Space-Efficient Depth-First Search via Augmented
Succinct Graph Encodings

Michael Elberfeld £
THM, University of Applied Sciences Mittelhessen, Gieflen, Germany

Frank Kammer &
THM, University of Applied Sciences Mittelhessen, Gieflen, Germany

Johannes Meintrup &
THM, University of Applied Sciences Mittelhessen, Gieflen, Germany

—— Abstract

We call a graph G separable if a balanced separator can be computed for G of size O(n®) with
€ < 1. Many real-world graphs are separable such as graphs of bounded genus, graphs of constant
treewidth, and graphs excluding a fixed minor. In particular, the well-known planar graphs are
separable. We present a succinct encoding of separable graphs G such that, after the encoding is
computed, any number of depth-first searches (DFS) can be performed from any given start vertex,
each in o(n) time and o(n) bits in the word RAM model. After the execution of a DFS, the succinct
encoding of G is augmented such that the DFS tree is encoded inside the encoding while maintaining
succinctness. Afterward, the encoding provides common DFS-related queries in constant time. These
queries include queries such as lowest-common ancestor of two given vertices in the DFS tree or
queries that output the lowpoint of a given vertex in the DFS tree. Furthermore, for planar graphs,
we show that the succinct encoding can be computed in O(n) bits and expected linear time, and
a compact variant can be constructed in O(n) time and bits. For other separable graph classes G
the runtime and space usage depends on the specific algorithms used to find balanced separators in
graphs of G.

2012 ACM Subject Classification Theory of computation — Data structures design and analysis;
Theory of computation — Graph algorithms analysis

Keywords and phrases Depth-First Search, Succinct, Space Efficient, Separable Graphs, Planar
Graphs, Table Lookup, r-Division

Digital Object Identifier 10.4230/LIPIcs. ISAAC.2025.29

Related Version Extended Version: https://arxiv.org/abs/2504.19547

1 Introduction

Depth-first search (DFS) in graphs forms the backbone of algorithms for a number of
applications like finding vertex or edge cuts. A depth-first search implicitly computes a
tree (or forest), over the vertices of the graph that is called a DFS tree (or forest), which
has crucial structural properties that are commonly used for applications. DFS that runs
in linear time in the number of vertices and edges utilizes two folklore data structures: a
stack to keep track of the current paths into the graph and an adjacency list to efficiently
iterate over the neighbors of a given vertex. Standard implementations of this approach
use O(nlogn) bits of space for the stack and O(logn) bits for each vertex identifier, where
n refers to the number of vertices in a given graph. Lowering the space requirements for
depth-first search to O(n) bits while still maintaining a (nearly) linear runtime was the aim
of a series of works during the last years: one of the first algorithms is due to Asano et al. [3]
who reduced the space to O(n) bits, but increased the runtime to O(mlogn), where m refers
to the number of edges in a given graph. After several improvements [4, 7, 9] to this result,
Hagerup [13, Theorem 5.4] presented the current state-of-the-art algorithm using O(n) bits
and O(n + mlog" n) time.

© Michael Elberfeld, Frank Kammer, and Johannes Meintrup;
37 licensed under Creative Commons License CC-BY 4.0
36th International Symposium on Algorithms and Computation (ISAAC 2025).
Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 29; pp.29:1-29:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:michael.elberfeld@mni.thm.de
https://orcid.org/0000-0003-4179-7557
mailto:frank.kammer@mni.thm.de
https://orcid.org/0000-0002-2662-3471
mailto:johannes.meintrup@mni.thm.de
https://orcid.org/0000-0003-4001-1153
https://doi.org/10.4230/LIPIcs.ISAAC.2025.29
https://arxiv.org/abs/2504.19547
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

29:2

Space-Efficient Depth-First Search via Augmented Succinct Graph Encodings

In many circumstances, we do not need to be able to handle input graphs of any kind.
Instead, the input graphs have a special structure that we can utilize to devise algorithms
that are more efficient than the ones handling the general case. Typical examples are planar
graphs, which can be drawn in the plane without edge crossings, or generalizations of it
like graphs of bounded genus or graphs excluding a fixed minor. What these graphs have
in common is that they are sparse, meaning m = O(n). As there exists a DFS that uses
O(n 4+ m) time and bits on general graphs, as stated by Hagerup [13, Theorem 4.1] and
Banerjee et al. [4, Lemma 2], we can execute a DFS with O(n) time and bits on sparse
graphs. If we shift our attention to o(n)-bit DFS algorithms, we can observe some strong
indications from complexity that no sublinear space polynomial time algorithm can exist
for a special variant of DFS, called lezicographical DFS [3, 9]. A concrete sublinear space
algorithm for this problem restricted to planar graphs has an unwieldy massive polynomial
runtime [18], due to the reliance on the logspace reachability result of Reingold [27].

As mentioned above, computing a DF'S is often just the beginning or part of an algorithm
solving more involved graph problems like computing biconnected and strongly-connected
components. Typically, these applications of DF'S store certain meta information that is
computed while traversing the graph. Examples are pre-order numbering that numbers the
vertices in the order of their exploration [28], and lowpoints that help to identify vertex
and edge cuts [17]. If we want to extend existing approaches for computing DFS that are
efficient in both space and time to this more general setting, we can not easily store the meta
information of a vertex using any standard encoding. Again, this would use O(logn) bits for
each vertex and, hence, creates a total memory footprint of ©(nlogn) bits. While there exists
space-efficient techniques for, e.g., computing pre-order numbers or lowpoints [7, 13, 20], they
require significantly more resources than the space-efficient DFS variants, e.g., the algorithm
Chakraborty et al. [7] for computing lowpoints uses ©(n) bits and ©(mlognloglogn) time.

In this paper we present both (1) a data structure that is able to keep meta information
we compute for the vertices of a graph space-efficiently and (2) an approach for computing
DFS traversals space-efficiently as well as extensions to some common applications. Our
results are applicable to classes of separable graphs which have balanced separator size O(n*)
for some € < 1. This covers, in particular, planar graphs, graphs of bounded genus and
graphs excluding a fixed minor.

Data Structure: Nested Divisions and Augmentations. An encoding of an element from a
universe U is called succinct (compact) if it uses Z+o(Z) (Z+ O(Z)) bits where Z = log, |U].
In this paper we present a succinct encoding for separable graphs (precisely defined in
Section 2.1), such as planar graphs, that provides the following functionalities. After the
encoding is initialized, a DFS can be executed (from any given start vertex) in o(n) time and
o(n) bits and afterward information of the executed DFS can be queried in constant time.
If needed, a new DFS can be computed at any given time. Such information includes the
pre-order numbering and lowpoints of a vertex, and lowest-common ancestor of two vertices.
Furthermore, for planar graphs, we show that the succinct encoding can be computed in
expected linear time with O(n) bits used during the construction step, and a compact variant
can be constructed in O(n) time and bits.

