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—— Abstract

We derive an improved upper bound for the number of incidences between the n vertices of a uniform
grid and m convex or concave curves, each pair of which intersect in at most s points, for some
integer parameter s > 1. For a square grid, our bound is

s+1
(0] (n2/3m2/3 +m IS ot n) .

This improves a general bound of O(mn'/?) on the number of incidences with respect to vertices of
a grid and convex or concave curves.

For a rectangular grid, which fits inside a 1 x K rectangle, for some integer K > 1 (which
generally may depend on n), the bound also depends on how large K is. The precise result is stated
in Theorem 2, but, roughly, we get the same bound as above when K is not too large.

Our analysis competes with a celebrated result of Bombieri and Pila [6], which gives (usually) a
sharper bound if we assume that the input curves are algebraic of constant degree and the input
points are vertices of the square grid. However, the analysis in [6] strongly relies on these assumptions,
and cannot be extended to handle the more general setup considered here.

As a main application, of independent interest, we present a variant of our technique for
semi-algebraic range reporting on sets of points of “bounded spread” in the plane.
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1 Introduction

Let P be a set of n points in the plane, and let I' be a set of m arbitrary curves from some
fixed family of curves (e.g., lines, parabolas, circles, etc.). Let I(P,I") denote the number
of incidences between the points of P and the curves of ', that is, I(P,T") = [{(p,7)|p €
P,y €T,p € ~}|. We denote by I(n,m) the maximum of I(P,T), taken over all sets P of n
points and sets I' of m curves from the given family, implicit in this notation. The incidence
problem is to bound I(n,m). This problem has been studied extensively for more than four
decades; see below.

Background. The simplest formulation of the incidence problem involves incidences between
points and lines in the plane, where Szemerédi and Trotter [14] showed an upper bound of
O(n?/*m?/® 4 n + m), which is tight in the worst case [7] (see also [13, Chapter 1] and [11]
for an overview of this and other results).
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For more general settings, the work of Sharir and Zahl [12] yields the following best
known upper bound for I(P,T), for arbitrary sets P of n points and T of m algebraic curves
with t degrees of freedom, that is, the number of real parameters needed to specify a curve of
I". The parameter t is also referred to as the parametric dimension of I'. In this case the
bound is

I(P,T)=0" (712/37712/3—|—nﬁmgi7:2 —|—m+n), (1)

where the O*(+) notation hides subpolynomial factors. See also the earlier works [3,5,10] for
the case of curves with ¢t = 3, such as circles or parabolas. Combined with the very recent
result of Janzer et al. [8], these results yield the following slightly improved bound (with no
subpolynomial factors):

I(P,T) = O(n2/3m2/3 + nS/ 1y /11 +m+n>. (2)

An early celebrated work of Bombieri and Pila [6] has studied the case where the points
of P form the vertex set of a \/n x y/n integer lattice (or grid, as we call it in this work), and
each curve in I is an irreducible algebraic curve of degree d. They have shown, using a fairly
involved algebraic analysis, that each such curve v € I' contains at most O*(n'/(29) lattice
points, leading to an upper bound of O*(mnl/ (Qd)) on the number of incidences involving m
such curves.

The analysis in [6] (as well as the more general case studied in [12] for arbitrary point
sets) strongly relies on the algebraic structure of the input curves. If, however, the curves
are not necessarily algebraic, but merely have a “well behaved” structure, then the analysis
in [6] (and [12]) no longer applies in general. Specifically, we are interested in settings where
the only assumptions are that each curve in T' consists of O(1) strictly convex or concave
portions, and each pair of these curves intersect in at most s points, where s > 0 is a constant
integer parameter. In such a case the best bound we are aware of is O(mn'/3). This bound
is mentioned in [13, Chapter 3], and, for the sake of completeness, we present below, in
Section 3 (see Proposition 4), a full analysis that derives this bound, in a somewhat more
general setup. The O(mn'/ 3) bound is somewhat weak, since it does not depend on s, and
it is also linear in m, so it tends to be large when |T'| is large. Our main goal in this paper
is to obtain an improved incidence bound for arbitrary curves that satisfy the assumptions
made above, and for points that lie on a square grid (as above), or, more generally, on a
rectangular grid (which turns out to be a considerably more challenging problem).

Our results. In this work we significantly improve the “default” bound in Proposition 4 for
the case where each pair of curves in I intersect in at most s points, for some constant integer
parameter s > 0. We also allow the curves in I' to contain line segments, and therefore
weaken the assumption of strict convexity (or concavity). (This extension is essentially trivial,
in view of the Szemerédi-Trotter bound [14].) We then obtain, in Section 2, the following
bound for the case of a square grid:

» Theorem 1. Let P be the set of the n vertices of the v/n X \/n grid, and let T be a collection
of m curves, each of which consists of a constant number of convex and concave pieces, and
every pair of which intersect in at most s > 0 points, for a constant integer parameter s.
Then the number of incidences between P and I is

I(P,T)=0 (n2/3m2/3 +n3emlTs +m+n> .
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In particular, one can easily verify that the bound in Theorem 1 is O (n2/3m2/3 +m+ n)
for pseudo-lines (curves with s = 1), and O (n2/3m2/3 +n2md/6 - m 4+ n) for pseudo-
parabolas or pseudo-circle (curves with s = 2), under the assumption that each curve can
be decomposed into a constant number of convex/concave pieces. We comment that the
bound in this theorem is worst-case tight for parabolas, using a construction inspired by
Elekes (see, e.g., [13, Chapter 1]), but it requires a rectangular grid, which is the case we
study in Section 3. In this latter section we assume that the points of P are the vertices
of a \/(n/K) x v/nK uniform grid, for some parameter 1 < K < n (this parameter is also
referred to as the “aspect ratio” of P). For this setting, we present a more involved analysis,
where we show:

» Theorem 2. Let 1 < K <n be an integer parameter (that may depend on n), and let P
be the set of the n vertices of the \/n/K x vnK uniform grid. Let T be a collection of m
curves, each of which consists of a constant number of conver and concave pieces, and every
pair of which intersect in at most s > 0 points, for some constant integer parameter s. Then
the number of incidenceslbetween P and T" satisfies the following bounds.

(i) When K < ( )35, we have

ns+1
m

I(PT)=0 (n2/3m2/3 LS mleE logn +m + n) .

1

(ii) When (%ﬂ)? < K <nl/3 (which can only happen when m > n), we have
I(P,T) = O(n**m?? 4+ n+ Kmlogn).

(iii) When K > n'/3, we have
I(PT)=0 (n2/3m2/3 +n+ mn1/3) .

Note that case (i) in Theorem 2 essentially extends the bound in Theorem 1 to “nearly”
square grids, whereas case (iii) implies that the bound is similar to the standard one (stated
in Proposition 4), if the aspect ratio of the grid is relatively “large”. The logarithmic factors
in (i) and (ii) are artifacts of our analysis, and we believe that they can be removed with a
more refined analysis.

