offline optimum solution.

▶ Lemma 5. For every λ ∈ N and ℓ ∈ N, the offline optimum solution Opt for online
service with deadlines satisfies

Opt(Cℓ
λ) ≤ 2wℓ .

Proof. We recursively construct a (suboptimal) offline solution Off that achieves the claimed
cost for Cℓ

λ. We construct solutions for Cℓ
λ and C̃ℓ

λ for each ℓ ∈ N that will be used recursively
to solve constructions of higher level. Off serves each request upon arrival, and takes a
preemptive detour at the start to ensure that all additional requests from Cℓ

λ can be served
at no additional cost. Note that this detour could be omitted when analyzing only C̃ℓ

λ, but
we will include it to simplify analysis of the recursive constructions.

We show that Off maintains the following invariants for ℓ ∈ N, given that Off starts at
position sstart

0 = wℓ:
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Movements of Alg Request is released Request reaches its deadline Additional requests of Cℓ
λ

C̃ℓ−1
λ

C̃ℓ−1
λ

C̃ℓ−1
λ

(2λ + 2) times

(2λ + 2) times

C̃ℓ
λCℓ

λ

···

Cℓ−1
λ

Cℓ−1
λ

Cℓ−1
λ

···

(×2wℓ)

positionwℓ−10 wℓ

tim
e

t̃ℓ

tℓ

t̃ℓ−1

2λ + 2

Figure 1 Recursive construction of adversarial inputs Cℓ
λ and C̃ℓ

λ for a λ-lazy algorithm Alg.

(I1) Off(Cℓ
λ) = Off(C̃ℓ

λ) = 2wℓ.
(I2) Off’s server satisfies wℓ ∈ S2λ+2.
(I3) For each t ∈ [t̃ℓ, tℓ], Off’s server satisfies sstart

t = send
t = 0.

Base case (ℓ = 1)

Refer to Figure 2 for an illustration of Off on C1
λ. We let Off serve each request from

copies of C̃0
λ upon arrival, incurring distance cost 2λ + 2. At time 2λ + 2, Off returns

from position 2λ + 2 to w1 = 4λ + 4, and back to 2λ + 2 (recall that the server may move
instantaneously), proving (I2). Note that it can therefore serve the background request at w1
from C1

λ at time 2λ+2 at no additional cost. Off then continues to serve the remaining 2λ+2
requests from copies of C0

λ upon arrival, each incurring one unit of distance cost. As required
by (I1), the total cost of Off is

4 · (2λ + 2) = 2 · w1 .

Off ends at position 0 at time (2λ + 1) · t0 + (2λ + 2)t̃0 = t̃1 − 1. It can then serve all
remaining requests in 0 upon arrival at no additional cost without moving the server, hence
(I3) is satisfied for C1

λ. (I1) is maintained as before.

Inductive step (ℓ > 1)

Off handles each construction Cℓ−1
λ , C̃ℓ−1

λ as in the previous recursion step, each at
cost 2wℓ−1. This is possible since the required start positions align with the end position
of Off by (I3) and choice of the offsets. (I2) is maintained recursively, and the additional
requests in Cℓ

λ are served at no additional cost, since Off is at their location at the time of
their arrival by (I2) and (I3). Off may therefore remain at position 0 after arriving there
before time t̃ℓ, proving (I3). As required by (I1), the total cost is

ISAAC 2025
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Movements of Alg
Movements of Off

Request is released
Request reaches its deadline

Additional requests of C1
λ

C̃0
λ = C0

λ

(×16)

tim
e

t̃1

t1

2λ + 2

position0 w0 = 1 w1 = 8

Figure 2 Illustration of C1
λ for λ = 1, a λ-lazy algorithm Alg and the offline solution Off.

Off(Cℓ
λ) = Off(C̃ℓ

λ) = (2λ + 2)Off(C̃ℓ−1
λ ) + (2λ + 2)Off(Cℓ−1

λ )
(I1)= (4λ + 4)2wℓ−1 = 2wℓ . ◀

▶ Lemma 6. For every λ ∈ N and ℓ ∈ N0, every λ-lazy algorithm Alg satisfies

Alg(C̃ℓ
λ) ≥ ℓ

2wℓ and Alg(Cℓ
λ) ≥

(
ℓ

2 + 1
)

wℓ .