The data structure we present, called succinct nested division, extends a succinct encoding
of separable graphs by Blelloch and Farzan [6]. The encoding of Blelloch and Farzan is built
on dividing the input graph into smaller “mini pieces”. Mini pieces are, in turn, divided into
even smaller “micro pieces” that are small enough such that relevant structural information
about them can be pre-computed and kept in a lookup table. The key property of this

M. Elberfeld, F. Kammer, and J. Meintrup

approach is that there are only few “boundary vertices” in each piece that are contained in
multiple pieces. This suggests algorithms that, like the data structure itself, switch between
these three levels. In fact, different algorithmic approaches are needed for different levels to
maintain our target space and time bounds.

We augment the encoding of Blelloch and Farzan with additional data structures and show
that this can be used to design more complex queries than the standard graph access queries
provided by them. Intuitively, the boundary vertices act like relays since any interaction
between two non-boundary vertices in different pieces must necessarily pass through them.
Consequently, long-range dependencies (e.g., long paths), are efficiently mediated by the
sparse set of boundary vertices. Hence, pieces can often be considered in isolation with
few interactions between them, and all interactions between vertices of different pieces are
communicated via boundary vertices. To capture the idea we intuitively call a property 7
strongly local if, for all non-boundary vertices u, m(u) can be evaluated only with information
stored with the boundary vertices together with a small amount of information that is
directly encoded in P, typically for us there exists a boundary vertex v of P such that
|7(u) = 7(v)] = O(|PY).

For circumventing the trivial lower bound of 2(nlogn) on the number of bits required
for encoding members of a family of labeled graphs with n vertices, we work with so-called
unlabeled graphs. This means that we are able to choose our own vertex labels for the
encoding so that we can construct a succinct encoding for separable graphs that uses
©(n) bits [6]. Such a setting is very common, e.g., used by Blelloch and Farzan’s original
encoding [6] as well as other works [1, 2, 8, 11, 19, 22, 25].

Algorithms: Depths-First Search and Applications. Our succinct encoding for separable
graphs is constructed such that a DFS can be performed directly on the encoding from any
given starting vertex. Afterward, various queries regarding the DFS traversal are available.
In particular, we directly provide the necessary queries that, e.g., Hopcroft and Tarjan’s
biconnected-component algorithm [17], or Schmidt’s algorithm for chain decompositions [28]
require. We effectively provide an interface that allows us to implement typical standard
algorithms without the need to design specialized techniques. The following theorem sum-
marizes our main results. Note that the runtime and bits are sublinear once the encoding is
computed. The operations presented in it are only a set of examples of queries that have the
previously outlined intuition of strongly local, chosen such that the previously mentioned
standard algorithms can be executed directly. Without loss of generality, we assume that all
graphs we work with are connected. If a given graph is not connected, one can apply all our
results to each connected component separately.

» Theorem 1. Let G be a separable graph. There exists a succinct encoding D of G
that provides neighborhood iteration, adjacency and degree queries in constant time per
element output. Additionally, it provides the operation dfs(u) that executes a DFS in
O(n/ poly(loglogn)) = o(n) time and o(n) bits from a given start vertex u such that at all
times the encoding remains succinct. After the execution of a DFS the following queries are
available in constant time for the last computed DFS tree.

children(u) iteration over all children of w.

parent(u): output the parent of u.

pre(u) /post(u): return the pre-/post-order number of vertex u.

num-descendants(u): return the number of descendants of u.

depth(u): return the depth of .

lowpoint(u): return the lowpoint of u.

lca(u,v): return the lowest-common ancestor of vertices u and v.

29:3

ISAAC 2025

29:4

Space-Efficient Depth-First Search via Augmented Succinct Graph Encodings

Replacing succinct with compact in Theorem 1, and additionally restricting G to be
a planar graph, the encoding can be constructed with O(n) bits and in O(n) time. The
change from succinct to compact is due to our wish to avoid the use of a certain succinct
dictionary data structure of Raman et al. [26] relying on hashing functions that can only be
computed in expected linear time. When we replace the dictionary with a simpler variant of
Baumann and Hagerup [5], we obtain a compact encoding that can be computed much more
easily. When we are fine with expected linear time, we can use the dictionary of Raman
et al., and thus can construct the succinct encoding in O(n) bits and expected O(n) time.
Subsection 3.3 presents the details regarding the construction steps. For other graph classes
the construction time and bits depend on the runtime of the respective separator algorithms
used as subroutines to divide the input graph.

» Corollary 2. Let G be a planar graph. There exists a compact (succinct) encoding of G
that can be constructed in O(n) time (expected time) and O(n) bits that provides the same
functionalities as the encoding of Theorem 1.

Related Work on Graph Divisions. Recursive divisions have been used as the basis for
algorithms and data structures for decades, commonly based on the so-called r-division for
planar graphs, defined precisely in the next section. These divisions build on a recursive
application of the linear-time separator algorithm of Lipton and Tarjan [24], and the improve-
ment of Goodrich [12] who showed that the entire recursively application can be executed in
linear time — a standard approach would use O(nlogn) time. Recursive divisions have been
successfully applied to algorithmic problems such as maximum flow and minimum cut and
all-pairs shortest path [10]. Applications in the field of data structures include decremental
data structures for connectivity [15, 16] where decremental refers to modifications of a graph
that remove vertices or edges. None of the mentioned results have a focus on space-efficiency,
and internally they use other techniques compared to our approach.

Structure of the Paper. Section 2 details our first contribution, the nested-division data
structure and augmented variants of it. Subsequently, in Section 3, we present the sublinear-
space and time execution of DFS and related applications, executed directly on our data
structure.

2 Nested Divisions

The present section contains an overview of what we view as a nested division, beginning
with the graph-theoretic properties they provide us with (Subsection 2.1), and continuing
how Blelloch and Farzan used nested divisions as a data structure to encode separable graphs
(Subsection 2.2). Finally, we extend the section with our ideas of abstract augmentations in
nested divisions we provide to allow complex queries (Subsection 2.3). We use the notation
[i] for any natural number ¢ to refer to the set {1,...,4}.

2.1 Graph-Theoretic Properties of Nested Divisions

We describe a slightly generalized variant of the well-known concept of r-divisions sketched
in the introduction. We start with a small set of definitions. A balanced separator of a
graph G = (V, E) is a set of vertices S C V such that each connected component of G[V \ S|
contains at most a constant fraction of the vertices. The exact constant does not matter
to us. We call a class of graphs G that is closed under taking vertex induced subgraphs

M. Elberfeld, F. Kammer, and J. Meintrup

O(n®)-separable if there exists a constant e with 0 < e < 1, such that each G = (V,E) € G
has a balanced separator S C V of size O(n€). We simply say that a graph or class of graphs
is separable if the size of the balanced separator is of no particular concern to us.