Our proof technique is mainly combinatorial (i.e., avoids any algebraic considerations,
which are irrelevant in our setup), and consists of two major ingredients: (i) A Turdn-
type bound [9] that is exploited as a black box (see Section 2 for more details), and (ii) a
construction inspired by the “curvature-based” approach of Afshani and Cheng [1], who
established an upper bound for the cost of semi-algebraic range reporting for planar semi-
algebraic regions of constant complexity and points uniformly distributed in the unit square.
We adapt, in a nontrivial manner, their machinery to derive incidence bounds for the case of
point sets on a uniform grid, as specified in Theorems 1 and 2.

On the algorithmic front, following the analysis in [1], we present a variant of our solution
for the square grid setting, for semi-algebraic range searching for points of “bounded spread”
and planar semi-algebraic regions of constant complexity. Specifically, the input consists of
a set P of n points, and the spread of P, defined as max, 4ep |pg|/ min, ,ep |pql, is ©(y/n)
(which is asymptotically the smallest possible). In particular, this assumption includes the
case where each point of P lies close to a distinct grid vertex (of the v/n X /n grid). The
goal is to obtain a space-query tradeoff bound for (online) semi-algebraic range reporting
for P, where the query ranges belong to a family R of semi-algebraic regions of parametric
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dimension ¢ (recall that ¢ is the number of parameters needed to specify a range in R). That
is, for each query range, we want to efficiently report all the input points that lie in that
range. In Section 4 we adapt the machinery in [1] and show:

» Theorem 3. Let P be a set of n points in the plane with ©(\/n) spread, and let R
be o family of semi-algebraic ranges of parametric dimension t.* Then, for any value
polylog(n) < Q < c- n'/4, where ¢ > 0 is an appropriate absolute constant, we can construct

a range reporting data structure for P, of size and preprocessing cost O* (n2 + Qf?ff%), which

supports range reporting queries with regions from R, in time O(Q + k) per query, where k
s the output size.

The main difference between our setting and the one presented in [1] is that in the latter
the points in P are randomly and uniformly drawn in the unit square U, which makes the
estimation of the expected number of points contained inside an region enclosed within U
fairly straightforward. On the other hand, when we only assume that P has a ©(y/n) spread,
this estimation becomes trickier and requires further considerations.

2 The case of a square grid

Let P be the set of vertices of a y/n x /n uniform grid that fits within the unit square
U =10,1] x [0,1] (assume, without loss of generality, that n is a square). Let I be a set of m
arbitrary curves in the plane with the following properties:
(i) Each curve v € I" does not contain any line segment.
(i) Any pair of curves 71,72 € T' intersect in at most s points, for some constant integer
parameter s > 0. No pair of curves from I' overlap.
(iii) Each curve v € T consists of O(1) strictly convex and/or strictly concave portions.

For example, the case s = 1 corresponds to collections of pseudo-lines (that is, collections
of unbounded Jordan curves, each pair of which intersect at most once ), and the case s = 2
corresponds to collections of pseudo-parabolas (collections as above, where each pair intersect
at most twice) or pseudo-circles (defined similarly to pseudo-parabolas, but the Jordan curves
are closed), where we also require that these curves satisfy properties (i) and (iii).

In this section we derive an improved upper bound on the number I(P,T') of incidences
between the points of P and the curves of I'. We comment that property (iii) is essential for
the analysis, but property (i) can be discarded by applying the point-line incidence bound
in [14] to the straight portions of the curves. Specifically, we can extend property (iii), so
that each curve consists of at most O(1) line segments (in addition to the O(1) strictly
convex/concave portions), so the total additional contribution to the incidence bound in this
case is O(n?/*m?/® 4 n + m). This bound can then be added to our bound on I(P,T).

Our technique differs from the approach of Bombieri and Pila [6], who have studied the
case where the curves of I are algebraic of constant degree, and derived a (generally) stronger
bound for this case. Their work strongly relies on the algebraicity property of the curves. In
contrast, our setting is more general and does not make such an assumption. Informally, our
analysis is combinatorial, rather than algebraic, as in [6].

As described in Section 1, our analysis is based on the curvature-based approach of [1]. In
this approach, a curve v € I' is covered by “canonical” slabs of varying widths. The fact that
the total absolute curvature of + is relatively small allows us to control (i) the thickness and

! We emphasize that the query ranges are not given in advance, but they are all defined by a fixed
constant-complexity semi-algebraic predicate, with the ¢ degrees of freedom as parameters.
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number of slabs, and, consequently (ii) the number of points in a slab. These canonical slabs
induce a decomposition on P, where thin slabs contain a relatively small number of points
from P (see our analysis below for the specific bounds). Given this property, we apply a
Turdn-type incidence bound within each canonical slab, which eventually yields the incidence
bound stated in Theorem 1 — see below.

The construction. Our analysis uses the following construction inspired by [1]. Let 1 <
r < \/n be an integer parameter, which we will set later. We partition the unit square U
into a uniform r x r grid G. As a result, we obtain a partition of P into r? subsets, each

confined to a grid cell 7 of G, which has side length 1/r and contains O(n/r?) points of P.

(Points on boundaries of cells of G are assigned arbitrarily to one of the neighboring cells,
say, to either the lower or the left cell.) We then construct, for each cell 7 € G, a family of

canonical slabs, which we will use to cover the portions v N7 of the curves v € I' that cross 7.

The construction of these slabs proceeds as follows. For i =0, ..., [logr], fix the parameter
a; = 2¢/r (which lies in [0,1]). We first partition 7 into vertical interior-disjoint slabs of
width «;/r = 2¢/r? (and length 1/r); the number of these slabs is O(1/c;) = O(r/2%). We
then create [mr/2¢] rotated copies of the i-th partition, so that the j-th copy is a rotation of
the vertical partition by the angle 2¢j/r. The slabs within each rotated family are extended
or shrunk to fit within 7, so their lengths vary between 0 and v/2/7. Let ¥; be the collection
of these canonical slabs, for a fixed i, over all cells 7 € G (and all rotations). We refer to
the slabs in X; as slabs of type 4, or as i-slabs for short. We repeat the above construction
for each i = 0,...,|logr|, and denote by ¥ the union |J, ¥;. Put L; = |3;|. By the above
construction, L; is the number of grid cells, which is r2, times the number of i-slabs in a cell,
which is O((r/2") - (1/a;)) = O(r?/2%%); that is, we have L; = O(r*/2%).

Within each slab ¢ € ¥ we bound the number of incidences between the points of PN o
and a certain subfamily of the curves v € T' that intersect o (see below for the precise
definition). In order to do so, we need (i) to estimate |P Nol, and (ii) to construct, for each
~v € T, a small-sized set of slabs in ¥ that cover . Each slab ¢ interacts with all the curves
that use o for their cover — see below.

