
Circle-Segment Intersection Queries
in Connected Geometric Graphs
Peyman Afshani
Aarhus University, Denmark

Yannick Bosch
University of Konstanz, Germany

Sabine Storandt
University of Konstanz, Germany

Abstract
In this paper, we study the problem of efficiently reporting all intersections between a given set of
line segments in the plane and a query circle, focusing on the case where the segments form the
edges of a connected geometric graph. While previous data structures for circle-segment intersection
queries on general segment sets incur high space or query time costs, we exploit the connectivity of
the input to obtain significantly improved performance. In fact, we propose a new circle-segment
intersection data structure that can be constructed in O((n + C) log3 n) time and space on connected
graphs with n edges and C edge crossings. It answers intersection queries in O(k log3 n) time, where
k denotes the output size. Our method relies on the construction of efficient circle-graph intersection
oracles as well as a novel linear-time algorithm to partition the edges of the graph into balanced,
connected components, which might be of independent interest. In a proof-of-concept experimental
study on real-world road networks, we show that our novel data structure also performs well in
practice. Even on networks with millions of edges, the construction time is within minutes and
queries are answered in a few milliseconds.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Data structures design and analysis

Keywords and phrases Intersection data structure, Graph partitioning, Dobkin-Kirkpatrick hierarchy

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2025.3

Acknowledgements This work was initiated at Dagstuhl Seminar 25191 “Adaptive and Scalable
Data Structures” (2025-05-04 – 2025-05-09) https://www.dagstuhl.de/25191. We thank Schloss
Dagstuhl -– Leibniz-Zentrum für Informatik for their support.

1 Introduction

Given a set S of geometric objects and a query object Q, reporting the intersections of Q
with elements in S is a fundamental task in computational geometry. In this work, we focus
on the scenario where S is a set of segments in the Euclidean plane, and Q is a query circle
whose center and radius is revealed at query time. The goal is to preprocess S into a data
structure that allows to report circle-segment intersections efficiently.

Notably, there are two different types of intersections that can occur between a segment
S = (p, q), specified by its endpoints p, q ∈ R2, and a query circle Q = (c, r), specified by its
center c ∈ R2 and its radius r ∈ R+

0 :
Type-(i) intersection: This intersection occurs if d2(c, p) ≤ r and d2(c, q) > r, that is,
one endpoint of S is inside the query circle and the other one outside of it.
Type-(ii) intersection: This intersection occurs if d2(c, p) > r and d2(c, q) > r but
d2(c, S) ≤ r, that is, both endpoints of S are outside of the query circle but part of the
segment is inside the circle.

Both intersection types are visualized in Figure 1.
© Peyman Afshani, Yannick Bosch, and Sabine Storandt;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Algorithms and Computation (ISAAC 2025).
Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 3; pp. 3:1–3:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6102-0759
https://orcid.org/0009-0005-8517-9226
https://orcid.org/0000-0001-5411-3834
https://doi.org/10.4230/LIPIcs.ISAAC.2025.3
https://www.dagstuhl.de/25191
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

3:2 Circle-Segment Intersection Queries in Connected Geometric Graphs

Figure 1 Circle-segment query example. Left: Segments marked red have a type-(i) intersection
with the query circle. Right: Segments marked red have a type(ii)-intersection with the query circle.

Closely related to circle queries are disk queries, where segments fully contained within
the disk need to be reported as well. So for disk queries, if a data structure identifies the set of
segment endpoints that are contained in the disk, one can batch report all incident segments,
as those are either completely contained in the disk or have a type(i)-intersection with its
boundary circle. Thus, circle queries are somewhat more intricate than disk queries, as here
this batch reporting cannot be applied if output-sensitive query times are desired. In [16],
different data structures for each intersection type were proposed to cater for circle-segment
and disk-segment intersection queries on a given set of n input segments. For fixed radius,
after an O(n3/2 logn) construction phase, a data structure of size O(n log2 n) allows to
answer circle or disk queries in time O(

√
n log2 n + k) or O(

√
n logn + k logn), where k

denotes the output size. For variable radius, a data structure of size O(n) was shown to
answer queries in O(n2/3+ε + k) for ε > 0. Significantly improved query times of O(logn+ k)
are also possible but at the cost of a much higher space consumption of O(n3+ε). Other
trade-offs between data structure size and query time can be obtained as well. For example,
the query times for the fixed radius case can be matched for the variable radius scenario using
a data structure of size O(n3/2+ε). In all these scenarios, the data structure for detecting
type-(ii) intersections dominates the space consumption and the query time.

In this paper, we consider a special case of the circle- or disk-segment intersection problem,
in which the segments in S are the edges of a connected geometric graph G. There are
numerous applications of circle-edge or disk-edge intersection queries:

Nearest Edges. Given a geometric graph G and a query point p, identifying the edges of
G that are within distance r of p is equivalent to a disk query (p, r) on the edge segment
set. This query type is useful, for example, for the construction of segment proximity
graphs [1] or in edge facility location problems [20].
Graph parameter computation. There are several graph parameters used to clas-
sify geometric graphs whose definition relies on the number and type of disk-segment
intersections. This includes the notions of τ -lankiness [18] and λ-low-density [11].
Motion planning for circular robots. Obstacle collision avoidance for robots that
have to navigate a mesh or are supposed to sweep a given polygon (e.g. a floor plan)
requires to detect whether the robot boundary intersects any obstacle [21]. For circular
robots, a circle-segment reporting data structure can be leveraged to detect collisions.
Map matching. Let G be a road network where edge costs describe travel times. A
map matching query is specified by a sequence of m measurements (pi, ri, ti), i = 1, . . . ,m
(usually obtained via GPS) where pi denotes the measured position, ri the error radius
(stemming from measurement imprecision) and ti the time stamp of the measurement.
The goal is to match each position pi to a location li in G that is within distance ri of pi

such that li+1 can be reached from li on a path in G with travel time at most ti+1 − ti.