» Definition 3 (Relaxed Division). Let G be a graph belonging to an O(n)-separable class

of graphs for some 0 < ¢ < 1. An (a,r)-relaxed division is a decomposition of G into a

collection P of subgraphs, called pieces, satisfying:

1. Each piece is a subgraph with at most v vertices such that there are ©(n/r) pieces in total.

2. Every edge is assigned to exactly one piece (containing both endpoints of the edge).

3. Each piece has O(ar®) boundary vertices, which are vertices shared between different
pieces.

We call o the relaxation and r the piece size. Edges between two boundary vertices are called

boundary edges, edges between two non-boundary vertices non-boundary edges and all other

edges transitional edges.

See Figure 1 for a sketch of such a division. The reason we introduce the relaxation «, is

due to our desire to achieve space-efficiency when algorithmically constructing a division.

There exists an algorithm that computes a (logn, r)-relaxed division via recursive separator
searches that uses only O(n) bits and, for planar graphs, O(n) time [21]. If the construction
step of our encoding must not be space-efficient, one can of course use a standard non-space
efficient algorithm [12, 23], and therefore have a relaxation factor of v = 1; for our application
a factor of o = logn allows for a more (space-)efficient computation of our final encoding,
buy when using the encoding makes no difference. Common applications of divisions use
them in a recursive fashion, and so do we. In particular, we construct for each piece of some
(a, r)-relaxed division a (1,7)-relaxed division where 7 < r. For this, we define a nested
division for a separable graph G as follows.

» Definition 4 (Nested Division). Let G be a graph belonging to an O(n®)-separable class of
graphs for some 0 < e < 1. An («,r,7)-nested division of G is an («,r)-relaxed division of G
into pieces P = {P1, Py, ...} such that for each piece P; € P we have a (1,7)-relaxed division
P;. We call pieces of P mini pieces and pieces of some P; micro pieces.

If we have an («, r, 7)-nested division for a graph G each vertex can be viewed as being
part of three levels:

graph: Each vertex is part of V.

mini: Each vertex of V' is assigned to one or more mini pieces.

micro: Each vertex of V is assigned to one or more micro pieces.

Tpig) 10

Figure 1 A sketch of a division of graph into 6 pieces of at most 13 vertices. The edges of each
piece are colored with a distinct color. Boundary vertices are gray squares, and non-boundary
vertices black circles. Non-boundary edges are solid, transitional edges dotted, and boundary edges
dashed.

29:5

ISAAC 2025

29:6

Space-Efficient Depth-First Search via Augmented Succinct Graph Encodings

Given an («,r, 7)-nested division for a graph G we can categorize all vertices as follows.
We call a vertex mini (micro) boundary if it is a boundary vertex in a mini (micro) piece,
and mini (micro) non-boundary if it is not a boundary vertex in a mini (micro) piece. Edges
are categorized similarly: an edge is called mini (micro) boundary edge if both endpoints
are mini (micro) boundary vertices, mini (micro) non-boundary edge if both endpoints
are mini (micro) non-boundary vertices, and mini (micro) transitional edge otherwise. We
routinely drop the specifier mini or micro if we make statements that apply to both mini and
micro levels. We are interested in bounding the number of total occurrences of mini (micro)
boundary vertices among all mini (micro) pieces, referred to as mini (micro) duplicates.
Let P be an («, r)-relaxed division constructed for an O(n¢)-separable graph G. As each
piece has O(r€) boundary vertices, the total number of duplicates is O((n/r)(ar€)). Thus,
for a nested division we have O(an/r'=¢) (duplicates of) mini boundary vertices, and
O((n/r)(r/7) (7)) = O(n/#7¢) (duplicates of) micro boundary vertices. We refer to a more
detailed description of the reasoning behind these bounds to Blelloch and Farzan [6]. We
summarize it in the following lemma.

» Lemma 5 ([6]). Let D be a («,r,7)-nested division constructed for an O(n€)-separable
graph G with relazation parameters o, and piece sizes r and 7. Then there are O(an/r1~¢)
(duplicates of) mini boundary vertices and O(n/71=¢) (duplicates of) micro boundary vertices.

For all of our use cases of (a,r,7)-nested divisions we have « = O(logn), r = poly(log n)
and 7 = poly(log log n), with the exact polynomial chosen such that we have O(n/ poly(logn))
(duplicates of) mini boundary vertices, and O(n/ poly(loglogn)) (duplicates of) micro bound-
ary vertices. For the remainder of our paper, when we refer to a nested division we refer to a
(log n, poly(logn), poly (log log n))-nested division.

2.2 Nested Divisions as Data Structures

As we now describe concrete data structures, we fix our model of computation to the word
RAM model with word size Q(logn). For the rest of the section, let G be a separable graph
and assume that a nested division is given for G. We begin by outlining the most basic
functionality we require for a nested division when used as a data structure to encode a
graph. Blelloch and Farzan presented a succinct encoding for unlabeled separable graphs that
effectively uses a nested division at its core, and the framework we present in this subsection
is based on their work [6], defined slightly more general to allow for our later augmentations.
While they do not use an a-relaxation factor for the initial (a,r)-relaxed division of the
nested division (they use their own variation of a standard recursively constructed r-division),
their framework works with « = logn without any modifications. Their general idea is to
succinctly encode the nested division, and encode each piece at the micro level as an index
into a lookup table. Boundary vertices are encoded via additional data structures that use
standard non-space efficient techniques, e.g., using arrays and lists. Combined with a succinct
bidirectional mapping that maps a vertex to its different occurrences in each level (graph,
mini and micro) they realize neighborhood, adjacency and degree queries.

To describe the functionality of these bidirectional mappings, we introduce a labeling of
pieces and vertices. Each mini piece P; € P is uniquely identified by an id i. Analogously, the
relaxed division constructed for each P; is identified as P;. Each micro piece P; ; is identified
by a tuple (4, j) with j indicating it is the piece with id j, i.e., piece P; ; € P;. Each vertex
u € V has a graph label assigned from [n], a mini label u; assigned from [r] in each mini piece
P, it is contained, and a micro label assigned from [7] in each micro piece P ; it is contained.
When we talk about a vertex u € V' we always assume that u is identified by its graph label.

M. Elberfeld, F. Kammer, and J. Meintrup

The mappings that are provided are as follows: given a vertex u € V output the tuples (4, u;)
such u; is the mini label of u in the piece P;. Analogously for a given tuple (i, u;) where ¢
refers to a mini piece P; and wu; is the label of some vertex of P;, output the tuple (j,u; ;)
where u; ; is the micro label of vertex u; in a micro piece P; ;. Note that each of these queries
can output more than one element if the vertex is a boundary vertex at the respective level.
For less verbose writing we implicitly assume that we always have access to all mappings
outlined in this paragraph and only make distinctions between the different types of labeling
if necessary. We refer to the set of all outlined mappings as translation mappings.