Proof strategy and intuition. We prove the claim by induction on ℓ. In particular, we show
that we can analyze copies of Cℓ−1

λ and C̃ℓ−1
λ independently in the recursive construction. To

apply this argument, we consider the more general setting where Cℓ
λ or C̃ℓ

λ are used as part
of a larger construction (i.e., there may exist other requests) and start at some later start
time tstart. Note also that all arguments are translation invariant and can therefore also be
applied to shifted copies Cℓ

λ + (x, t) and C̃ℓ
λ + (x, t). We will see that Alg serves exactly the

requests from Cℓ
λ (resp. C̃ℓ

λ) in the time interval [tstart, tstart + tℓ) (resp. [tstart, tstart + t̃ℓ)).
Since copies of Cℓ

λ and C̃ℓ
λ are used tℓ or t̃ℓ time units apart, it is then easy to see that Alg

handles each copy independently.
To apply the induction hypothesis, we impose a set of assumptions which ensure that

requests outside of Cℓ
λ and C̃ℓ

λ do not interfere with our intended behavior of Alg on Cℓ
λ

and C̃ℓ
λ. Intuitively, we assume that no outside request becomes critical during the execution

of Cℓ
λ or C̃ℓ

λ (which would trigger an unexpected service), and that no outside requests
are too close by, so that the requests from Cℓ

λ and C̃ℓ
λ are isolated when becoming critical.

Additionally, we require that Alg’s server is at the correct position at the start of the
execution of Cℓ

λ or C̃ℓ
λ. More formally, we make the following assumptions:

(AStartPosition) Alg’s server is at position wℓ at the start of time tstart.
(ANoDelay) During time [tstart, tstart + tℓ) (resp. [tstart, tstart + t̃ℓ)), no requests other than

those from Cℓ
λ (resp. C̃ℓ

λ) reach their deadlines.
(AIsolationArea) It holds that

Rt ∩ (−∞, wℓ + 2λ + 2) ⊆ C̃ℓ
λ ∀t ∈ [tstart, tstart + min{t̃ℓ, 2λ + 2})

Rt ∩ (−∞, wℓ) ⊆ C̃ℓ
λ ∀t ∈ [tstart + 2λ + 2, tstart + t̃ℓ) ,

and, for Cℓ
λ,

Rt ∩ (−∞, (2λ + 2)wℓ) ⊆ Cℓ
λ ∀t ∈ [tstart + t̃ℓ, tstart + tℓ) .
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Intuitively, (AIsolationArea) ensures that requests outside those from C̃ℓ
λ or Cℓ

λ are far enough
to not interfere with the behavior of a λ-lazy server on the requests from the constructions.
More precisely, we require that during the first 2λ + 2 time units of the constructions, no
outside requests are less than 2λ + 2 points to the right of the starting point, in order not
to interfere with the first requests of C̃ℓ

λ. After that, when the server has already moved
sufficiently far from the starting point, we weaken this requirement and demand only that
no outside requests lie to the left of the starting point. For Cℓ

λ, since the background request
forces the server to move back to the starting point later on, we require an isolation area
of (2λ + 2)-times the region that requests become critical in during the shifted time interval
[t̃ℓ, tℓ), to account for the unknown position of the server.

Under these assumptions, we show that the following invariants are maintained:
(ICost) Alg incurs distance cost of at least ℓ/2 · wℓ during time [tstart, tstart + t̃ℓ) and

(ℓ/2 + 1)wℓ during time [tstart, tstart + tℓ) (to serve requests from C̃ℓ
λ and Cℓ

λ, respectively).
(IIsolation) All requests from Cℓ

λ and C̃ℓ
λ are λ-isolated and critical when Alg serves them.

(IEndPosition) Alg’s server is at position 0 at the end of time tstart + t̃ℓ − 1, and at the
end of time tstart + tℓ − 1 for Cℓ

λ.
For the proof, we set tstart = 0 for simplicity of notation, but note that other requests may
have been released before time tstart.

Proof.