Bounding the number of points in a slab. Beginning with task (i), we apply Pick’s theorem
(see [4]), which measures the area of a nondegenerate simple polygon @ with vertices on the
unit grid, in terms of the number of grid points that it contains. Specifically, let u(Q) be
the area of @, let I (resp., B) be the number of points of P in the interior (resp., on the
boundary) of Q. Then Pick’s theorem asserts that ©(Q) = I + B/2 — 1. In our case, each
coordinate is shrunk by /n, so, for a nondegenerate simple polygon @ with vertices on P
(which is the shrunk y/n x \/n grid), we have nu(Q) = I + B/2 — 1, implying that

[PNQ|=1+B <2nu(Q) +2.
Let 0 € ¥ be a canonical i-slab. Replace o by the convex hull C(0) C o of PNo. ? Then
|PNo|=|PNC(o)| < 2nu(C(0)) +2 < 2nu(o) +2 = O (na;/r*) = O (2'n/r%).

The additive term 2 is subsumed in this bound as long as r is not too large and i is not too
small. When the bound O (2n/r?) is smaller than 1, we get |[P N o] = O(1). Nevertheless,
in this case too we will use the bound O(2%n/r3), with some care, and explain later why this

2 We apply this replacement since the vertices of o do not necessarily belong to P, and this property is
necessary in order to apply Pick’s theorem.
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does not cause any problems. We also note that this bound holds as long as P N ¢ is not a
collinear set of points (which is the case when p(C(c)) = 0). Degenerate situations of this
kind will be handled separately, in a rather simple manner — see below.

Covering a curve by canonical slabs. For task (ii), we follow a variant of the analysis in [1].
Let v be a curve in I'. We may assume that «y is (strictly) convex or (strictly) concave, and is
both z-monotone and y-monotone; otherwise, by property (iii) we can partition v into O(1)
pieces of this kind. The turning angle (') of a connected portion ' of v is the difference
|62 — 01| between the orientations 6, 05 of the tangents to 4 at its endpoints. Because
of convexity, the tangent orientations always increase or always decrease along 7/, so the
orientation of every tangent to 7/, as well as that of the chord connecting the endpoints of
~', lies between 6; and 6. See Figure 1.

02

01

Figure 1 A concave curve « and the orientations 01, 02 at its endpoints, as well as the orientation
6 of its chord.

Now let 7 be a cell of G that « crosses. By our assumptions, the intersection v/ =~y N7
is a single connected component of v. Let 6’ denote the turning angle of 7/. As is easily
checked, +' can be enclosed in a (not necessarily canonical) slab ¢’ of width cf’/r, for some
absolute constant ¢. Let i be the index such that 2i=1/r < ¢’ < 2¢/r. When ' < 1/(2r) we
still use the index 0 (see below), and we may assume that §’ < 1; otherwise break ~ further
into O(1) pieces that satisfy this property.

Then, as is easily checked, o’ can be enclosed in the union of O(1) canonical i-slabs. See
also [1, Lemma 30| for a similar property. This is illustrated in Figure 2. (Note that 4’ might
end inside a cell, but this does not harm the analysis.)

Figure 2 A curve 7/ and the (non-canonical) slab ¢’ enclosing it (the shaded polygon) are covered
by two canonical slabs (the red and blue polygons).

Fix an index 7, and let T'; denote the collection of all the arcs v/ = v N 7, over the curves
v € T and the cells 7 of G, for which 2= /r < 0(y') < 2¢/r. Since each piece in T'; consumes
at least 2°=1/r of the turning angle of the containing curve 7, the number of pieces of v in
T'; is at most O(r/2¢). For pieces 7/ with §(7') < 1/(2r) (which are left out of the preceding
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analysis), the z-monotonicity itself implies that v crosses at most O(r) cells of G, allowing us
to extend the first range to [0,1/r). That is, we have shown that each curve v € T’ contributes
O(r/2%) pieces to T';, and each such piece can be covered by O(1) (canonical) i-slabs.

Fix an i-slab o, let P(c) = P No, and I';(0) be the set of the portions within ¢ of
the curves of T' that use o in their cover (so their turning angles within the cell of G that
contains o lie in [2¢71/r,2%/r), or in [0,1/r) for i = 0). As shown earlier, assuming P(o) is
not collinear,

ng := |P(0)| = O(na; /r?) = O(2'n/r?). (3)

Put m, = |I';(0)]|, and observe that, summing over all i-slabs,

Z me = O(mr/2Y). (4)

ceY;

(This is because each covering slab “consumes” (2¢/r) of the turning angle of the curve.)

We now apply an incidence bound to P(¢) and I';(0), using the following considerations.

Assume first that P (o) is not collinear. In such a case, we apply a moderate incidence bound
using a Turdn-type bound. Specifically, since each pair of curves in I' intersect in at most
s points, it follows that the incidence graph of P(¢) and I';(0) (and, in general, also the
incidence graph of P and I') does not contain any copy of Ksi1,2. Therefore, by a result of
Kovari, Sés and Turédn [9], it follows that

I(P(0),Ti(0)) = O (ngm};l/ (s+1) 4 ma) . and (5)
I(P(0),Ti(0)) = O (mgnl/* +1n,), (6)

where the left-hand side is the number of edges in this incidence graph. In what follows, and
unless stated otherwise, we will mostly be using the bound in (5).

If P(o) is collinear then, since we have assumed that I" does not contain any line segments,
each arc of T';(0) can have at most two incidences with P(c) (since each such arc is strictly
convex/concave, it must intersect any line in at most two points), for a total of at most 2m,
incidences, which is subsumed in the above bound. In addition, if the bound in (3) on n, is
smaller than 1, the actual value of n, is O(1), in which case

I(P(0),Ti(0)) = O(|Ts(0)]) = O(my),

which is again subsumed in the above bound. Hence there is no harm if we use (with some
care — see below) the bound in (3), even when it is smaller than 1. Letting I'; denote the

collection (J, ¢y, I'i(0), and summing this bound over all -slabs o, we thus obtain

I(PT,) = 3 I(P(0),Ty(0)) = O(n(,?max Y ml Ve Y mg),

oEY; o€, oEY;

where 4 max is the upper bound in (3). The following calculations handle slabs o for which
this bound is > 1. Slabs for which this bound is smaller than 1 are handled in a much simpler
manner — see below. Next, using Holder’s inequality, we obtain

I(P,T;) = o(ng,max Sy Y mg) (7)

oEY; ey,
-y L
= O(ng,max<z m0> L+ Z ma). (8)
oeY; oEX;

30:7
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Recall that we have Y .y me = O(mr/2"), ngmax = O(2'n/r?) (where we assume for
now that this bound is > 1), and L; = O(r*/2%"). Substituting these bounds in the above
inequality, we obtain:

2in rmr\1-1/(s+1) (A \VETD nm!=l/(s+1) mr
I(P,T;) =0 ( = ( = ) (22> +20) =0 (TH/(HI)W(SH) + 2) .