» Lemma 6 (Succinct Nested Division [6]). Let G € G be a graph and G a separable class of
graphs. There exists a succinct data structure D of G that represents a nested division of G
such that level mapping queries and level graph queries are provided in constant time.

2.3 Augmenting Nested Divisions

In the following we want to augment the nested division of Lemma 6 with various capabilities.
For this we analyze the runtime and memory budget we have when our goal is to run
some algorithms in o(n) time and with o(n) bits, followed by outlining necessary techniques.
As stated, we construct our nested divisions with r = poly(logn), 7 = poly(loglogn) and
a = logn. This means that for each of the O(n/ poly(logn)) mini boundary vertices we have
a memory budget of poly(logn) bits. Analogously, we have a budget of poly(loglogn) bits
for each of the O(n/ poly(loglogn)) micro-boundary vertices. This means, we have a budget
of poly(log n) bits for each mini piece and poly(loglogn) for each micro piece. These bounds
allow us to use more space than what is needed for our applications, as we only require
O(logn) bits per mini boundary vertex (and mini piece), and O(loglogn) bits per micro
boundary vertex (and micro piece) for our applications. We have the same budget for the
runtime as we do for memory, but for our application only require (amortized) constant time
per boundary vertex.

For micro pieces we use a table lookup technique for constant time computations to
subproblems. Micro pieces are so tiny, that any query we require can be described by a
constant number of words in the word RAM model. We assume that we have a lookup table
available that lists all graphs with at most 7 vertices of the separable graph class G we work

with. The table lists all graphs modulo isomorphism, i.e., no two entries are isomorphic.

This is not enough for us, as we require additional data for the boundary vertices. Instead,
we require the graphs of the lookup table to be partially augmented, meaning for at most
b = O(7€) vertices of each graph G’ of the lookup table we store a bit string (called a partial
vertex augmentation) of some fixed length ¢ = O(log7), and an additional bitstring of length
O(bl) (called a partial graph augmentation).

Using a lookup table that lists all partially augmented graphs with at most 7 vertices, we
can realize what we refer to as swapping indices. Each micro piece is encoded as an index

into the lookup table referencing some graph G’ together with its partial augmentations.

When we want to update values stored for (the micro boundary vertices of) the micro piece
we concretely do this by changing the index we store. Let P; ; be some micro piece encoded
as an index z into the lookup table. To update an augmented value in the micro piece, e.g.,
color a boundary vertex, we can replace the index z with a different index y. See Figure 2
for an example. We have to take care while constructing the table that any changes of the
partial augmentation (i.e., the values stored for boundary vertices) does not change the
internal labels of the graph, i.e., the names of the vertices stay the same independent of the
changes we make to the data stored for boundary vertices. For the rest of our paper we
always assume that we have access to such a lookup table.

29:7

ISAAC 2025

29:8

Space-Efficient Depth-First Search via Augmented Succinct Graph Encodings

Execute Query
Pij—x oot T » Pij—y

Assign color ¢ to vertex 4, add 4 to list L

Bia} —B1{a}
o—m| . o—mi)
L = [2] L = [2, 4]

T Y

Figure 2 Initially the micro piece F; ; is stored as an index x of the table lookup, sketched below
with two entries explicitly shown. The graph shown in the table has regular vertices shown as circles,
and the vertices for which we can store binary strings shown as rectangles. We have a list L for each
graph of the table that has enough capacity to store some values. We execute a query that takes as
input the index z, the vertex label 4 and color ¢ to assign to vertex 4. It returns the index y of the
lookup table such that y stores the state that represents the execution of this query when applied
to the graph stored at index . We then swap the index x stored for P;; with the index y in our
succinct encoding.

3 Depths-First Search in Sublinear Time and Space

We present our techniques for executing a DFS directly on the succinct encoding. First, we
show how the DFS is computed such that a so-called palm tree is encoded inside the nested
division (Subsection 3.1), followed by our description of how to provide queries for so-called
strongly local values (Subsection 3.2). As examples for strongly local values we describe
the technical realization of providing queries regarding the meta-information of a DFS, e.g.,
pre-order numbering, lowpoints, lowest-common ancestors, and more. We end the section
with a description of how our main results can be realized.

For this section, let G = (V, E) be a separable graph given as a succinct nested division
D (Lemma 6). We begin with the description of how to execute a DFS to compute a palm
tree T that is a directed version of G such that the edges E are directed according to the
DFS traversal, and by their direction partitioned into two sets, tree edges and back edges.
Effectively, a palm tree is a DFS tree with additional back edges. Each vertex u € V(G) is
assigned a pre-ordering number pre(u) indicating at which point in time it was traversed for
the first time. Analogously, a post-ordering number post(u) is indicating at which point in
the time DFS backtracked past the vertex u (i.e., all children of u have been fully explored).
All edges (u,v) of the palm tree are directed such that, for a tree edge {u,v} of the DFS
tree, it holds that pre(u) < pre(v), and for all other edges {u, v} (the back edges), it holds
that pre(v) < pre(u). In the next subsection we compute some palm tree T directly on D
and afterward provide constant time queries regarding T such as iteration over all children
of a vertex u . If we are only interested in the directed tree edges of T', we refer to it as the
DFS tree.

3.1 Iterator based DFS to compute a Palm Tree

In addition to the standard stack-based approach for implementing a DFS, there is also an
iterator approach that stores for each vertex an iterator of the adjacency list. We implement
the second variant. Let T" be the palm tree constructed by some DFS traversal. See Figure 3
for an example of the following description. We say T enters a piece P if the there exists tree
edges (u,v) and (v, w) with only the edge {v, w} part of the piece P, or if edge {v,w} is part
of the piece P, (v,w) is a tree edge, and v is the root of T. We then call v an entry vertex of

M. Elberfeld, F. Kammer, and J. Meintrup

Figure 3 The figure shows four DFS states of some piece P. In the first state, no vertex inside P
is visited yet, and we have just arrived at a boundary vertex of P (colored red). We then advance
the DFS until the next boundary vertex is visited, colored violet. For micro pieces, we advance it
via one query to the lookup table. We later arrive at the same piece again, this time via the blue
boundary vertex. We enter the piece, and encounter the situation of the null-exit, thus we fully
explore all vertices belonging to the subtree rooted at the blue vertex. Finally, we backtrack to the
piece P via the violet vertex, and find a part of the piece not yet visited. We advance the state until
the orange boundary vertex is visited and leave the piece again. The entry-exit pairs of the piece
are (+,), (+, null) and (., .). Tree edges are shown as solid lines, and back edges as dotted lines.