Base case (ℓ = 0)

We first consider the base constructions C0
λ and C̃0

λ, which both consist only of a single
request r = (0; 0, 0). By (AStartPosition), the algorithm’s server starts at position sstart

0 =
w0 = 1.

The request r is λ-isolated at time t = 0, since, by (AIsolationArea), there is no other
open request within [1−λ, 1+λ]. As r also reaches its deadline at time 0, r is served, proving
(IIsolation). Since sstart

t = 1, we have d(r, sstart
t ) = 1, and λ-lazy algorithms have to reduce

the distance to isolated critical requests if possible. Therefore, the only valid next server
position is position 0 = send

t , proving (IEndPosition) (recall that t0 = t̃0 = 1). To serve r,
the server had to incur one unit of distance cost, proving (ICost).

Inductive step (ℓ ≥ 1)

We will prove the induction invariants on Cℓ
λ and C̃ℓ

λ by applying the induction hypothesis to
the copies of Cℓ−1

λ and C̃ℓ−1
λ . To this end, we first verify that the assumptions on the copies

of Cℓ−1
λ and C̃ℓ−1

λ hold, and then show that, using the induction hypothesis, the invariants
remain valid for C̃ℓ

λ and Cℓ
λ.

Assumptions on C̃ℓ−1
λ . We constructed Cℓ

λ and C̃ℓ
λ in such a way that all requests reach

their deadlines within tℓ (resp. t̃ℓ) time units after the start of the construction. Since all
copies of Cℓ−1

λ (resp. C̃ℓ−1
λ ) used in C̃ℓ

λ are tℓ−1 (resp. t̃ℓ−1) time units apart, no requests
from previous copies remain open at the start of any copy of a construction of level ℓ− 1.
Moreover, since the background request rbg from Cℓ

λ is released only at time 2λ + 2, it does
not interfere with (AIsolationArea). It follows that (ANoDelay) and (AIsolationArea) carry
through from C̃ℓ

λ or Cℓ
λ to the copies of C̃ℓ−1

λ . Furthermore, (AStartPosition) on C̃ℓ
λ or Cℓ

λ

implies (AStartPosition) for the first copy of C̃ℓ−1
λ . It follows that we can apply the induction

hypothesis to the first copy of C̃ℓ−1
λ . Specifically, (IEndPosition) then implies (AStartPosition)

for the next copy of C̃ℓ−1
λ . By repeated application of the invariants, (AStartPosition) is

maintained for each copy of C̃ℓ−1
λ , and we can apply the induction hypothesis.
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Assumptions on Cℓ−1
λ . For the copies of Cℓ−1

λ , observe that (ANoDelay) and (AStartPosi-
tion) are maintained by the same reasoning. For (AIsolationArea), note that it is sufficient to
show that there are no requests r ≤ (2λ+2)wℓ−1 +wℓ−(2λ+3)wℓ−1 = wℓ−wℓ−1 aside those
from copies of Cℓ−1

λ during time [(2λ + 2)t̃ℓ−1, (2λ + 2)t̃ℓ−1 + (2λ + 1)tℓ−1) ⊆ [0, t̃ℓ). This
is guaranteed by (AIsolationArea) on C̃ℓ

λ or Cℓ
λ and definition of Cℓ

λ. Hence, the induction
hypothesis can again be applied to all copies of Cℓ−1

λ .

Induction invariants for C̃ℓ
λ. It is easy to see that (IIsolation) carries through from C̃ℓ−1

λ

and Cℓ−1
λ to C̃ℓ

λ, as C̃ℓ
λ contains no other requests. For (ICost), we find that by (ICost) on

the copies of C̃ℓ−1
λ and Cℓ−1

λ together with wℓ = (4λ + 4)wℓ−1, the cost incurred by Alg to
serve requests from C̃ℓ

λ is at least

(2λ + 2)Alg(C̃ℓ−1
λ ) + (2λ + 2)Alg(Cℓ−1

λ )
(ICost)
≥ (4λ + 4)ℓ− 1

2 wℓ−1 + (2λ + 2)wℓ−1

= ℓ

2wℓ ,

as required.
Finally, Alg is at position wℓ − (4λ + 4)wℓ−1 = 0 at the end of time (2λ + 2)tℓ−1 + (2λ +

2)t̃ℓ−1 − 1 = t̃ℓ − 1 by (IEndPosition) on the last copy of Cℓ−1
λ , showing (IEndPosition)

for C̃ℓ
λ.