We sum these bounds over the O(log r) values of i for which 2° > 73 /n (i.e., Ny max > 1). Since

i appears only in the denominators, we obtain decreasing geometric sums, which we can bound

nml—1/(s+1)
by their leading terms. We therefore obtain the incidence bound O (23/(+1) + mr>.
re— S

For i satisfying 2° < r3/n (note that there is no such i when r < n'/3), the bound per
slab is, as argued above, just O(m,), and the sum of these bounds is just O(mr/2%), which,

pml—1/(s+1)
when summed over 4, is just O(mr). That is, we have I(P,T') = O (2_?)/“_1) + mr).
r S

We balance these terms by choosing

i s+l 1/3s
r= — = .
m3s m

For this choice to make sense, we need to require that 1 < r < n'/2. When r (in the above
1/2

expression) is smaller than 1, we replace it by 1, and when r > n we replace it by n'/2. In

the former case the first term decreases and the second term increases (and thus dominates
the first term), so the bound becomes O(m). In the latter case we have the relation r > n'/2,
which implies that n**!/m > n3%/2 which is easily seen to be impossible for any s > 2
(unless m and n are constants). When s = 1 (the case of pseudo-lines), this inequality implies
that m is at most O(y/n). In this particular case, we apply the bound in (6) on the number

of incidences, from which we obtain I(P,T") = O (mnl/2 + n) = O(n). We have thus shown:

I(P,T) =0 (ml**ni +m+n>. (9)

Recall our discussion earlier in this section, where we also consider the case where property
(i) does not hold for I, and, as a result, need to add O(n?/*m?/3 + n + m) to the bound.
(When no line segments are allowed, we only get the bound in (9).) This completes the proof
of Theorem 1.

3 The case of a rectangular grid

Problem statement. Let P be the set of n vertices of a uniform grid drawn within the
rectangle R = [0,1] x [0, K], for some integer 1 < K < n (which may depend on n),
and assume, without loss of generality, that y/n/K is an integer. We now construct a
Vn/K x vnK uniform grid within R, so each of its cells is a square of side length VE/n.
Let T be a set of m curves satisfying properties (i)—(iii) of Section 2.

In this section we extend the analysis in the preceding section, to derive an improved upper
bound on I(P,T). Somewhat surprisingly, the analysis gets considerably more complicated
in this case.

We begin with the following well-known property (see, e.g., [13]). For the sake of
completeness, we present a proof that also holds for rectangular grids.
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» Proposition 4.

(a) An arbitrary strictly convex (or concave) curve can be incident to at most O(n'/3) vertices
of a square or rectangular uniform grid with a total of n vertices. The same bound holds
for a curve that consists of O(1) strictly convex and concave pieces.

(b) The bound is worst-case tight for a parabola in an nl/3 x n?/3 grid.

Proof.

(a) Assume that the grid is a k x ¢ grid, with k¢ = n. Without loss of generality, we may
assume that the given curve 7 is strictly convex and is both z- and y-monotone, and
replace it by the polygonal convex curve ; that connects the grid points on v in a
left-to-right order. An edge of 7; may contain many grid points, but we only consider
the two extreme ones, because, by assumption, none of the interior points lies on ~.
The vector along each edge of v, is of the form (Az, Ay), where Az € [1,k — 1] and
Ay € [1,£—1]. Fix two parameters u, v, whose values will be set later. An edge e of ; is
long if either Az > u or Ay > v, and short otherwise. Since each long edge advances by
at least u columns to the right, or by at least v rows upwards, the number of long edges
is at most % + %. For short edges, their slopes are of the form %, for Az € [1,u — 1],
Ay € [1,v—1]. The number of such slopes is at most uwv, and because 7 is strictly convex,
the slopes of its edges are all distinct, implying that the number of short edges is at most

uv.
k2/3

kL
We now set u and v to satisfy — = — = ww. The solution of these equations is u = e
u v

62/3
FRVER Hence the number of grid points on v is O(uv) = O (k1/3€1/3) =0 (nl/?’).

Note that this analysis holds when k > v/¢ and ¢ > vk. When, say, k < /¢, the claim
1/3

and v =

is trivial, as the grid has at most n'/® columns. A symmetric argument applies when
¢ < \/k. If ~ consists of O(1) strictly convex or concave pieces, we apply the preceding

analysis to each piece separately. This completes the proof of (a).

(b) The parabola y = 22 passes through n'/? vertices of the n'/? x n?/3 grid. <

The modified construction. We use the following modification of the earlier construction.
While several parts of the analysis are similar, there are quite a few additional or different
details that need to be worked out, to justify some overlap in the presentations. Let
1 <7 < 4/n/K be an integer parameter, which we will set later.> We partition R into an
r x rK uniform grid G, which yields a partition of P into 72K subsets, each confined to a
grid cell T of G, each of which has side length 1/r and contains O(n/(r?K)) points of P. As
in Section 2, we then construct, for each cell 7 € G, a family of canonical slabs, which we will
use to cover the portions v N 7 of the curves v € I' that cross 7. The slabs are now of two
kinds. The first family of slabs, which we refer to as (1), is similar to the one constructed
earlier for square grids, but with some nontrivial modifications (see below for details). The
second family, denoted by () (see below for the definition) is of a new, narrower kind of
slabs, and most of this section analyzes the structural behavior of these slabs, and presents
several combinatorial properties that we exploit in order to bound the number of incidences
that these slabs contribute. Having these properties, the actual derivation of the incidence
bound is mainly technical. The analysis for (1) is similar, but simpler; see below.

3 We will actually be using several different values of r; see below.
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Generally speaking, the main difference between the setup here and the previous setup
is that curves can cross a potentially larger number of cells of G, up to O(rK) of them,
and this amount can potentially increase the incidence bound if we only use slabs of 21
(informally, these slabs are too wide for this setup). To address this issue, we apply two main
modifications: (i) We partition the curves in I" into subarcs, depending on their “steepness”
(see below), and bound the number of incidences with respect to each of these portions
separately. (ii) We use a second family, namely $(?)| of narrower slabs, which were not
needed in the case of a square grid. We first introduce the structure of these curves and of
the narrower slabs, and discuss the interaction between them, and then present the analysis
for the total incidence bound.

Steepness and flatness. Consider a curve v € I that crosses tr cells of G, for some t > 2;
note that no such curves arose in the case of square grids (after having split each of them
into monotone (strictly) convex/concave pieces). As in Section 2, we may assume that
is (strictly) convex or concave and is both z-monotone and y-monotone; any curve in our
family can be partitioned into O(1) such curves. For concreteness, assume that + is concave
(i.e., its tangents turn clockwise as we go up), and is the graph of an increasing function;
all the other cases, where v is convex and/or decreasing, are treated in a fully symmetric
manner. Now let 7 be a cell of G that v crosses. The intersection v/ = v N 7 is connected.
We assign to 4/ the orientations 61 (v') < 02(v'), with respect to the y-axis, of the tangents
to 7' at its bottom and top endpoints, respectively, and put A8(y') = 05(v') — 61(7") > 0.