P. Furthermore, we say T exits P if there exist tree edges (u,v) and (v, w) with only {u, v}
part of P and {v, w} not part of P. We then call v an exit vertex of P. We say T starts at a
piece P if the tree edge (u,v) exists with u the root of T, v is the first vertex visited after u
and {u,v} is part of P. Note that the entry of a piece is by definition a boundary vertex of
some piece P, or the root of T'. For us there is no difference between the two cases of entry
vertex (i.e., boundary vertex or root). We refer to an exit vertex together with its matching
entry vertex as an entry-exit pair. For easier description we refer to an entry vertex that has
no matching exit vertex as part of an entry-exit pair where the entry is mapped to some
special symbol, called the null exit. The following observation directly follows.

» Observation 7. Let b be the number of (micro/mini) boundary vertices contained in a
(micro/mini) piece P and T any palm tree. Then there are O(b) entry-exit pairs associated
with P.

Let P be some micro piece stored as an index to the lookup table. We define a partial
DFS state of P as a coloring of the vertices of P with the colors unvisited (white), currently
visited (gray) and finished (black), and a constant number of (possibly empty) ordered sets
of entry-exit pairs, ordered by, e.g., the pre-/and post-order numbering of their respective
entry vertex, with ties being broken arbitrarily.

By the capabilities of the table lookup outlined in the previous section, an index of the
lookup table is able to encode this information. The idea is that, when the DFS enters a
micro piece P, categorized by some index = of the lookup table encoding P together with
its partial DFS state, we obtain in O(1) time an index y of the lookup table encoding P

together with the next partial DFS state. We then swap out the index x with the index y.

Note that this query depends on: the piece P, the coloring of the vertices of P, the ordered
set of entry-exit pairs and the vertex we used to just enter the piece P (or the vertex we
just backtracked to). This information is enough to obtain a new DFS state that correctly
advances the DF'S through P while considering the current partial DFS state. Since such
an advancement results in the DFS traversing up to (or backtracking to) the next micro
boundary vertex we obtain a new entry-exit pair in O(1) time. There are multiple possible

29:9

ISAAC 2025

29:10

Space-Efficient Depth-First Search via Augmented Succinct Graph Encodings

viable partial DFS states that one could obtain by this operation, but we store one fixed
state per entry of the lookup table, which is all that we require. See Figure 3 again for a
visualization of how the DFS progresses through a piece. The change from one state of the
figure to the next is done in O(1) time for micro pieces.

A final note considers marking vertices as gray or black in micro pieces. When we visit a
micro boundary vertex u, we must color u in all micro pieces P; ; that contain v (as micro
label w; ;). The translation mappings allow us to iterate over all micro pieces that contain
u; ; in constant time per element output. For each such element output we must switch out
the respective index of the micro pieces via the lookup table. This is done exactly twice
(white to gray, and gray to black) per duplicate of a micro boundary vertices, and thus the
time is linear in the number of total micro boundary vertices.

We now describe the data structures required for implementing the DFS. We begin with
a description of how to implement an iterator over the neighborhood that can be paused and
resumed. Note that while the nested division D provides neighborhood iteration (Lemma 6),
it is not assumed that this iteration can be paused and continued at a later point in time
without starting the process from the beginning. First, we describe this process for micro
boundary vertices u; in some piece P;. For each such u; store an array A containing the
indices of each micro piece P;; that contains u; (as micro label u; ;). An iterator for u,
now consists of an index j of A together with an index into the adjacency array of u; ;
in P; ;. Note that the array A contains many entries for each micro boundary vertex. By
Lemma 5 this is asymptotically no problem, as the number of entries in all arrays A depends
linearly on the number of micro boundary vertices. The arrays A can be built in sublinear
time and space by iterating over all micro pieces, and inside each micro piece iterating over
all micro-boundary vertices. We store the analogous data structure for all mini boundary
vertices. We now must store the state of each iterator during the DFS. Construct an array
storing for each boundary vertex the state of the iterator over w’s neighborhood together
with u’s parent in the DFS tree and the color visited/unvisited. This uses O(logn) bits per
mini boundary vertex. For each mini piece P; we construct arrays storing the respective
information of micro boundary vertices. As each vertex u (identified via mini label u;) in P;
has a degree of O(r) and must have its parent in P; (identified by some mini label v; € [r]),
this information can be stored with O(logr) = O(loglogn) bits per micro boundary vertex.
All other vertices are handled by the lookup table. All other data structures use o(n) bits.

The DFS naturally computes the palm tree, but it remains to show how to store it
such that afterward we can execute common queries such as iteration over all children (i.e.,
incident tree edges), or iteration over all back edges that start/end at a given vertex. We
describe this for iteration over all children of a vertex, the other queries are realized in the
exact same fashion. For micro non-boundary vertices these queries can directly be provided
by the table lookup, or by recursive structure. We thus focus on the boundary vertices. For
each mini boundary vertex u we maintain a list L containing the ids of all mini pieces P
such that u has a child in P. Iteration over the children of u can then be expressed as an
iteration over L, and for each ¢ € L we output all children of v in P;. Concretely this is done
by outputting all children of w; (the mini label of w in P;) as their respective mini labels,
and then translating them to their global labels. For micro boundary vertices, analogous
structures are built. The space analysis is analogous to the space analysis of the previous
paragraph, i.e., it uses o(n) bits total. We summarize the results in the next lemma.

» Lemma 8. Let G be a separable graph given as a nested division D. In
O(n/poly(loglogn)) = o(n) time and o(n) bits we can execute a DFS on D and store
the resulting palm tree T such that the following queries are available for any verter u, in
constant time (per element output).

M. Elberfeld, F. Kammer, and J. Meintrup

Iteration over the children v of uw in T, ordered by pre(v).
Iteration over all back edges starting/ending at uw in T'.
Output the parent u.

3.2 Meta Information of a Depth-First Search

During the computation of a DFS it is common to store various values that relate to the
traversal such as the pre-order pre(u) of a vertex u, or more complex values such as the
lowpoint of a vertex u, defined as the lowest numbered (by pre-order numbering) vertex
reachable via a path starting at u that consists of zero or more tree edges and at most
one back edge. We can augment D with this information as follows. We start to describe
the computation of the pre-ordering number pre(u). Post-order can be implemented in an
analogous way. Assume that we have constructed the palm tree of Lemma 8.