Induction invariants for Cℓ
λ. First note that we can apply the induction hypothesis to C̃ℓ

λ,
since all assumptions on C̃ℓ

λ hold by definition of the additional requests from Cℓ
λ and the

assumptions on Cℓ
λ.

By (IEndPosition) on C̃ℓ
λ, Alg is at position 0 at the end of time t̃ℓ−1. As Alg is λ-lazy,

the server remains there until another request reaches its deadline. The next such request is
the request rbg = (wℓ; 2λ + 2, t̃ℓ) . The request is not served before it reaches its deadline at
time t̃ℓ, since by (IIsolation) on C̃ℓ

λ, only the triggering request is served in each service prior
to rbg becoming critical.

By (AIsolationArea), there is no request at points within (−∞, (2λ + 2)wℓ) at time t̃ℓ.
Therefore, rbg is λ-isolated when it becomes critical at time t̃ℓ. Alg then serves rbg,
generating at least cost wℓ. It follows that Alg incurs distance cost of at least (ℓ/2 + 1)wℓ

for requests from Cℓ
λ ((ICost) is maintained).

Afterwards, Alg’s server is at a position send
t̃ℓ
∈ (0, 2wℓ), since it must move towards rbg.

Since by (AIsolationArea), there are no open requests within (−∞, (2λ+2)wℓ), each following
request qi := (0; t̃ℓ + i, t̃ℓ + i) for i ∈ {1, . . . , 2wℓ} is λ-isolated at the time it reaches its
deadline. Hence, the distance of ALG’s server to 0 must decrease with each served request (if
possible). It follows that Alg is at position 0 after it serves q2wℓ

at time t̃ℓ + 2wℓ = tℓ − 1,
proving (IEndPosition). ◀

Proof of Theorem 1. Consider any λ(n)-lazy algorithm Alg. For a line with n points, we
use an adversarial construction Cℓ

λ(n). Since Cℓ
λ(n) needs the underlying line metric to have

at least wℓ + 1 = (4λ(n) + 4)ℓ + 1 points, we pick ℓ :=
⌊
log4λ(n)+4(n− 1)

⌋
. Lemmas 5 and 6

now imply

Alg(Cℓ
λ(n))

Opt(Cℓ
λ(n))

>
ℓ

4 = Ω(log n/ log λ(n)) . ◀
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4 Applications

In this section, we establish that the algorithms Bckt [6] and Touitou [21] are λ-lazy with
constant λ on line metrics. This implies a lower bound of Ω(log n) on the competitive ratio of
the algorithms by Theorem 1. Since both algorithms have been shown have competitive ratio
O(log n), the lower bound is tight. The proof details are deferred to appendices A and B.

4.1 The Bckt Algorithm
The algorithm Bckt was presented by Bienkowski et al. [6] (see Algorithm 2). It is O(log n)-
competitive for online service with delay on a line with n equidistant points. Since online
service with deadlines can be seen as a special case of online service with delay, Bckt can
be applied to the deadlines case by modelling deadlines as the request accumulating very
large delay only at the time of its deadline. The algorithm works in phases consisting of
a waiting subphase and a serving subphase. During the waiting subphase, the server waits
at its current position until there is a group of requests whose summed delay cost becomes
roughly equal to the cost of serving them. At this point, a serving subphase starts, during
which the server serves these requests and performs preemptive service to other requests that
are similarly close. Figure 3 shows an illustration of a phase of Bckt. Note that we consider
the line always centered at the server’s position (in terms of the numbering of its points).

To be precise, during the execution, the algorithm partitions the line into O(log n) buckets
of geometrically increasing sizes, starting at the current position of the server. The i-th
bucket to the right (resp. left) of the server is the interval [2i−1, 2i− 1] (resp. [−2i + 1,−2i−1]
on the left), assuming that the points are numbered centered at 0 at the position of the server.
We denote this bucket by B+i (resp. B−i) and call i the label of B±i. For a bucket B, |B|
denotes the number of points it contains, i.e., |B+i| = |B−i| = 2i−1, and we write w(B) for
the total delay cost of all open requests in B, i.e., for a given time t,

w(B) :=
∑

r∈Rt∩B

delayr(t) ,

where delayr is the function mapping a time t to the accumulated delay cost of request r at
time t.