The orientation of the chord that connects the endpoints of 7/, as well as the orientations
of all the tangents to 7/, lie between 6;(’) and 2(7"). We define the steepness of 4’ as the
(larger) orientation 02(7'), and its flatness as AG(v'). Comparing to the analysis in Section 2,
the flatness of a curve represents its turning angle (although we now consider much smaller
values than those used in Section 2). The steepness is a new measure (that was not needed
for the analysis in Section 2), whose role is to control the number of cells of G crossed by a
curve (i.e., a subcurve with a given steepness).

We call 7/ a (g, j)-arc if its steepness 02(y') lies in [1/27,1/2771) and its flatness lies in
[1/(247),1/(2471r)), for suitable integer indices ¢ and j. Only the case ¢ > 1 is relevant;
less flat curves can be handled by the wider slabs of (1) and we treat them separately —
see below. We assume that j < log K, ignoring steeper arcs (because steeper arcs do not
cross more cells, namely more than O(rK) cells). The flatness parameter ¢, as just defined,
determines the minimum width of a slab that can enclose +/, but nothing prevents us from
using wider slabs, i.e., decrease the value of ¢q. To emphasize the role of the minimum width,
we denote the parameter ¢ just defined as ¢* (an intrinsic parameter of the arc), and refer to
it as the true flatness parameter of the arc. See Figure 3 for an illustration.

Maximal j-steep subarcs. We extend the notions of steepness and flatness to larger portions
of the original curve . Concretely, assume, as above and with no loss of generality, that
~ is concave and monotone increasing. Let 6~ < 6% be the tangent orientations of vy (with
respect to the y-axis) at its bottom and top endpoints, respectively. Let j~ > 5% be the

1 1
571 <6 < 5 and ST <0t < o We then partition «y into arcs

Yj+sVj++1s- - -5, s0 that the tangent orientations of each v; lie in [1/27%1,1/27), and refer

integers for which

to 7y, as a (mazimal) j-steep subarc (or portion) of 4. The flatness of ; is the sum of the
flatness of its subarcs of intersections with the grid cells of G that it crosses. The definition
of steepness is easily seen to imply that v; crosses O(27r) cells of G. Indeed, if we consider
the chord ¢ connecting the bottom and top endpoints of v;, we obtain a line segment whose
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Figure 3 A (¢*,j)-arc o' within a cell 7 of G. Here 6 ~ %, and 0, — 01 =~ le*r The width of
02—61 _ AO(Y) 1

the covering shaded slab is ~ R
T 2a%

slope (with respect to the y-axis) lies in [1/2771,1/27), so the y-coordinate of the difference
between the endpoints of v, is at most O(27), and dividing by 1/r we get the asserted bound
on the number of cells.

We now form* O(log K) families Iy, .. ., Iog k» where I'; consists of all maximal j-steep
portions of curves from I, for j = 0,...,log K.> We slightly modify the definition of the
first and last families I'g, I'iog i, 50 that I'g consists of all j-steep portions whose tangent
orientations lie in the range [1,00), and for I'iog x this range is [0,1/K). As will follow, this
modification does not harm our analysis. An important property of this partition is that the
subfamilies I'; are independent of r, which will be crucial for the forthcoming analysis. In
what follows, we bound the number of incidences with respect to each family I'; separately,
and then sum up these bounds over all such families. We comment that the bounds that we

will obtain will depend on 7, and optimizing each of them will require a different choice of r.

Handling this multitude of values of r requires some careful treatment; see below.

Narrow slabs. Fix an index j =0, ...,log K, and consider a maximal j-steep subarc v € I';.

Let 7 be a cell that v crosses. Clearly, the intersection v/ = v N 7 is also j-steep (it may

be even steeper). Let A0(vy’) be the turning angle (flatness) of 4'. Again refer to Figure 3.

If AB(y') > 1/r we can (that is, should) use slabs from (! to cover 7/. Assume then
that AG(y') < 1/r, and let ¢* > 0 be the integer for which 1/(2¢ 1) < AB(y') < 1/(27 r)
(so v is a (¢*, j)-arc). Then we can cover 4’ by a (non-canonical) slab o of width at least
AO(y')/r = O(1/(27 r?)) (see once again Figure 3). Note that we can use wider slabs to
cover 7/ (the actual width will be determined in the forthcoming analysis).® Let ¢ be the
integer parameter for the actual slab that we want to use (so its width is ©(1/(29r2)), where
q < ¢*). To cover o by O(1) canonical slabs of this width, we need to use slabs rotated by
multiples of the angle 1/(29r). But since +y is j-steep in 7, the orientations that we need
to use (with respect to the y-axis) span an angular range of at most O(1/27), so the total
number of rotations is O((1/27)/(1/(29r))) = O(2¢77r). For each canonical orientation, the
number of slabs at that orientation (within the current cell) is proportional to 1/r divided
by the width, so it is O(29r), for a total of O(22977r2) (q, j)-slabs, as we call them, in a cell,
i.e., a total number of

Ly; = O(2%79r*K) (10)

4 For simplicity, and with no real effect on the analysis, we ignore here rounding issues.

5 Note that this is slightly abusing the notation of I'; from Section 2, which has a different meaning.

6 There is a tradeoff in using wider slabs: their number is smaller but each of them contains more points.
The analysis below will address this issue.
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(g,7)-slabs. We also refer to these slabs as g-slabs, when j is not important (not to be
confused with i-slabs of X(1); see below and Section 2). We denote the family of these slabs
as foj)-’ and denote their union, over all ¢, as E§-2), and over all ¢ and j, as ©(®. We let

¥ = XM UX® denote the overall family of slabs.

» Remark 5. Note that it is crucial to apply the partition of v into maximal j-steep portions,
which eventually reduces the total number of rotations from O(29r) to O(2¢=9r). This yields
a more refined bound on L, ;, which we later exploit when deriving the overall incidence
bound.

» Remark 6. Again, we emphasize that the analysis depends on the flexibility to use wider
slabs to cover a (g*, j)-arc, so we distinguish between the true flatness parameter ¢* of an
arc and the actual parameter ¢ < ¢* of the slabs that we use to cover the arc. In particular,
the bound in (10) does not (explicitly) depend on the true flatness parameter ¢*.

For technical reasons, we do not want to use too large a value for ¢ (i.e., slabs that are
too thin). Our actual choice is (recall that we must have ¢ < ¢*)

g = min{2j,¢"}. (11)

Given a j-steep (portion of a) curve y € T';, the number of cells 7 from G that it crosses is
O(27r), as argued above. Alternatively, each (¢*, j)-arc consumes O(1/(29 7)) of the turning
angle (flatness) of 7, so 7 crosses at most O((1/27)/(1/(29 7)) = O(2¢ ~Jr) cells of G (in
which it behaves as a (¢*, j)-arc). Note that in this argument we have to use the true flatness
parameter ¢*. Hence the overall number of curve-slab interactions of this kind (that involve
(g, j)-slabs and (¢*, j)-arcs) is

Z My = O (min{2j, Qq*fj}mr) , (12)
o is a (g, j)-slab

where m, is the number of (¢*, j)-arcs that use o for their cover. See Figure 4.