P. Afshani, Y. Bosch, and S. Storandt 3:3

Figure 2 Exemplary circle-segment intersection queries with different radii on a connected road
network. Query circles are blue and the respective intersecting segments are highlighted in red.

It was proven in [8] that a feasible map matching solution can be fully characterized by
the intersection points of the circles (pi, ri) with edges in G, and an efficient algorithm
was proposed that leverages a circle-segment data structure.

Some example queries on a city road network are visualized in Figure 2. We show that we
can utilize the connectivity of G to significantly improve the construction time, the space
consumption, and the query times of circle- or disk-segment intersection data structures in
theory and practice.

1.1 Related Work
There are interesting special cases of the circle-segment or disk-segment intersection problem,
which have been studied in the literature:

If all input segments have length zero, the input is simply a set of points. Thus, the
problem degenerates into reporting all points on the boundary of a query circle or inside
a query disk. The latter is also known as the disk range searching problem. Disk range
searching in R2 can be transformed into halfspace range searching in R3, for which a data
structure of size O(n logn) allows to answer queries in O(logn+ k) [5].
If the circle has a radius of zero, it degenerates into a point. Then, the circle/disk query
asks for the segments that contain the query point, also known as segment stabbing
problem. If the segments are assumed to be disjoint, queries can be answered in O(logn)
after a O(n logn) preprocessing phase that produces a data structure of linear size [12].

For the general case, the data structures for type-(i) and type-(ii) circle/disk-segment
intersection described in [16] are the state-of-the-art. For variable radius, first a partition
tree on the segment endpoints is constructed [19] after projecting the points to R3. Here, the
point set is recursively partitioned using simplices, such that in the resulting hierarchical tree,
the number of points in each child partition is a constant fraction of the number of points
in the parent partition and only a bounded number of children intersect a query object at

ISAAC 2025

3:4 Circle-Segment Intersection Queries in Connected Geometric Graphs

each level. To only retrieve the intersecting segments with an endpoint inside the circle, the
data structure is augmented such that halfplane composition queries can be answered. Also
type-(ii) intersections can be identified with the help of halfplane query compositions. This
gives rise to a data structure of size O(n) with query times in O(n2/3+ε + k) for ε > 0, as
well as the other trade-offs mentioned in the introduction.

For fixed radius, type-(i) and type-(ii) intersections are computed with two different data
structures. For type-(i), first a stabbing path is computed on the segment endpoints. This
path is guaranteed to intersect a given query circle at most O(

√
n) times. On this path, a

tree data structure is constructed, which is augmented with a halfplane query data structure
at each node. Using geometric transformations and dualization, this allows to identify the
segments with an endpoint outside and an endpoint inside the query circle. For type-(ii)
intersections, a reduction to triangle stabbing is described and proper data structures for
this use case are leveraged. In [8], the data structure for circle-segment queries with fixed
radius r from [16] was refined and improved for the case in which the input segments form a
path to show improved theoretical running times for map matching. However, for practical
implementation, an AABB tree is used in [8], as the nested data structures described in [16]
are rather intricate and expensive to construct. The AABB tree, available as a ready-to-use
implementation in CGAL, is a hierarchical data structure in which each node corresponds
to an axis-aligned bounding box (AABB) that encapsulates the set of geometric primitives
associated with its descendant leaf nodes (in this case, the input segments). While often
fast in practice, it cannot guarantee output-sensitive query times as the bounding box of a
segment set might intersect a given geometric query object Q (as a circle) while none of the
contained segments actually have an intersection with Q.

In [4], the segment-circle intersection problem was studied, in which the roles of the input
and the query are switched compared to our setting. Here, the input is a set of n circles and
the query object is a segment. It was shown that the circles can be preprocessed into a data
structure of size O(n log2 n) such that queries can be answered in O(n2/3 log2 n+ k) where
k denotes the output size. For disks, the query time reduces to O(

√
n log2 n+ k).

There are also other contexts in which the connectivity structure of the input segments
plays a crucial role. For example, in [3], the input is a set of segments and the goal is to
report the connected components that intersect a given query segment. In [6], it was shown
that intersections between two sets of line segments can be computed much faster if each of
the two sets is connected.

1.2 Contribution

We propose a new data structure for circle-segment or disk-segment intersection queries
on connected planar graphs with n edges, which can be constructed using O(n log3 n) time
and space, and answers queries with output size k in time O(k log3 n). This is a significant
improvement over the general case, where a data structure of (near-)linear size yields query
times in O(n2/3+ε +k) for ε > 0. Thus, especially for queries with small output size, our query
time is vastly superior. If the input graph is non-planar and there are C crossings among the
segments, the construction time and the space consumption increase to O((n+ C) log3 n)
but the query time stays the same. At the heart of our data structure lies a scheme which
partitions the edges of the connected input graph, such that the resulting partitions have
balanced size and each still form connected components. We show that such a partitioning can
be computed in time O(n). Applying this result recursively allows us to efficiently construct

P. Afshani, Y. Bosch, and S. Storandt 3:5

an edge partition tree1 of logarithmic depth. We then equip each such edge partition with
an oracle that decides whether for a given query circle Q there is some edge in the set that
intersects Q. Based on this oracle, the tree can be traversed efficiently on query time.

We also carefully describe how to implement the proposed data structure and demonstrate
its usefulness in a proof-of-concept evaluation on different road networks. While road networks
are non-planar, the number of crossings C between the edges is typically in Θ(

√
n) [15] and

thus we expect our data structure to perform well. This is confirmed in the experiments
where we observe fast construction times even on large networks, and improved query times
over the AABB tree implementation provided by CGAL.