Pre-order numbering. We begin with an observation regarding the pre-order numbering
pre(u) of some non-boundary vertex u assigned to some piece P (the following description
applies both for micro and mini pieces), and denote with & the number of vertices of P. Note
that any DF'S must enter P via an entry vertex v, which is either the root or a boundary
vertex. If the DFS leaves P via an exit vertex, the DFS can discover new vertices in P only
if it enters via another entry vertex, or it backtracks over the exit vertex. By this we can
observe two scenarios: vertex u is visited either (1) within the next k steps after the DF'S
enters via an entry vertex v, or (2) within the next k steps after a DF'S backtracks over some
exit vertex v. For (1) we have | pre(u) — pre(v)| < k for some entry vertex v, and for (2) we
have | pre(u) — post(v)| < k for some exit vertex v. What we have shown is that the pre-order
numbering of a non-boundary vertex u can be computed as a small local offset k' < k plus
the pre- or post-order numbering of some entry or exit vertex v, called the reference boundary
vertex. It is crucial that the local offset is bounded by the number of vertices in P.

For a mini boundary vertex u, we store pre(u) and post(u) explicitly in an array with
log n bits each. For a mini non-boundary vertex u, and its mini label u; in a piece P;, we
store the local offset k' together with its reference boundary v (stored as its mini label
v;). Storing these values explicitly would use O(nloglogn) bits total, and as such we again
employ a recursive strategy. We apply the mentioned strategy only for vertices being mini
non-boundary vertices, that are also micro boundary vertices and we store the local offset and
reference boundary explicitly. For non-boundary vertices v; ; of a micro piece P; ; we use the

table lookup to compute both the local offset together with the reference boundary on-the-fly.

This general strategy can be used for any strongly local value, possibly in combination with
some additional structures required for more involved queries. Simple values such as the
post-order, depth of a vertex, or the number of descendants, can be handled exactly the same
way as the pre-order. For two of the more involved values, lowpoint and lowest-common
ancestor, we describe the details next.

Lowpoints. Recall that lowpoint(u) of a vertex u is defined as the lowest pre-order number
pre(v) such that v is reachable via a path that traverses the DFS subtree rooted at u together
with at most one back edge of the palm tree. The lowpoint is a crucial value for typical
DFS applications such as identifying biconnected components. We show that lowpoint(u)
is strongly local. Assume that w is a non-boundary vertex in some piece P. Denote with k
the number of vertices in P. First note that any back edge (u,v) must have v in P. Thus,
lowpoint(u) either is pre(u), depends on a back edge that lies within P, or it depends on the
lowpoint of a boundary vertex that is a descendant of u. Thus, we require the lowpoint of a
boundary vertex of P, together with a local offset k' < k. See Figure 4a.

29:11

ISAAC 2025

29:12

Space-Efficient Depth-First Search via Augmented Succinct Graph Encodings

T
HL N
A

Figure 4 Lowpoints (a) The figure shows a piece and sketched parts of the DFS tree. Boundary
vertices are drawn as squares, non-boundary vertices as circles, vertices of undefined type as diamonds.
The lowpoint of the red non-boundary vertex is the red boundary vertex. The lowpoint of the blue
non-boundary vertex is the blue diamond vertex. LCAs (b) The right figures shows two pieces.
The LCA of the blue vertex and the violet vertex is the same as the LCA of the green and the red
vertex. The LCA of the blue and the orange vertex is the green vertex. We can see that the LCA of
two vertices in different pieces can be reduced to the LCA of two boundary vertices of the respective
pieces.

The standard algorithm due to Hopcroft and Tarjan computes the lowpoints during a
DFS traversal by updating it anytime the DFS backtracks to a vertex u and anytime a back
edge (u,v) is discovered. For non-boundary vertices inside a micro piece, this update can be
done via the table lookup using the augmentations provided by the lookup table for each
boundary vertex of a micro piece P; ;. Thus, anytime the DFS enters or leaves a micro piece
P; ;, we can update the current lowpoint values of each non-boundary vertex of F; ;. As with
the pre-order number, we store the required values for the boundary vertices explicitly in an
array. The runtime of updating all values across the DFS is O(n/ poly(loglogn)).

Lowest Common Ancestor. The operation lca(u,v) returns the root w of the smallest
subtree T” of a tree T such that u and v are contained in T, i.e., it is the deepest vertex w
in the tree such that v and v are descendants of w where deepest means it has the maximal
distance from the root of T'. We show that LCA queries for two vertices u, v can be reduced
to strongly local values, one for each of the vertices. Let u,v be two non-boundary vertices
of a piece P. If the LCA w of u,v lies within P, then the value is clearly local. If the LCA
w does not lie within P, there must be a path from u to w and v to w such that each of
these paths contains a boundary vertex u’' and v’, respectively. As there can be multiple
such boundary vertices, let it be the first ones encountered by traversing the tree edges in
reverse direction, i.e., the nearest such vertices. Then the LCA of u and v is equal to the
LCA of v and v'. Thus, for each pair of non-boundary vertices we only require to know the
lca(u',v"). The same is true, if u and v are non-boundary vertices in different pieces. Again,
u’ and v’ are the nearest ancestors being boundary vertices in their respective pieces. Note
that the choice of v’ and v’ is fixed for uw and v, respectively, independent of the concrete
query. See Figure 4b. To handle the LCA between mini boundary vertices, and for each
mini piece, between micro boundary vertices, we use a known data structure to evaluate the
LCA queries such as the data structure of Harel and Tarjan et al. [14]. For a tree with n’
vertices, this data structure is initialized in O(n’) time and uses O(n'logn) bits such that
LCA queries are available in linear time. We can not input our entire DFS tree to this data
structure, and as such construct special smaller trees that capture the ancestry only between
mini boundary vertices, and between micro boundary vertices for each mini piece. The time
to construct the necessary structures is O(n/ poly(loglogn)), and we use o(n) bits.

M. Elberfeld, F. Kammer, and J. Meintrup

We describe the concrete construction of the required smaller trees below. First observe
the following. Let T” be some tree with vertex set V’ and S C V a set of important vertices,
such that for pairs of vertices of S we want to know their LCAs. First, all leaves v in V' \ S
are irrelevant (can not be an LCA of a pair of vertices in S) and we recursively can remove
them. Next consider vertices of V' \ S of degree 2. These vertices are also irrelevant. We
can replace such vertices v and its two edges {u,v}{v,w} by a single edge {u,w}. This tree
now contains the vertices of S and all vertices that are LCA’s of pairs of vertices of S. Since
we recursively removed all vertices of V' \ S with degree < 2, the tree obtained has O(|S])
vertices.

Now consider the DFS tree T" and the set of mini boundary vertices. Taking the set of
mini boundary vertices as the important vertices, we can see that we can shrink 7' such
that it only contains O(n/ poly(logn)) vertices without losing any information regarding the
LCAs between boundary vertices. Analogously, for all micro boundary vertices inside a mini
piece. The shrunken tree Tp, ; for a micro piece P; ; can be built via table lookup where
we can support queries for every piece and every arbitrary set of important vertices S of
the piece. Thus, we can obtain in O(1) time a (set of) shrunken LCA tree(s) for piece P, ;,
which consists of the shrunken whole DFS tree with respect to the boundary vertices of the
piece as important vertices. To build the shrunken tree for all mini boundary vertices, we
iterate over all mini pieces P; ; and obtain shrunken T'p, ; with respect to the mini boundary
vertices as important vertices, via table lookup. We so can build all required shrunken trees
in O(n/ poly(loglogn)) time using o(n) bits.