A waiting subphase ends once a bucket becomes full, i.e., w(B) ≥ |B|. At this point,
Bckt identifies the largest quarter-full bucket, i.e., the bucket Bi with the largest label |i|
such that w(Bi) ≥ |Bi|/4. We call |i| the phase label, and Bi the critical bucket of the current
phase. In the distinct deadlines setting, a request immediately fills up its bucket when it
reaches its deadline and all other buckets are empty, hence the critical bucket is the one
containing the request that has just reached its deadline.

In the following serving phase, Bckt defines the cleaning area as the region
⋃|i|+1

j=1 (B−j ∪
B+j) = [−(2|i|+1 − 1), 2|i|+1 − 1]. Bckt serves all requests in the cleaning area and chooses
its new position to be the point ±2|i|−1 within the critical bucket.

▶ Proposition 9. Bckt is 4-lazy.

4.2 The Touitou Algorithm
Similarly to other algorithms for online service with deadlines or delays, Touitou is divided
into services. Every request maintains a level that corresponds to the reluctance of the
algorithm to serve the request. When a request reaches its deadline, a service starts during
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Algorithm 2 Bckt (adapted from [6, Algorithm 1]).

Waiting phase:
split the line into buckets B±i = ±[2i−1, 2i − 1].
wait until there exists a bucket B with w(B) ≥ |B|.

Serving phase:
i← arg max{|j| : w(Bj) ≥ |Bj |/4} (Bi is the largest quarter-full bucket)
serve the area [−2|i|+1 + 1, 2|i|+1 − 1].
if i > 0 : move to 2|i|−1

else move to −2|i|−1

-15 -8

B−4

-7 -4

B−3

-3 -2

B−2

-1-1

B−1

11

B+1

2 3

B+2

4 7

B+3

8 15

B+4

0

cleaning area

server’s movement

quarter-full bucket full bucket

Figure 3 Illustration of the algorithm Bckt for a single phase (adapted from [6, Fig. 1.1]).
Individual requests are not depicted.

which the algorithm identifies a set of requests that are eligible for service. A subset of these
requests is chosen in order of increasing deadlines. Refer to Algorithm 3 for the pseudocode
of Touitou.

To be precise, each request r maintains a level lr that is initially set to −∞. The level of
a request increases only when the algorithm considers serving it, but decides not to, which
is described below. If s denotes the current position of the server, the adjusted level of r is
defined as l̄r := max{lr, ⌈log2 d(r, s)⌉}.

When a request r reaches its deadline, a service S starts with level lS := l̄r + 3. All
requests with adjusted level at most lS are eligible for service. Eligible requests are added
to a list of requests for service in order of increasing deadlines. With each added request,
Touitou computes a 2-approximation for a Steiner tree that connects the requests in the
list to the current server position. Once the solution cost exceeds 4 · 2lS , the algorithm stops
adding requests to the list. The requests in the list are then served on a DFS tour. Eligible
requests that are not served are upgraded to level lS + 1.

A service S is called primary if l̄r ̸= lr, i.e., the distance between r and the server
dominates the level of r. For primary service, the server moves to r after the service.
Otherwise, the server returns to its original position. Intuitively, this is the case if the
request’s location has been inconvenient compared to other requests in past services.

▶ Proposition 12. Touitou is 16-lazy for inputs on a line metric.

Corollary 2 follows immediately from Propositions 9 and 12 and Theorem 1.

▶ Remark 7. For the Touitou algorithm, the upper bound on the competitive ratio was
also expressed in terms of the number m of requests as O(log m). Our construction can
be adapted to show that this bound is also tight. Observe that the Touitou algorithm
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Algorithm 3 Touitou (adapted from [21, Algorithm 1]).