2 Preliminaries

Throughout the paper, we assume to be given a connected geometric graph G(V,E) as input.
The graph nodes are points in R2 and each edge forms a straight-line segment between its
endpoints. The number of pairwise crossings between edge segments is denoted by C. Here,
an edge crosses another edge if their intersection contains a point that is not an endpoint of
both edges. We assume that no pair of edges intersects in more than one point. Connectivity
of G implies that there is a simple path between any pair of nodes in the graph, formed by
sequence of edges from E. Thus, connectivity solely relies on the graph structure. This is
in contrast to the notion of connected arrangement of segments, in which the set of points
induced by the segments needs to be connected [3]. While in a connected geometric graph
the edge segment arrangement is also connected, the reverse is not necessarily true (consider
a set of segments which all pairwise cross). However, in a planar graph embedding, where we
have C = 0, these two definitions coincide.

3 An Improved Data Structure for Connected Geometric Graphs

In this section, we introduce our new data structure that leverages the connectivity of the
input graph to answer circle-edge and disk-edge intersection queries more efficiently.

In all approaches presented in [16] for the general case, the primary data structure is
constructed by only considering the endpoints of the input segments. Either a spanning path
with bounded stabbing number is computed on that point set or a partition tree is constructed
on the (transformed) endpoints. Thus, any connectivity information is immediately lost.
The original segments are only indexed in secondary or even tertiary data structures which
are queried individually if the respective point sets fulfill certain requirements.

In contrast, our data structure construction is driven by the edges of G. In Section 3.1, we
prove that the edges of a connected graph G can be partitioned into two subsets, such that
each partition remains connected and the partition sizes are a constant fraction of the total
number of edges. The respective partitioning can be computed in linear time. By applying
this method recursively, we obtain an edge partition tree of logarithmic depth in which the
leaves correspond to individual segments. In Section 3.2, we describe how to equip each node
of the edge partition tree with an oracle that efficiently decides whether a given query circle
has a type-(i) or type-(ii) intersection with some edge in the connected subgraph associated
with the tree node. This allows to traverse the tree in DFS-order for query answering, only
following paths for which the oracle answer is positive. More details on the query answering
procedure are given in Section 3.3.

1 We remark that despite the similar name our data structure differs substantially from the partition tree
concept for point sets described in [19].

ISAAC 2025

3:6 Circle-Segment Intersection Queries in Connected Geometric Graphs

3.1 Balanced Connected Graph Partitioning
In the construction of our intersection search data structure, we follow the well-established
paradigm of recursively dividing our problem into smaller subproblems until they reach
a tractable size. To accomplish this while also being able to utilize the connectivity of
the input graph, we require an algorithm that partitions the edge set of the input graph
such that the connectivity property is maintained in each partition. Existing geometric
partitioning methods (for example, median- or grid-based) are oblivious to the connectivity
structure and thus are not guaranteed to produce the desired result. The method we
propose does the opposite as it completely ignores all geometric information and instead
operates only on the abstract graph. It is thus also applicable to non-geometric graphs.
Edge partitioning has previously been studied in the context of distributed graph algorithms
and parallelization [9, 22]. However, there the goal is to minimize communication cost
introduced by the partitioning or to minimize node duplication (which turns out to be
NP-hard). However, our focus is on balanced partitioning into connected components. In
the remainder of this subsection, we prove the following central theorem.

▶ Theorem 1. Given a connected graph G[E] induced by the edge set E of size n, there is
an O(n)-time algorithm that partitions E into E1 and E2 such that:

E = E1 ⊎ E2,
G[Ei] is connected for i ∈ {1, 2},
|Ei| ≤ 2

3n for i ∈ {1, 2}.

We now describe the partitioning algorithm in detail and then prove its correctness to
establish the theorem. The algorithm starts by constructing a spanning tree of G via a DFS
run from an arbitrarily selected source node s. Let Tv denote the nodes of the subtree of the
DFS-tree that is rooted at node v. The following observation sketches how we can use the
notion of Tv to achieve our goal of connected edge partitioning.

▶ Observation 2. Let E(Tv) be the set of edges in E that are incident to nodes in Tv. The
graphs induced by the edge partitions E1 := E(Tv) and E2 := E \ E1 are each connected.

But we still need to take care of the size bound for each partition. Thus, we would like to
efficiently compute the function ϕ(v) := |E(Tv)| that assigns to each node the number of
edges incident to the nodes in Tv. Initially, we set ϕ(v) = 0 for all nodes v. We then consider
the nodes one after the other using a post-order traversal of the DFS-tree and update the
ϕ-values of the current node v as well as its parent node par(v) in the DFS-tree. We will
maintain the invariant that at the moment that v is processed, all ϕ-values are less than 1

3n.
This condition is clearly fulfilled after the initialization phase.

Let us now consider the algorithm steps for processing a node v. As we use post-order
traversal of the DFS-tree, we know that v is the last node to be processed in Tv. We first
check whether ϕ(v) + deg(v) < 1

3n, where deg(v) denotes the degree of v in G[E]. If that is
the case, we add deg(v) to ϕ(v) and then proceed to add the new ϕ(v) value to ϕ(u) where
u = par(v). If we still have ϕ(u) < 1

3n, we are done with v and proceed to the next node
in the post-traversal order. Clearly, our invariant is maintained in this case. Otherwise, if
ϕ(u) ≥ 1

3n, we also know that ϕ(u) ≤ 2
3n, as our invariant guaranteed that ϕ(u) was smaller

than 1
3n prior to processing v and we only updated the parent of v as ϕ(v) < 1

3n held as well.
Accordingly, with v1, . . . , vs be the children of u that were already processed up to this point
(and thus contributed to ϕ(u)), we set E1 :=

⋃s
i=1 E(Tvi

) and E2 = E \ E1. The resulting
partitions are each connected, as E1 contains all edges induced by Tu and additionally only
edges with at least one endpoint in Tu, while E2 contains all induced edges of {Ts \Tu} ∪ {u}
and additionally only edges with at least one endpoint in this node set.