» Lemma 9. Let G be a separable graph given as a nested division D such that D encodes
the palm tree of some DFS in D. After O(n/ poly(loglogn)) time preprocessing and using
o(n) bits we can provide the following queries.

children(u) iteration over all children of w.

parent(u): output the parent of u.

pre(u) /post(u): return the pre-/post-order number of vertex w.

num-descendants(u): return the number of descendants of u.

depth(u): return the depth of u.

lowpoint(u): return the lowpoint of u.

lca(u,v): return the lowest-common ancestor of vertices u and v.

Theorem 1 follows from first constructing the encoding of Lemma 6, and then constructing
the palm tree of Lemma 8. Lemma 9 provides the queries. Next, we describe the details of
constructing nested divisions efficiently.

3.3 Constructing Nested Divisions efficiently

For planar graphs we can construct the encoding of Lemma 6 efficiently, both in time and
space. Kammer and Meintrup [21] presented a space-efficient algorithm for computing a
(logn, r)-relaxed divisions of minor closed graph classes that roughly works as follows. The
input graph G is replaced with a minor F' that contains O(n/logn) vertices such that
each vertex of F represents ©(logn) vertices of G. Then, any algorithm 4 can be used
for computing an (1,r)-relaxed division (a standard r-division) of F, which then can be
turned into a (logn, r)-relaxed division of G. As A is executed on a graph with O(n/logn)
vertices, we achieve a speedup of a factor of ©(logn), and a space reduction by the same
factor. Translation between the graph F' and G uses linear time and bits. When recursively
constructing divisions of mini pieces we can use standard algorithms as the graphs are small

29:13

ISAAC 2025

20:14

Space-Efficient Depth-First Search via Augmented Succinct Graph Encodings

enough. For planar graphs, linear time r-division algorithms [12, 23] exist, and thus the
entire computation of the recursive division runs in linear time. For other graph classes the
runtime depends on how efficiently separators can be found.

The final non-trivial part of constructing our encoding are related to the translation
mappings between the different levels. The mapping is constructed using the powerful
fully-indexable dictionary (FID) of Raman et al. [26] that, for a given universe [¢], uses
o(¥) bits total when managing a set S C [¢] with |S| = ©(¢/ poly(log £)), which fits Blelloch
and Farzan’s use case. Effectively, this FID manages a compressed bit vector B of length
¢ where in B bits at index ¢ € S are set to 1. Due to the use of Raman et al’s FID their
construction takes polynomial time w(n) even for the simple case of encoding planar graphs
and without regard to space-efficiency during the construction step. While Raman et al.
mention their data structure can be constructed in expected linear time, a deterministic
linear time construction is not known. This is due to the use of a certain hash function
that is required. When succinctness is not required much simpler dictionaries suffices for
the translation mappings. In this case, we effectively follow the same techniques outlined by
Blelloch and Farzan, but use the indexable dictionary of Baumann and Hagerup, which can
be constructed in O(¢/log¢) time and uses ¢ + o(¢) bits for managing any set S C [{]:

» Lemma 10 ([5]). Let B = (x1,...,x¢) be a bit string. In O(£/log¥) time and €+ o({) bits
a data structure can be constructed such that afterward the following queries can be executed
in constant time for b € {0,1}.

vanky(i) = [{j € [illz; = b}]

selecty (i) = min{j € [n] : rankp(j) = b}

Using the FID of Lemma 10 we are able to construct a compact variant of the encoding of
Lemma 6 in O(n) time and bits. If one is fine with expected linear time, the FID of Raman
et al. [26] can be used and the encoding remains succinct. The functionalities of the different
variants are the same.

» Corollary 11 (Compact Nested Division). For planar graphs, a compact (succinct) variant
of the encoding of Lemma 6 can be constructed with O(n) bits and O(n) time (expected time).

Combining Corollary 11 with Theorem 1 we are able to show Corollary 2. We give a
more general version for arbitrary separable graphs next. In the following we denote with
fg(n) the runtime of an algorithm for graphs with n vertices of some separable graph class
G that recursively computes a balanced separator until the graphs are small enough (of
poly-logarithmic size), and with f;(n) the number of bits required by such an algorithm.

» Corollary 12. Let G be a graph of a separable graph class G. There exists a compact
(succinet) encoding of G that can be constructed in fg(n) + O(n) time (expected time) and
f&(n) +O(n) bits that provides the same functionalities as the encoding of Theorem 1.

—— References

1 Hiiseyin Acan, Sankardeep Chakraborty, Seungbum Jo, and Srinivasa Rao Satti. Succinct data
structures for families of interval graphs. In 16th International Symposium on Algorithms and
Data Structures (WADS 2019), pages 1-13. Springer, 2019. doi:10.1007/978-3-030-24766-9_
1.

2 Luca Castelli Aleardi, Olivier Devillers, and Gilles Schaeffer. Optimal succinct representations
of planar maps. In Proceedings of the Twenty-Second Annual Symposium on Computational
Geometry (SCG 2006), pages 309-318. ACM, 2006. doi:10.1145/1137856.1137902.

https://doi.org/10.1007/978-3-030-24766-9_1
https://doi.org/10.1007/978-3-030-24766-9_1
https://doi.org/10.1145/1137856.1137902

M. Elberfeld, F. Kammer, and J. Meintrup

10

11

12

13

14

15

16

17

18

19

Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya, Hirotaka Ono, Yota Otachi,
Pascal Schweitzer, Jun Tarui, and Ryuhei Uehara. Depth-first search using O(n) bits. In Hee-
Kap Ahn and Chan-Su Shin, editors, 25h International Symposium on Algorithms and Compu-
tation (ISAAC 2014), pages 553-564. Springer, 2014. doi:10.1007/978-3-319-13075-0_44.
Niranka Banerjee, Sankardeep Chakraborty, Venkatesh Raman, and Srinivasa Rao Satti.
Space efficient linear time algorithms for bfs, DF'S and applications. Theory Comput. Syst.,
62(8):1736-1762, 2018. doi:10.1007/500224-017-9841-2.

Tim Baumann and Torben Hagerup. Rank-select indices without tears. In 16th International
Symposium on Algorithms and Data Structures (WADS 2019), pages 85-98. Springer, 2019.
doi:10.1007/978-3-030-24766-9_7.