Function UponRequest(r):
lr ← −∞

Function UponDeadline(r):
start a new service S with lS := l̄r + 3
ES ← {q ∈ Rt | l̄q ≤ lS} (eligible requests)
QS ← ∅ (requests chosen for service)
for q ∈ ES in order of increasing deadlines :

add q to QS

P ← SteinerTree(QS)
if cost(P ) ≥ 4 · 2lS :

break from the loop

serve requests in QS using a DFS tour on P

for q ∈ ES \QS :
lq ← lS + 1

if lr ̸= l̄r : move the server to r

not only moves closer to critical requests after primary service, but moves exactly to the
location of the critical request. We can therefore adapt the adversarial input so that only
one request in point 0 is issued at the end of the construction to force the server to its final
destination, instead of 2wℓ consecutive requests. In doing so, the total number of requests in
the adversarial input is reduced to m = O(n), implying a tight lower bound of Ω(log m) for
the competitive ratio of Touitou in the number of requests.

4.3 Generalizations
A natural idea to avoid the logarithmic lower bound is to adapt existing algorithms to be
λ-lazy with growing values of λ. For both Bckt and Touitou, the parameter λ stems from a
budget factor of Θ(λ) for preemptive service. To be precise, both algorithms serve all requests
within range c · λ (for some constant c ≤ 1) of the critical request, and serve requests within
range at most λ of the critical request. We can generalize this to growing functions λ(n) by
replacing the fixed constant λ with a value depending on the size of the metric space. We
can adapt Algorithm 1 accordingly to obtain a new class of strictly λ(n)-lazy algorithms (see
Algorithm 4). Note that the requirement to serve (all) requests within range c · λ(n) ensures
λ(n)-laziness without laziness for asymptotically smaller values of λ – otherwise we cannot
hope to improve competitiveness by Theorem 1.

Algorithm 4 Strictly λ(n)-lazy Algorithm (c ≤ 1).

Function UponDeadline(r):
serve all requests q with d(sstart

t , q) ≤ c · λ(n) · d(sstart
t , r)

(optionally) serve some requests q with d(sstart
t , q) ≤ λ(n) · d(sstart

t , r)
move server to some send

t with d(send
t , r) = 0 or d(send

t , r) < d(sstart
t , r)

It is now easy to adapt the adversarial construction from Section 3 to obtain a generalized
lower bound on the competitive ratio. Note that the following bound becomes ω(log n) for
λ(n) ∈ ω(1), i.e., there is nothing to be gained by scaling λ with n.
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▶ Remark 8. Every strictly λ(n)-lazy algorithm has competitive ratio Ω(λ(n) · log n/ log λ(n)).

Proof sketch. We can adapt the adversarial construction from Section 3 to exploit the
increased budget for preemptive service. To do so, it suffices to add “decoy” requests with
a late deadline within range c · λ(n) around each critical request. In addition to the factor
of Ω(log n/ log λ(n)) proven in Theorem 1, the strictly λ(n)-lazy algorithm suffers a loss of
factor c · λ(n) for preemptive service, which was not considered in the proof of Theorem 1.
This results in a lower bound of Ω(λ(n) · log n/ log λ(n)) on the competitive ratio of every
strictly λ(n)-lazy algorithm. ◀

5 Conclusion

In this paper, we established a logarithmic lower bound on the competitive ratio of λ(n)-lazy
algorithms for online service with deadlines (or delay) on uniform line metrics. This bound
applies to the Bckt and Touitou algorithms, showing that their competitive ratios fall
in Θ(log n). Moreover, we demonstrated that the competitiveness of Bckt and Touitou
cannot be improved by scaling the parameter λ with the size n of the metric space.

Our results highlight the inherent limitations of current algorithms and suggest that
achieving a constant competitive ratio may be challenging. As evidenced in Section 4.3,
avoiding the logarithmic lower bound requires an approach significantly different from the
current state of the art for deterministic (or randomized) algorithms.

It remains an open question whether the super-constant lower bound demonstrated in
this paper can be extended to a general bound for all online algorithms. While it may be
possible to improve the upper bound of O(log n), there is evidence that the bound is tight:
No better deterministic or randomized algorithms are known for metric spaces other than
HSTs of bounded depth [1]; the same holds for related problems, such as RBM [11, 12] and
special cases of OSD such as MLA [3]. Notably, for the directed online Steiner tree problem,
the directed version of MLA, a nearly-logarithmic lower bound has been established [19].