P. Afshani, Y. Bosch, and S. Storandt 3:7

If, however, ϕ(v) + deg(v) ≥ 1
3n, we know that edges incident to nodes in Tv already

suffice to form E1. If additionally ϕ(v) + deg(v) ≤ 2
3n, we simply return E1 = E(Tv) and

E2 = E \E1. If the degree of v is too large to include all of its incident edges in E1, we only
use 2

3n− ϕ(v) many, giving priority to edges {w, v} with par(w) = v. Note that there are
less than 1

3n such prioritized edges, as otherwise ϕ(v) would have been equal to or larger
than 1

3n already, which would contradict our invariant. Therefore, we are sure to include all
edges induced by Tv and therefore, again, guarantee connectivity of the resulting partitions.

Thus, the described algorithm reliably produces edge partitions E1 and E2, whose
induced graphs are connected. However, we did not take double counting of the edges into
consideration so far. An edge e = {a, b} ∈ E with a, b ∈ Tv might contribute twice to ϕ(v),
as both deg(a) and deg(b) are part of the sum. Therefore, the ϕ-values might overestimate
the real number of edges in the respective subtree by a factor of up to 2. Thus, we can so far
only guarantee a weaker size bound than the one promised in Theorem 1.

▶ Lemma 3. The partitioning algorithm runs in O(n) and produces connected edge partitions
E1 and E2 each of which has a size of at most 5

6n.

Proof. The DFS run takes O(n) time. In the post-order traversal, each node is processed at
most once, and the processing step takes constant time if we do not return the result after this
step, and at most linear time for the step after which the algorithm terminates. Therefore,
the total processing time is in O(n). By construction, the returned partitions E1 and E2
are connected and the estimated size of E1 is between 1

3n and 2
3n. But as some edges might

have contributed twice to this estimation, it follows that we actually have 1
6n ≤ |E1| ≤ 2

3n.
With E2 = E \ E1, it follows that 1

3n ≤ |E2| ≤ 5
6n. ◀

We remark that this size bound is already sufficient for our goal of constructing a partition
tree on the edge set with logarithmic depth, and the simplicity of the algorithm also makes
it very suitable for practical implementation. However, we can ensure a better partition size
balance within the same asymptotic running time as follows. To avoid double counting, we
first refine the DFS-tree to a binary tree by introducing for all nodes u with more than two
children a complete binary tree rooted at u with the children forming the tree leaves. By the
property of complete binary trees the total number of nodes and edges in the DFS-tree is at
most doubled by this step. Moreover, we compute a lowest-common-ancestor (LCA) data
structure on the refined DFS-tree rooted at s. Such a data structure can be constructed on
trees in linear time and it answers LCA queries for node pairs in O(1) [7]. We then use the
processing algorithm described above with two modifications: When processing a dummy
node introduced in the binary tree refinement step, we assume its degree to be zero. When
processing a real node v, we still add deg(v) to ϕ(v), but we additionally iterate over its
neighbors w with {v, w} ∈ E and decrement ϕ(LCA(v, w)) by one if w comes later in the
processing order than v. We refer to this algorithm as improved partitioning algorithm.

▶ Lemma 4. The improved partitioning algorithm runs in O(n) and produces connected edge
partitions E1 and E2 each of which has a size of at most 2

3n.

Proof. The binary refinement step and the LCA data structure construction both run in
linear time. The processing of v now takes O(deg(v)), as the LCA data structure needs to be
queried for each neighbor. Summed over all nodes, the degrees add up to 2n and therefore
the overall running time is still linear.

Next, we argue that after v was processed and the algorithm did not yet terminate, we
have ϕ(v) = |E(Tv)|. The proof uses induction over the nodes in post-order traversal. The
first node to be processed is a leaf of the DFS-tree and thus Tv = {v}. If deg(v) ≤ 1

3n, we

ISAAC 2025

3:8 Circle-Segment Intersection Queries in Connected Geometric Graphs

set ϕ(v) = deg(v) and therefore we also have ϕ(v) = |E(Tv)|. Let us now assume that the
induction hypothesis applies to the first j nodes in the post-order traversal and consider
node number j + 1, which we refer to as u. For each child v of u in Tu, we know that
v was processed prior to u and therefore ϕ(v) = |E(Tv)|. If u has only a single child v,
we have ϕ(u) = ϕ(v) − |{{w, u} ∈ E|w ∈ Tu}| right before u is processed. This is true
because v propagates its ϕ-value to its parent and for all w ∈ Tu with {w, u} ∈ E we have
LCA(w, u) = u an u comes later in the processing order than w. Now adding deg(u) to ϕ(u),
we get ϕ(u) = ϕ(v) + |{{w, u} ∈ E|w /∈ Tu}| = |E(Tu)|. If u has two children v1 and v2,
then for all edges {a, b} with a ∈ Tv1 and b ∈ Tv2 we have LCA(a, b) = u and thus ϕ(u) was
decremented by 1 for each such edge. It follows that we have ϕ(u) = ϕ(v1)+ϕ(v2)−|{{w, u} ∈
E|w ∈ Tu}| − |{a, b} ∈ E|a ∈ Tv1 ∧ b ∈ Tv2}| right before u is processed. As the last term is
exactly the number of edges that are counted twice, once in ϕ(v1) and once in ϕ(v2), we get
again ϕ(u) = |E(Tu)| after adding deg(u) to ϕ(u). Therefore, if we terminate while processing
node u because ϕ(u) + deg(u) ≥ 1

3n, we are now indeed guaranteed that E1 contains the
promised number of edges.