Figure 4 The portion of the curve v inside the grid cell 7 is a (¢*, j)-arc, which can be covered by
O(1) canonical (g, j)-slabs, for any ¢ < ¢*; the figure illustrates one such slab by the shaded region.

Preparing for the incidence analysis. As before, within each slab o € £(?) we bound the
number of incidences between the points of P N o and the subfamily of the j-steep curves
v € T'; (for each j separately) that use o for the cover of their portion within the cell of o.
In order to do so, we need, as before, (i) to estimate |P No|, and (ii) to construct, for each
v €T, a small-sized set () (v) of (canonical) slabs in $(?) that cover 7. Slabs in (!) are
handled in a simpler manner, similar to Section 2; see below. Task (ii) has already been
addressed, so we mostly consider task (i), and briefly summarize (ii) afterwards.
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Bounding the number of points in a slab. We apply Pick’s theorem, as in Section 2, which
now implies that, for a nondegenerate polygonal region () whose vertices are grid points”
% Q) =1+ B/2—1,s0, as long as PN Q is not a collinear set of points,

2
|PmQ|:I+B§£u(Q)+2.

(i) Let 0 € ¥ be a canonical i-slab. Replace o by the convex hull C(c) C o of PNo.

We then have

PAc| = |PNC(o)| < %”,,L(C(a))m < %u(a)+2 —o(5) <o <fgf7‘<) . (13)

(i) For a (g,7)-slab o € ©(?)| the same reasoning gives

n 1 n
'P““':()(K'qus) =0 (55) (14)

Again, here g refers (naturally) to the thickness of the actual slab and not to the true flatness
parameter ¢* of any arc that uses the slab for its cover. These bounds hold as long as PN o
is not collinear, and provided that they are at least 1. Degenerate situations, when one of
these assumptions does not hold, are handled as in Section 2. That is, if P N o is collinear
then o contributes at most 2m, incidences, and the term O(m, ) in our bound takes care of
this case too. Similarly, as in Section 2, when the bound on |P No| in (13) or (14) is smaller
than 1, we take the bound to be O(1) instead. This does not violate the analysis (although
some care is needed), as the bound that we derive subsumes the incident count in these cases
— see below.

Covering a curve with canonical slabs. For task (ii), we just summarize the preceding
analysis, which shows that the number of cells 7 for which v is j-steep and ¢*-flat is
O(min{27,29 =7 }r). Hence, the overall number of curve-slab interactions, for (g, j)-slabs in
Egg) and (q*, j)-arcs, for ¢ < ¢*, is O(min{27,29 ~7 }mr).

Incidences within slabs of (). The analysis involving slabs of X(!) is similar to that in

Section 2, although some steps of the analysis need to be adjusted to the rectangular setup.

Here the width of a slab is associated with the index 4 (used in Section 2), which replaces
the index ¢ used above. The analysis that we present below is a refinement of the analysis in
Section 2, where we consider the interaction of i-slabs with j-steep curves. This refinement
was not needed in Section 2, but is needed here due to the fact that a curve v € I' may cross
> r cells of GG, as mentioned above.

Let v € T'; be a maximal j-steep curve, and let v/ = y N 7. We assume Af(y') >
1/r (otherwise we use slabs of () to cover ), and let i > 0 be the integer for which
271 /r < AB(y'") < 2¢/r. Analogously to the notation and definitions used above, we say
that 4" is an (¢, j)-arc. Then we can cover 4" by a (non-canonical) slab o of width at least
AO(y')/r = O(2¢/r?). As above, we can cover o by O(1) canonical slabs of this width, which
are rotated by multiples of the angle 2= /r. But since + is j-steep in 7, the orientations that
we actually use (with respect to the y-axis) span an angular range of at most O(1/27), so the
total number of rotations in this case is O((1/27)/(2%/r)) = O(r/2"*7). For each canonical

7 Here the scaling of the area is, as it should be, by n/K.
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orientation, the number of slabs at that orientation (within the current cell) is proportional
to 1/r divided by the width, so it is O(r/2?), for a total of O(r?/221%7) (i, j)-slabs in a cell
(this is a refinement of the definition of i-slabs from Section 2), i.e., a total number of

Lij = O(r*K/2*7) (15)
(i,7)-slabs. We denote the family of these slabs as Eg}j), and denote their union, over all i, as
Ejl), and over all i and j, as ¥,

Fix an (i, j)-slab o, let P(0) = PNo, and I'; j(0) be the set of curves of I'; that use o in
their cover (so their turning angles within the cell of G that contains o lie in [2¢71/r, 2¢/r)).
Let I'; ; denote the collection, over all j-steep curves v € I'; and (4, j)-slabs o, of the portions
7N o that use o for their cover. That is, I';; = U, cy,0) I'i,j(0). As shown earlier, when

P N o is nondegenerate, we have in general

ne = |P(o) = 0 (5ox) :o(fg,i;); (16)

the cases where either P N o is collinear, or where the bound in (16) is smaller than 1, are
handled as before, namely the incidence bound is O(m,) in both cases, where m, = |I'; ;(o)].
We next bound, for a j-steep curve v € I';, the number of cells 7 that it crosses. Each
(i,)-arc of v consumes ©(2¢/r) of the turning angle (flatness) of v, and since 7 is j-steep it
crosses at most O((1/27)/(2¢/r)) = O(r/2t+7) cells of G, in which it behaves as an (4, j)-arc.

Hence the overall number of curve-slab interactions that involve (i, j)-slabs and (i, j)-arcs is®

3 m[,:o(;:). (17)

o is an (i, j)-slab

We now apply the incidence bound (5) to P(c) and I'; ;(o), and obtain
I(P(0),T; (o)) =0O" (ngm(l,_l/(s"'l) + ma>.
Recall that T; ; = UUGE(17) T, j(0). By summing this bound over all (i, j)-slabs o, we obtain
PTG = 3 IPO).Tig(0)) = O(nome Y2 mi /04 3 m,),
oest) oestt) oest)

where Ny max is the upper bound in (16) (assuming it to be > 1). Next, using Hoélder’s
inequality, we obtain

I(P,ri,j):o(na,max Do omy Vet Y m”)

(1) (1)
o€D, ; oE€D, ;
1-1/(s+1)
1/(s+1)
:O(nmmax( g m(,) Lz}j + E My ).
(1) (1)
aEZi,j UEZJI.’].