Also note that, currently, no separation is known between the deadlines and delay settings,
or between deterministic and randomized algorithms.
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A Laziness of Bckt

In this section, we restate and prove the laziness property of the Bckt algorithm.

▶ Proposition 9. Bckt is 4-lazy.

Proof. To prove that Bckt fits the description of a 4-lazy algorithm as defined in Algorithm 1,
we need to show the following in the deadlines setting:

Bckt does not perform any actions while no request has reached its deadline.
When a single 4-isolated request r reaches its deadline, Bckt serves only r and, if possible,
moves closer to r.

Since Bckt waits for a bucket to become full before serving any requests or moving the
server, it does not perform any actions while no request has reached its deadline.

In the case where a request at the server’s current position becomes critical (i.e., reaches
its deadline), Bckt does not initiate a serving phase, but just serves the request without
moving. This aligns with the requirements for a 4-lazy algorithm.

Now consider the case where a single 4-isolated request r reaches its deadline at a time t

with sstart
t ̸= xr (i.e., the server is not at r when r becomes critical). Let i be the label of the

bucket that contains r. Since, in the deadlines setting, no requests other than r have positive
delay cost, the critical bucket must be Bi. Bckt serves all requests within the cleaning area⋃

1≤j≤|i|+1(B−j∪B+j) ⊆ (sstart
t −4d(r, sstart

t ), sstart
t +4d(r, sstart

t )). Since r is 4-isolated, Bckt
serves only r, as required for a 4-lazy algorithm. The next server position send

t is the closest
point of the critical bucket Bi (the point ±2|i|−1), which satisfies d(send

t , r) < d(sstart
t , r).

Therefore, the server moves closer to the critical request if possible. ◀

B Laziness of Touitou

In this section, we restate and prove the laziness property of the Touitou algorithm. In
particular, we observe that on line metrics, the level of every request remains at the initial
value −∞, and that the resulting simplified algorithm is 16-lazy.

▶ Lemma 10. During a service S of Touitou, triggered by a request r with lr = −∞, only
requests q ∈ Rt with d(q, sstart

t ) < 16d(r, sstart
t ) are eligible for service.

Proof. Every request q that is eligible for service must satisfy lS ≥ l̄q ≥ ⌈log2 d(q, sstart
t )⌉.

Given that lr = −∞, we know that lS = l̄r + 3 = ⌈log2 d(r, sstart
t )⌉+ 3. It follows that

d(q, sstart
t ) ≤ 2lS = 2⌈log2 d(r,sstart

t )⌉+3 < 16d(r, sstart
t ) . ◀

▶ Lemma 11. On a line metric, Touitou never increases levels of requests.

Proof. During a service S, only requests q with d(sstart
t , q) ≤ 2lS are eligible for service. On

a line metric, the cost of an optimal Steiner tree connecting any such requests to sstart
t is

at most 2 · 2lS . It follows that the cost of a 2-approximation for the Steiner tree problem
on this instance is bounded by 4 · 2lS . The loop over eligible requests therefore does not
break early, meaning that all eligible requests are selected for service. Since the level of a
request is only increased if it is eligible for service but not served, the level of a request is
never increased. ◀

▶ Proposition 12. Touitou is 16-lazy for inputs on a line metric.
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Proof. As before, we need to show that for inputs on a line metric, the following properties
hold:

Touitou does not perform any actions while no request has reached its deadline.
When a single 16-isolated request r reaches its deadline, Touitou serves only r and, if
possible, moves closer to r.

Touitou only performs actions when a request reaches its deadline during the call to
UponDeadline, as required.

Now consider the case where a single 16-isolated request r reaches its deadline. By
Lemma 11, we have lr = −∞. We can therefore apply Lemma 10 to find that in the following
service S, only r is eligible for service. Hence, only r will be served.

Consider the case where the server is at the location of r at time tr. By definition
of Touitou, the server never moves farther away from the critical request, proving that
d(send

tr
, r) = 0. In any other case, since all levels are −∞ (Lemma 11), the adjusted level of

each request is dictated by its distance to the server. It follows that the service is primary,
and the server moves to r. ◀
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