But we might also terminate after processing some node v as the ϕ-value of its parent
node u exceeded the threshold after adding ϕ(v). We first observe that this can only happen
if v is the last child of u to be processed. If it is the first child, then ϕ(u) ≤ 0 holds prior to
the processing of v. The value is initialized with zero, but might even become negative it u is
the LCA of the endpoints of an edge that connects nodes in the respective subtree. Therefore,
after the processing of v, we have ϕ(u) ≤ ϕ(v). And as ϕ(v) < 1

3n for the propagation step
to happen, it follows ϕ(u) < 1

3n as well. If v is the last child to be processed, we know that
ϕ(u) = |E(Tu)| − {{u,w} ∈ E|w /∈ Tu} by the same argumentation as above. Thus, there is
no double counting occurring in this scenario and it is safe to construct E1 as described in
the original partitioning algorithm. We conclude that the improved partitioning algorithm
takes linear time and guarantees 1

3n ≤ |Ei| ≤ 2
3n for i ∈ {1, 2}. ◀

This completes the proof of Theorem 1. By recursively applying the theorem to a given
connected input graph G until we end up with single edges, we can derive in time O(n logn)
an edge partition tree of depth O(logn), in which each node encodes a connected subgraph
of G. Figure 3 illustrates this partitioning. Next, we discuss how to augment the resulting
edge partitioning tree structure to cater for circle-segment queries.

3.2 Circle-Graph Intersection Oracles
Given a connected graph G[E], our goal is to construct an efficient decision oracle that
returns true if a given query circle Q has a type(i)- or a type(ii)- intersection with some edge
in G and false otherwise.

For our oracle, we utilize the well known geometric transformation in which points
p = (x, y) ∈ R2 are mapped to points p′ = (x, y, x2 + y2) ∈ R3 by a projection function
ψ(p) = p′, and a circle Q with center c = (a, b) ∈ R2 and radius r is mapped to the plane
z = a(2x − a) + b(2y − b) + r2 in R3 by a function ρ(Q) = z such that p is inside Q iff
ψ(p) lies below ρ(Q) and outside Q iff ψ(p) lies above ρ(Q). These transformations are also
applied in [16]. Let know Ψ(E) := {ψ(p)|{p, q} ∈ E} denote the set of segment endpoints in
the graph after applying the transformation via ψ. Further let CH(Ψ(E)) denote the convex
hull of the resulting three-dimensional point set. We now show how these structures can be
utilized to detect intersections of type-(i).

▶ Lemma 5. Iff for a given connected graph G[E] and a circle Q the plane ρ(Q) intersects
CH(Ψ(E)) there exists at least one edge e ∈ E which has a type-(i) intersection with Q.

P. Afshani, Y. Bosch, and S. Storandt 3:9

Figure 3 Partition of a graph of the road network of Konstanz with 13500 edges. The black
partition represents the smaller of the two initial partitions. The blue and red partitions are the
resulting connected subgraphs after subdividing the larger of the initial partitions once more.

Proof. If ρ(Q) intersects CH(Ψ(E)), it follows that there is at least one point p′ ∈ Ψ(E)
above ρ(Q) as well as at least one point q′ ∈ Ψ(E) below ρ(Q). By means of the applied
geometric transformation, we know that p = ψ−1(p′) lies outside of Q while q = ψ−1(q′)
lies inside of Q. As G[E] is connected, there needs to exist a path from p to q in G[E],
that is a path that starts outside the circle and ends in it. Accordingly, the path needs
to contain at least one edge e that crosses the circle boundary. It follows that e and Q
have a type-(i) intersection. Vice versa, if an edge that intersects Q exists, its endpoints
are projected to different halfspaces with respect to ρ(Q) and therefore it follows that ρ(Q)
intersects CH(Ψ(E)). ◀

Accordingly, the oracle returns true if ρ(Q) intersects CH(Ψ(E)). Otherwise, if the convex
hull CH(Ψ(E)) is either completely below or above ρ(Q), we know that a type-(i) intersection
can not occur but we still have to check for type-(ii) intersections. By definition of a type-(ii)
intersection, the endpoints of the respective edge both need to be outside of the query circle.
Thus, the oracle can safely return false if CH(Ψ(E)) is completely below ρ(Q) as in this
case all edge endpoints are inside the circle. So from now on, we only consider the case that
CH(Ψ(E)) lies completely above ρ(Q).

▶ Lemma 6. Given a set of edge segments E with all segment endpoints being outside of a
circle Q = (c, r), then there exists a type-(ii) intersection between a segment in E and Q iff
there exists a segment S ∈ E such that d2(c, S) ≤ r.

Proof. Let S∗ ∈ E be the segment closest to the circle center c. If d2(c, S∗) > r, we
know that no segment in E penetrates the circle and thus there is no type-(ii) intersection.
Otherwise, if d2(c, S∗) ≤ r we know that S∗ has a type-(ii) intersection with Q as both
segment endpoints are outside the circle but the point on the segment closest to the circle
center is inside the circle or on its boundary, which matches the definition of a type-(ii)
intersection. ◀

ISAAC 2025

3:10 Circle-Segment Intersection Queries in Connected Geometric Graphs

Based on Lemma 5 and Lemma 6, we now have a full description of our decision oracle:
Return true if ρ(Q) ∩CH(Ψ(E)) ̸= ∅, or, if CH(Ψ(E)) lies completely above ρ(Q) and there
is a segment within distance r from the circle center. Return false otherwise. The following
theorem analyzes the construction and query time of this oracle.

▶ Theorem 7. Given a connected geometric graph G with n edges and a query circle Q, an
oracle which decides in time O(log2 n) whether any graph edge intersects Q can be constructed
in O((n+ C) log2 n) time and space, where C is the number of edge crossings in G.

Proof. For the first part of the oracle, we construct a Dobkin-Kirkpatrick hierarchy on the
edge segment endpoints projected into R3. The Dobkin-Kirkpatrick hierarchy data structure
can be computed in O(n log2 n) time and space on a set of n points and allows to answer
extreme point queries in time O(logn) [13, 14]. For the plane ρ(Q), we issue two extreme
point queries, one using the normal of the plane as optimization direction and one using the
negated normal. The result will always be corner points of CH(Ψ(E)). If both points are
below/above ρ(Q), then CH(Ψ(E)) is fully below/above ρ(Q). If one point is below and the
other one above, we know that ρ(Q) ∩ CH(Ψ(E)) ̸= ∅.