Recall that we have 5 _co)m, = O(mr/27%9), Ny max = max {O(2'n/(r*K)), 1} over
i

o€ EZ(»}J»), and L; ; = O(r*K/2%%7). Substituting these bounds in the above inequality, we

obtain

8 Here there is no need to use wider slabs, as in the case of =@,
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ot 1—-1/(s+1) 4K 1/(s+1)
I(P,rij):o<3"(7.”r,) <’“. ) 4
’ PR \ 205 221+ 2t

_0 ( nml—1/(s+1) mr )

Ko/t D,2 8/ D9/ (4027 | 2125

We sum these bounds over the O(logr) values of i. Since ¢ appears only in the denominators,
we obtain decreasing geometric sums, which we can bound by their leading terms, in which
2" = 1. Denoting by I (P,T;) the number of incidences within slabs of Z§1), we therefore
obtain

nmlfl/(erl) mr
L(PT;) =0 <Ks/(s+1)7«2—3/(s+1)2j + 23> (18)
Incidences within slabs of (2). Consider next incidences within slabs o € 25_2)’ for a fixed

index j. Let v € I'; be a j-steep curve for which we need to use slabs of 252). To simplify the

analysis, and with no loss of generality, assume that (i) v is concave and monotone increasing,
and (ii) v enters G through its bottom edge and leaves G through its right or top edge, after
having crossed tr cells of G, for some 2 <t < K + 1.

Let 7 be a cell of G that v crosses. We use the notations introduced earlier concerning
the steepness and flatness of v/ = v N 7, and let j and ¢* be the parameters for which +/
is a (¢*,j)-arc. (As already noted, v/ may be steeper within 7, but we will, as we can, use
the same steepness index j for 7' too.) As argued, 7’ can be enclosed by O(1) canonical
(g, j)-slabs, for any ¢ < g*.

Recalling the bounds in (10), (12), and (14), the overall number of (g, j)-slabs is Ly ; =
0(2297r*K), the number of points in a g-slab is n, = O (W) (assuming that this bound
is > 1), and

Z me =0 (min{2j, 2q*_j}mr> .

o is a slab
covering a (g*,j)-arc
Let I'g- j(0) denote the set of (¢*, j)-arcs that use o for their cover (so my = |T'g+ ;(0)]).
Again, we may assume that P(c) is not a collinear set of points, otherwise, the number of
incidences is at most 2m,, as argued in Section 2. We also recall that the bound O(m,)
takes care of incidences within slabs ¢ for which the bound on n, is smaller than 1. Thus,
we can now apply the incidence bound (5) to P(0) and I'y« j(0), and obtain

I(P(0), Ty j(0)) = O(momy /D) -, ).

Hence, fixing ¢*, denoting by I'g~ ; the collection of all (¢*, j)-arcs, and summing the above
bound over the set 21(1?3*73'

(fixed) ¢ < ¢*, we obtain:

of all (g, j)-slabs o that are used to cover (¢*,j)-arcs, for any

Iq(Pa ]-—‘q*yj) = Z I(P(J)vrq*,j(a)) = O(na,max Z m(ljfl/(erl) + Z ma);

062(2)* . 062(2)* ) 062(2)* .
4,9* .5 q,9%,j a,q%,j

where I, refers to incidences within g-slabs, and where, as before, in the first sum we
replace the uniformly bounded quantities n, by their upper bound ny max = O(n/(29r3K))
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(assuming that this expression is > 1), over all o € Z,(f;*’j. Next, using Holder’s inequality,
we obtain
I,(PT, ;) = O(no',max S ol Ve § mg)
‘76222,31*,1 ‘76222,31*,1
1=1/(s4+1) | /ai1
= O(nomax( Y. mo) LI Y m). (19)
cen® cen®
q,9%,j q,9%,j

We substitute > o2 ms =0 (min{27, 27" =I}mr), ng max = O(n/(29r°K)) (assuming
a,q%,j

this bound to be (1)), and L, ; = O(22777*K) in (19). We bifurcate according to whether
¢* > 24, and then write 2/ for min{2’, 27 —7}, or ¢* < 24, and then write 29" ~7 for that
expression.

When ¢* > 25 we obtain

1,(P.Tye ) = O(nf (2" K) (/) O (220704 ) VY i)
1-1/(s+1) .
=0 — _fm +27mr . (20)
90—i— =7t 1-1/(s+1)2-3/(s+1)

When ¢* < 2j5 we obtain

1-1/(s+1) , . .
) (22‘1_JT4K)1/(L+1) + 21 _jmr)

1(P.T g 5) = O(n/ (217 K) (20 ~Tmr
nml—1/(s+1)
D7 a—2a/ (D) =g/ + D) J{1=1/(s+1) 728/ (1)

+ 2q*ﬂ'mr> . (21)

In the former case, when ¢* > 25 we take ¢ = 2j, so the bound in (20) becomes

+ 2jmr> .

nmi—1/(s+1)
(2j—2j/(s+1)K1—1/(3+1)7,2—3/(s+1)

In the latter case, when ¢* < 25 we take ¢ = ¢*, observe that ¢* — j < j, and conclude that
the bound in (21) becomes

nm1—1/(s+1) _ am1—1/(s+1) _
(21'*4*/<5+1)Klfl/(4*+1)r2*3/(s+l) + 2-7mr> =0 (2j72j/(s+1)[(171/(S+1)7n273/(s+1) + 2-7mr> :
That is, both expressions in (20) and (21) can be bounded by
nmi—1/(s+1) )
14(P,Tg 5) = O <2j2j/(s+1)K11/(s+1)r23/(s+1) + 2er) : (22)

(Note that this bound is independent of ¢*.) It is easy to verify that the bound in (22)
dominates the bound (18) for the number of incidences within slabs of Z;l) (for the same j).
So we now continue the analysis using the bound (22).

We next choose r to balance the two terms. That is, for j fixed,

s+1
— = ne 23)
r=r, m%(QQJK)1/3' (

Before continuing, we note that we have O(log K') different values of r = r;, which implies
that we need to construct a different grid G for every family I';. This, however, does not
harm the analysis, since, as already noted, the families I'; are independent of 7.
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For each j =0,...,log K, for the choice of r = r; in (23) to make sense, we require that
1 <r; <y/n/K. When r; < 1 we replace it by 1, and when r; > y/n/K we replace it
by y/n/K. Since the values of r; form a geometric decreasing sequence, the requirement
1 <r; <y/n/K for each j = 0,...,log K holds iff riqg x > 1 and ro < y/n/K. So it
suffices to consider the extreme cases 1oz k < 1 and r¢ > v/n/K. Consider first the case

T = Tog k < 1. This constraint is:

1 1
1 ns+1 3s ns+1 3s
— <1, K > . 24

Replacing r by 1 makes the second term in (22) dominate the first term. Hence, the
incidence bound becomes I,(P, I« ;) = O(2/m) in this case. Then, summing up over all
O(log? K) pairs (g, ) (recall that j < log K and ¢ < 2j), we obtain a total incidence bound
of O(Kmlog K). We comment, however, that when K exceeds n'/?

, we use instead the

general bound in Proposition 4, which implies that the number of incidences is O(mnl/ 3).

(The lower bound in (24) exceeds n'/3

Suppose next that r = ro exceeds \/n/K. This implies that

when m < n.)