Guy E. Blelloch and Arash Farzan. Succinct representations of separable graphs. In 21st
Annual Symposium on Combinatorial Pattern Matching (CPM 2010), pages 138-150. Springer,
2010. doi:10.1007/978-3-642-13509-5_13.

Sankardeep Chakraborty, Venkatesh Raman, and Srinivasa Rao Satti. Biconnectivity, Chain
Decomposition and st-Numbering Using O(n) Bits. In 27th International Symposium on
Algorithms and Computation (ISAAC 2016), volume 64 of LIPIcs, pages 22:1-22:13. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2016. doi:10.4230/LIPIcs.ISAAC.2016.22.
Yi-Ting Chiang, Ching-Chi Lin, and Hsueh-I Lu. Orderly spanning trees with applications
to graph encoding and graph drawing. In 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2001), pages 506-515. STAM, 2001. URL: http://dl.acm.org/citation.
cfm?id=365411.365518.

Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient Basic Graph Algorithms.
In 82nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015),
volume 30 of LIPIcs, pages 288-301. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2015.
d0i:10.4230/LIPIcs.STACS.2015.288.

Greg N. Federickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal on Computing, 16(6):1004-1022, 1987. doi:10.1137/0216064.

Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees with
level-ancestor queries. ACM Trans. Algorithms, 2(4):510-534, 2006. doi:10.1145/1198513.
1198516.

M.T. Goodrich. Planar separators and parallel polygon triangulation. Journal of Computer
and System Sciences, 51(3):374-389, 1995. doi:10.1006/jcss.1995.1076.

Torben Hagerup. Space-efficient DF'S and applications to connectivity problems: Simpler,
leaner, faster. Algorithmica, 82(4):1033-1056, 2020. doi:10.1007/S00453-019-00629-X.
Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2):338-355, 1984. doi:10.1137/0213024.

Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki, and Eva Rotenberg. Decre-
mental SPQR-trees for Planar Graphs. In 26th Annual European Symposium on Algorithms
(ESA 2018), volume 112 of LIPIcs, pages 46:1-46:16. Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.46.

Jacob Holm and Eva Rotenberg. Good r-divisions imply optimal amortized decremental bicon-
nectivity. Theory Comput. Syst., 68(4):1014-1048, 2024. doi:10.1007/S00224-024-10181-Z.
John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph manipulation.
Commun. ACM, 16(6):372-378, June 1973. doi:10.1145/362248.362272.

Taisuke Izumi and Yota Otachi. Sublinear-Space Lexicographic Depth-First Search for Bounded
Treewidth Graphs and Planar Graphs. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, 47th International Colloguium on Automata, Languages, and Programming (ICALP
2020), volume 168 of LIPIcs, pages 67:1-67:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl —
Leibniz-Zentrum fir Informatik. doi:10.4230/LIPIcs.ICALP.2020.67.

G. Jacobson. Space-efficient static trees and graphs. In 30th Annual Symposium on Foundations
of Computer Science (FOCS 1989), pages 549-554, 1989. doi:10.1109/SFCS.1989.63533.

29:15

ISAAC 2025

https://doi.org/10.1007/978-3-319-13075-0_44
https://doi.org/10.1007/S00224-017-9841-2
https://doi.org/10.1007/978-3-030-24766-9_7
https://doi.org/10.1007/978-3-642-13509-5_13
https://doi.org/10.4230/LIPIcs.ISAAC.2016.22
http://dl.acm.org/citation.cfm?id=365411.365518
http://dl.acm.org/citation.cfm?id=365411.365518
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.1137/0216064
https://doi.org/10.1145/1198513.1198516
https://doi.org/10.1145/1198513.1198516
https://doi.org/10.1006/jcss.1995.1076
https://doi.org/10.1007/S00453-019-00629-X
https://doi.org/10.1137/0213024
https://doi.org/10.4230/LIPIcs.ESA.2018.46
https://doi.org/10.1007/S00224-024-10181-Z
https://doi.org/10.1145/362248.362272
https://doi.org/10.4230/LIPIcs.ICALP.2020.67
https://doi.org/10.1109/SFCS.1989.63533

29:16

Space-Efficient Depth-First Search via Augmented Succinct Graph Encodings

20

21

22

23

24

25

26

27

28

Frank Kammer, Dieter Kratsch, and Moritz Laudahn. Space-efficient biconnected components
and recognition of outerplanar graphs. Algorithmica, 81(3):1180-1204, 2019. doi:10.1007/
S00453-018-0464-Z.

Frank Kammer and Johannes Meintrup. Space-Efficient Graph Coarsening with Applications to
Succinct Planar Encodings. In 33rd International Symposium on Algorithms and Computation
(ISAAC 2022), volume 248 of LIPIcs, pages 62:1-62:15. Schloss Dagstuhl — Leibniz-Zentrum
fur Informatik, 2022. doi:10.4230/LIPIcs.ISAAC.2022.62.

Kenneth Keeler and Jeffery Westbrook. Short encodings of planar graphs and maps. Discrete
Appl. Math., 58(3):239-252, 1995. doi:10.1016/0166-218X(93)E0150-W.

Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator de-
compositions for planar graphs in linear time. In 45th Annual ACM Symposium on Theory
of Computing (STOC 2018), pages 505-514. Association for Computing Machinery, 2013.
doi:10.1145/2488608.2488672.

Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177-189, 1979. doi:10.1137/0136016.

J. Ian Munro, Patrick K. Nicholson, Louisa Seelbach Benkner, and Sebastian Wild. Hypersuc-
cinct Trees - New Universal Tree Source Codes for Optimal Compressed Tree Data Structures
and Range Minima. In 29th Annual European Symposium on Algorithms (ESA 2021), volume
204 of LIPIcs, pages 70:1-70:18. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021.
doi:10.4230/LIPIcs.ESA.2021.70.

Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms,
3(4):43—es, 2007. doi:10.1145/1290672.1290680.

Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), September 2008.
doi:10.1145/1391289.1391291.

Jens M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Information Processing
Letters, 113(7):241-244, 2013. doi:10.1016/j.ipl.2013.01.016.

https://doi.org/10.1007/S00453-018-0464-Z
https://doi.org/10.1007/S00453-018-0464-Z
https://doi.org/10.4230/LIPIcs.ISAAC.2022.62
https://doi.org/10.1016/0166-218X(93)E0150-W
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1137/0136016
https://doi.org/10.4230/LIPIcs.ESA.2021.70
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1016/j.ipl.2013.01.016

	1 Introduction
	2 Nested Divisions
	2.1 Graph-Theoretic Properties of Nested Divisions
	2.2 Nested Divisions as Data Structures
	2.3 Augmenting Nested Divisions

	3 Depths-First Search in Sublinear Time and Space
	3.1 Iterator based DFS to compute a Palm Tree
	3.2 Meta Information of a Depth-First Search
	3.3 Constructing Nested Divisions efficiently