For the second part of the oracle, we need a data structure that reports the closest
segment to a given query point (the circle center). We use a Segment Voronoi Diagram
(SVD) for this purpose. It can be constructed in O((n+ C) log2 n) time and space, where
C is the number of edge crossings in G [17]. Nearest-segment queries can be answered in
time O(log2 n). Thus, the second part of the oracle dominates the construction and query
time. ◀

3.3 Query Answering
We are now ready to describe and analyze the full circle-segment data structure and the
respective query answering algorithm.

Combining the insights from Theorem 1 and Theorem 7, we first construct an edge
partition tree data structure, in which each node represents a connected subgraph of G, and
then equip each such node with a decision oracle. To report all segment intersection with a
query circle Q, we first apply the transformation to the three-dimensional plane ρ(Q). Then,
we use the following recursive algorithm for query answering, with the initial call being to
root node of our data structure: For the current data structure node, which represents some
connected edge subset E′, we ask the associated oracle whether there is any segment in
E′ that intersects Q. If the answer is false, we stop. Otherwise, if the answer is true, we
recursively call the algorithm on both children of the current node. We also stop if we reach
a leaf node, which represents a single segment, and include this segment in the output set if
it indeed intersects Q. Figure 4 illustrates the query answering process on a small example
graph.

▶ Theorem 8. We can build a circle-segment data structure on the n edges of a connected
geometric graph with C edge crossings in O((n+ C) log3 n) time and space, which reports
the k segments that intersect a given query circle in O(k log3 n) time.

Proof. The construction time and the size of the data structure is dominated by the oracle
computation for each subgraph represented in the edge partition tree. As the tree has
logarithmic depth by virtue of Theorem 1 and the computation time is in O((n+ C) log2 n)
per level by virtue of Theorem 7, we get a total construction time in O((n+ C) log3 n).

A query traverses the tree data structure in a DFS-like manner, aborting the search
at nodes for which the oracle has concluded that there are no intersections to be detected
in the respective subtree. Clearly, if the oracle answers true for any internal node of the

P. Afshani, Y. Bosch, and S. Storandt 3:11

3D() CH(3D())CH(3D())
⋂

→= ↑

.

.

.
.
.
.

.

.

.
.
.
.

SVD().nearest() ↓ r

Figure 4 Circle-segment intersection data structure for a graph with 9 edges. The red circle is
an exemplary query performed on the data structure. Depicted in green are nodes for which at least
one of our intersection predicates (as described in Theorem 7) evaluate to true. For the red node on
the right both of them return false as there are no intersecting segments.

tree, then at least for one if its children the answer needs to be true as well, as the segment
inducing an intersection with the query circle has to be contained in either of the respective
subgraphs. Therefore, the oracle calls in which the answer is false can always be charged to
their respective siblings for which the answer is true (with the exception of the answer being
false immediately on the root node). The number of times the oracle returns true is upper
bounded by the number of nodes on a root-to-leaf path to segments that do intersect the
query circle. As there are k such segments and a root-to-leaf path has a length in O(logn),
there are at most O(k logn) such successful oracle calls. According to Theorem 7, each oracle
call takes O(log2 n) time, and therefore we end up with a total query time in O(k log3 n). ◀

We remark that our data structure can also easily be used to answer disk queries with the
same performance bounds. The only difference is that during query answering, whenever we
encounter a node which represents a subgraph G[E′] for which CH(Ψ(E′)) lies completely
below ρ(Q), we add all edges in E′ to the output set and still abort the search at this node.

4 Proof-Of-Concept Study

To demonstrate the usefulness of our circle-segment intersection data structure for practical
application, we implemented the construction algorithm and the query answering routine in
C++ and tested them on real-world road networks extracted from OSM. Experiments were
conducted on an AMD Ryzen Threadripper 3970X with 32 cores.

4.1 Baseline
As baseline, we use the the AABB tree implementation provided by CGAL. It is a hierarchical
data structure, in which each leaf node stores a geometric object and each internal node
stores the bounding rectangle of all the objects in the respective subtree. It is constructed
by dividing the input set of geometric objects roughly in half, computing the respective
bounding rectangles, and then continuing recursively on both subsets until the leaf nodes are
reached, which store the objects themselves. In our case, the leaves store the segments of the

ISAAC 2025

3:12 Circle-Segment Intersection Queries in Connected Geometric Graphs

Figure 5 Query answering types using the AABB tree. Left: Simple bounding rectangle. Right:
Better approximation of the circle by using eight rectangles.

input graph G(V,E). In a query, given a geometric object, we check whether its bounding
rectangle intersects the bounding rectangle associated with the root node of the AABB tree.
If this is the case, both children are checked as well. If not, the search is aborted at the
respective node. If a leaf node is reached and the final check confirms an intersection, the
geometric object stored in said leaf node is added to the output. While often fast in practice,
the theoretical running time can be huge in the case that the bounding rectangle of the query
object intersects many bounding rectangles associated with the tree nodes, but there are
no actual intersections between the query object and the elements stored in the tree leaves.
This happens particularly often if the query object is not an area (as a disk) but rather an
area boundary (as a circle). Here, any segment fully contained in the circle will create a
bounding rectangle that intersects the one of the circle, although the segment itself does
not intersect the circle. To improve the performance of our baseline, we therefore do not
query the segment AABB tree with the bounding rectangle of the circle, but instead cover
the circle with eight rectangles of much smaller total area, see Figure 5. We refer to this
method as the refined AABB query.

4.2 Comparative Evaluation

As benchmarks, we used two large real-world road networks, namely a part of Germany
(Figure 6) with roughly 1.1 million edges and the road network of Taiwan (Figure 8) with
about 5 million edges. The Germany graph has C = 2550 edge crossings and the Taiwan
graph C = 22920.

Constructing our circle-segment intersection data structure took less than 12 minutes on
the Germany graph. The construction time is dominated by the segment Voronoi diagram
computations for all subgraphs contained in the edge partition tree. In Figure 7, we compare
the query times of our data structure to those of the refined AABB queries. We observe
that except for very small query circle radii, our data structure is clearly superior. Even for
large output sizes, the query times stay below 30 milliseconds and are at the peak about a
factor of 8 faster than the respective refined AABB queries and two orders of magnitude
faster than the naive AABB queries. Thus, we only consider the refined AABB queries in
the upcoming experiments. We think that the mild increase of the query time with the
output size besides the shown theoretical running time of O(k log3 n) can be explained by
many paths from the root to a leaf that contain an intersecting segment share long common
prefixes (while the theoretical worst-case analysis assumes them to be disjoint). Moreover,
most of the occurring intersections are of type-(i). Our circle-graph oracle confirms such an
intersection in time O(logn) and then does not need to call the more expensive oracle for a
type-(ii) intersection. Thus, in practice we have fewer and more efficient oracle calls than
assumed in the theoretical analysis.

P. Afshani, Y. Bosch, and S. Storandt 3:13

Figure 6 Road network of the metropolitan region around Stuttgart, Germany.

0 20 40 60 80 100 120 140
Radius [km]

0

200

400

600

800

1000

Ti
m

e
[m

s]

0

50

100

150

200

250

300

Nu
m

be
r o

f i
nt

er
se

ct
ed

 se
gm

en
ts

Average running time per query on Germany

Segments (k)
AABB
AABB (Refined)
CSIDS

Figure 7 Query time comparison of our Circle-Segment Intersection Data Structure (CSIDS)
and the AABB tree on the road network of Germany with approximately 1.1 · 106 edges. Query
times are averaged over 100 queries per radius.

To deal with even larger graphs within a reasonable construction time, we observe that we
can cut the top of our edge partition tree as well as the bottom levels. If we cut top levels, we
then have to deal on query time with multiple root nodes, but we avoid the most expensive
oracle construction steps on the large edge partitions close to the root. We remark that
multiple root nodes can also be used in case the input graph is not connected but consists of
(few) connected components. Cutting the bottom levels implies that we stop the recursive
edge partitioning approach not only if we are down to single segments but already when
the partition size drops below a certain threshold t ∈ N. For the resulting leaf nodes, we do
not construct the circle-graph intersection oracles but instead perform a simple intersection
check for each contained segment with the query circle. As this limits the number of tree
nodes, it helps to safe space. Furthermore, it is expected that the rather complex oracles we
construct are only effective if the respective segment size is sufficiently large. We applied
top and bottom cutting to the road network of Taiwan. This reduces the construction time

ISAAC 2025

3:14 Circle-Segment Intersection Queries in Connected Geometric Graphs

Figure 8 Road network of Taiwan.

significantly, from more than an hour to roughly 9 minutes. In Figure 9, we measure the
impact of these data structure engineering techniques on the query time. Again, we observe
that the refined AABB query times increase significantly with the query radius and the
output size, reaching up to about half a second. Our query times, however, are again in
the 20-40 millisecond range, although the search now starts from 76 root nodes (for most of
which the oracle immediately returned a negative answer).

0 50 100 150 200 250 300 350 400
Radius [km]

0

100

200

300

400

500

600

Ti
m

e
[m

s]

0

100

200

300

400

500
Nu

m
be

r o
f i

nt
er

se
ct

ed
 se

gm
en

ts
Average running time per query on Taiwan

Segments (k)
AABB (Refined)
CSIDS

Figure 9 Query time comparison on the road network of Taiwan with approximately 5 · 106 edges.
Our CSIDS has 76 top level query trees and the leave construction was stopped at 30 edges.

While it would of course also be interesting to conduct experiments on other types of
graphs (for example, triangle meshes), our proof-of-concept study clearly shows the potential
of our newly proposed data structure to accelerate the circle-segment queries on connected
geometric graphs even for large edge sets.

P. Afshani, Y. Bosch, and S. Storandt 3:15

5 Conclusions and Future Work

In this paper, we introduced a novel data structure for circle-segment intersection queries on
connected geometric graphs. We proved a near-linear construction time in the size of the
segment set and the number of crossings among the input segments, as well as output-sensitive
query times. The data structure was also confirmed to perform well in practice. Nevertheless,
there are many ways in which our data structure might be further improved:

At the moment, we compute the circle-graph intersection oracle independently for each
node in our edge partition tree. However, it might be much faster to compute the Dobkin-
Kirkpatrick hierarchy and the segment Voronoi diagram bottom-up, using randomized
incremental algorithms or clever merging strategies to derive the proper data structures
for the level above from the already computed solutions from below. This might allow to
decrease the construction time, both in theory and practice.
Fractional cascading is often used to improve query times if the query involves repeated
(binary) searches over similar or nested structures [10]. Recently, it was shown that for an
input graph G with bounded degree and a set of hyperplanes in 3D associated with each
node in G, one can decide for a query point and a connected subgraph H of G wether
the point is below or above the lower envelope of the hyperplanes associated with the
nodes in H much faster using fractional cascading [2]. Adapting this methodology to our
use case, where we perform searches over nested convex hulls when we traverse the tree,
could help to further improve our query times.

It would also be interesting to obtain lower bounds for data size and query time trade-offs
in the connected graph setting to see how much improvement is still possible in theory.
Moreover, integrating additional engineering ideas could also increase the scalability of the
data structure and therefore make it useful for an even larger range of practical applications.

References
1 Ahmed Abdelkader and David M Mount. Approximate nearest-neighbor search for line

segments. In 37th International Symposium on Computational Geometry, 2021.
2 Peyman Afshani, Yakov Nekrich, and Frank Staals. Convexity helps iterated search in 3d. In

41st International Symposium on Computational Geometry (SoCG 2025). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2025. doi:10.4230/LIPIcs.SoCG.2025.3.

3 Pankaj K. Agarwal and M van Kreveld. Connected component and simple polygon intersection
searching. Algorithmica, 15(6):626–660, 1996. doi:10.1007/BF01940884.

4 Pankaj K Agarwal, Marc van Kreveld, and Mark Overmars. Intersection queries for curved
objects. In Proceedings of the seventh annual symposium on Computational geometry, pages
41–50, 1991.

5 Alok Aggarwal, Mark Hansen, and Thomas Leighton. Solving query-retrieval problems by
compacting voronoi diagrams. In Proceedings of the twenty-second annual ACM symposium
on Theory of computing, pages 331–340, 1990.

6 Julien Basch, Leonidas J Guibas, and GD Ramkumar. Reporting red-blue intersections
between two sets of connected line segments. In Algorithms – ESA’96: Fourth Annual
European Symposium Barcelona, Spain, September 25–27, 1996 Proceedings 4, pages 302–319.
Springer, 1996.

7 Michael A Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel
Sumazin. Lowest common ancestors in trees and directed acyclic graphs. Journal of Algorithms,
57(2):75–94, 2005. doi:10.1016/J.JALGOR.2005.08.001.

8 Yannick Bosch and Sabine Storandt. Continuous map matching to paths under travel time
constraints. In 23rd International Symposium on Experimental Algorithms, SEA 2025, July
22-24, 2025, Venice, Italy, volume 338 of LIPIcs, pages 7:1–7:17. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2025. doi:10.4230/LIPICS.SEA.2025.7.

ISAAC 2025

https://doi.org/10.4230/LIPIcs.SoCG.2025.3
https://doi.org/10.1007/BF01940884
https://doi.org/10.1016/J.JALGOR.2005.08.001
https://doi.org/10.4230/LIPICS.SEA.2025.7

3:16 Circle-Segment Intersection Queries in Connected Geometric Graphs

9 Florian Bourse, Marc Lelarge, and Milan Vojnovic. Balanced graph edge partition. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 1456–1465, 2014. doi:10.1145/2623330.2623660.

10 Bernard Chazelle and Leonidas J Guibas. Fractional cascading: I. a data structuring technique.
Algorithmica, 1(1):133–162, 1986. doi:10.1007/BF01840440.

11 Daniel Chen, Anne Driemel, Leonidas J Guibas, Andy Nguyen, and Carola Wenk. Approximate
map matching with respect to the fréchet distance. In 2011 Proceedings of the Thirteenth
Workshop on Algorithm Engineering and Experiments (ALENEX), pages 75–83. SIAM, 2011.
doi:10.1137/1.9781611972917.8.

12 Mark De Berg. Computational geometry: algorithms and applications. Springer Science &
Business Media, 2000.

13 David P Dobkin and David G Kirkpatrick. Fast detection of polyhedral intersection. Theoretical
computer science, 27(3):241–253, 1983. doi:10.1016/0304-3975(82)90120-7.

14 David P Dobkin and David G Kirkpatrick. Determining the separation of preprocessed
polyhedra—a unified approach. In International Colloquium on Automata, Languages, and
Programming, pages 400–413. Springer, 1990. doi:10.1007/BFB0032047.

15 David Eppstein and Michael T Goodrich. Studying (non-planar) road networks through an
algorithmic lens. In Proceedings of the 16th ACM SIGSPATIAL international conference on
Advances in geographic information systems, pages 1–10, 2008.

16 Prosenjit Gupta, Ravi Janardan, and Michiel Smid. On intersection searching problems
involving curved objects. In Algorithm Theory – SWAT’94: 4th Scandinavian Workshop on
Algorithm Theory Aarhus, Denmark, July 6–8, 1994 Proceedings 4, pages 183–194. Springer,
1994. doi:10.1007/3-540-58218-5_17.

17 Menelaos I Karavelas. A robust and efficient implementation for the segment voronoi diagram.
In International symposium on Voronoi diagrams in science and engineering, volume 2004,
pages 51–62, 2004.

18 Hung Le and Cuong Than. Greedy spanners in euclidean spaces admit sublinear separators.
ACM Transactions on Algorithms, 20(3):1–30, 2024.

19 Jiří Matoušek. Efficient partition trees. In Proceedings of the seventh annual symposium on
Computational geometry, pages 1–9, 1991.

20 Harvey J Miller. Gis and geometric representation in facility location problems. Inter-
national Journal of Geographical Information Systems, 10(7):791–816, 1996. doi:10.1080/
02693799608902110.

21 A Frank Van der Stappen and Mark H Overmars. Motion planning amidst fat obstacles. In
Proceedings of the tenth annual symposium on Computational geometry, pages 31–40, 1994.

22 Chenzi Zhang, Fan Wei, Qin Liu, Zhihao Gavin Tang, and Zhenguo Li. Graph edge partitioning
via neighborhood heuristic. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 605–614, 2017. doi:10.1145/3097983.
3098033.

https://doi.org/10.1145/2623330.2623660
https://doi.org/10.1007/BF01840440
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.1016/0304-3975(82)90120-7
https://doi.org/10.1007/BFB0032047
https://doi.org/10.1007/3-540-58218-5_17
https://doi.org/10.1080/02693799608902110
https://doi.org/10.1080/02693799608902110
https://doi.org/10.1145/3097983.3098033
https://doi.org/10.1145/3097983.3098033

	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Preliminaries
	3 An Improved Data Structure for Connected Geometric Graphs
	3.1 Balanced Connected Graph Partitioning
	3.2 Circle-Graph Intersection Oracles
	3.3 Query Answering

	4 Proof-Of-Concept Study
	4.1 Baseline
	4.2 Comparative Evaluation

	5 Conclusions and Future Work