1 1_s41 i s=2 _
KY6 > msin2~5 =msnes or K > m?/sps=2)/s,

Since we only consider the case K < n'/3, this implies that m < n!=5/3

when s > 3 (unless m and n are constants), and becomes m < n'/3 when s = 2, and m < n
when s = 1. In these two latter cases we apply the general bound O(mnl/ 3) in Proposition 4,
which in these cases is at most O(n). Note that these are global bounds that do not depend
on the type of the slabs in (2™ or X(?)).

, which is impossible
2/3

In the remaining range, i.e., for 1 <r =r; < /n/K, we reason as follows. Due to the
choice in (23), and using (22), the bound simply becomes

_ 97 (n(+1)/(39) 11/ 3)) (29/3n (e 1)/B5) g 1-1/(39))
N — (27 — —
I,(P, T+ ;) =02'mr) =0 TR =0 7B .

We next sum up this bound over all O(log® K) pairs (g, j), and obtain (recall that the actual
sum is over all (g, j)-slabs o in 2 and thus the actual summation does not depend

49737
explicitly on ¢*):

93 /3(s+1)/(35) 11/ (35)
L(PT)=0(Y ( =75 1 o (n(s+1)/(3s)ml_1/(3s) log K) . (25)

4,7

where I(P,T) is the overall number of incidences within slabs of %(2).

We also recall that we need to add the bound O(n?/*m?/3 + n + m), for the case where
the curves in I' contain line-segments (see above). The proof of Theorem 2 now follows by
combining all the above bounds, including the bounds derived for (), and using the fact
that log K = O(logn).

4 Range Reporting for Point Sets of Bounded Spread

In this section we prove Theorem 3. Our construction is based on that of Afshani and
Cheng [1], who obtained a similar space-query tradeoff bound for (online) semi-algebraic
range reporting for points uniformly distributed in the unit square. Here we consider instead
the case where the input set of n points has spread ©(y/n). This setup requires some extra
care, as we provide below.
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The grid construction. Let P be a set of n points in the plane of ©(y/n) spread, that is,
the ratio between the maximum and the minimum distances among pairs of points from P is
at most ©(y/n). (As already noted, this is asymptotically the smallest possible value of the
spread of n points in the plane.) Suppose, without loss of generality, that all the points of P
lie in the unit square U = [0,1] x [0, 1]. We now draw a /n x y/n uniform grid G that fits
within U; let us denote by V the set of its vertices. Since the spread of P is ©(y/n), each
cell of Gy contains only O(1) points of P (or is empty), as is easily verified.

We next apply a similar grid construction as in Section 2, where now the parameter r is
the query time @ = Q(n). For simplicity of presentation, we continue to denote it by r. We
partition the unit square U into an r X r uniform grid G. As a result, we obtain a partition of
V into r? subsets, each confined to a grid cell 7 of G, which has side length 1/ and contains
O(n/r?) points of V. Due to the bounded spread property, this also forms a partition of P
such that [P N 7| = O(n/r?), for each cell 7 of G. (Points on boundaries of cells of G are
assigned arbitrarily to one of the neighboring cells, as before.) We then construct, for each
cell 7 € G, a family of canonical slabs in an identical manner to that presented in Section 2.
These slabs are used to cover portions of the boundaries of query ranges R. We use the same
notation as in Section 2, and denote by X; the set of all i-slabs, for each i =0, ..., [logr],
and put ¥ = J; ;. We recall that L; = |Z;] = O(r*/2%).

In each slab o € ¥ we construct a range-reporting data structure for the set P No (see
below for details). In what follows we first estimate |PNo|, and then present the construction
of the range-reporting data structure.

Bounding |[P No|. We first estimate |V No| and then show how to obtain a similar bound
for [P No|. We apply Pick’s theorem as in Section 2, and use the notation there. That is,
for a nondegenerate simple polygon @ with vertices of Gy, we have nu(Q) =1+ B/2—1,
implying that [V N Q| =1+ B < 2nu(Q) + 2. Then for a canonical i-slab o € ¥, we obtain
(where C(0) C o is the convex hull of V No):

Vol =[VNC(o)| <2nu(C(0)) +2 < 2nu(o) + 2 = O (noy /r?) = O (2'n/r?) .

As already noted, this bound holds as long as V' N o is not a collinear set of points, and the
additive term 2 is subsumed in this bound as long as r is not too large. We next present an
appropriate choice for 7, such that both of these properties hold:

» Lemma 7. Ifr < cn'/%, for a sufficiently small constant ¢ > 0, then, for each canonical
slab o € %, the set V N o is not collinear.

Proof. Let 7 be the grid cell that contains o. By the condition r < en'/4, the width of o
must be at least 1/r2 = Q(1/y/n). If ¢ is sufficiently small, then o must contain in its interior
a grid square of G (which is an axis-parallel (1//n) X (1/4/n) square, whose vertices belong
to V). Therefore, o contains four points of V', which are not at a collinear position. |

We thus conclude that we always have [V No| = O (2'n/r®), using the above choice
of r; for this choice, the term 2in/r3 is at least nt/4
additive term 2. Using the notation of Lemma 7, it is also easy to verify that each grid
square of G intersected by o must have at least one vertex v € V that lies inside o. In other
words, the number of grid squares intersected by o is equal, up to a constant factor, to the
number of grid points inside o. Since each grid square contains O(1) points of P, this also
asymptotically bounds |P N ¢o|. In other words, we showed (for r as above):

|PNo|=0(2'n/r?), for each i-slab o. (26)

, which, in particular, dominates the

Since we rely on Lemma 7, we require that Q(n) = r < en'/%.
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The data structure. Let P and R be as in the statement of Theorem 3. We follow the
analysis of [1] and construct a two-part data structure for P that supports range reporting
queries from R, as follows. Let R € R be a query range. At the first structure we efficiently
report points that are close to OR, and at the second structure we use a simplex range
reporting data structure with space complexity O*(n?) and O(logn + k) query time, where k
is the output size. For the first task we use the above grid construction, where the parameter
r is the total query time-bound parameter Q(n) that we aim to achieve.

As observed in [1], after covering OR by canonical slabs, the leftover (inner) portion R°
of R is a polygonal region, whose complexity is proportional to the number of slabs used
to cover R. Thus R° can be covered by triangles, whose number is proportional to that
quantity. Specifically, we have O(1) triangles in each grid cell 7 of G crossed by 9R, for a
total of O(r) = O(Q(n)) such triangles. The cells that are fully contained in R° are easier to
handle, since all the points of P in these cells belong to the output; we refer to [1] for the
missing details. Hence, using O(Q(n)) simplex range reporting queries, we can report all the
points of P in R°. That is, the cost of this part is (as argued in [1]) O(Q(n)logn + k) time,
where ko is the number of points from P in R°. (Recall that we use O*(n?) space in this
structure).

We thus focus on range reporting near the boundary of R. Let us consider an i-slab
o € X;. Recall from the above discussion (and Section 2) that the corresponding parameter
a; is2°/Q(n), L; = Q(n)*/2%, and n, = |[PNo| = O(na;/Q(n)?) = O(2in/Q(n)3) (see (26)).
We now construct within o a range-reporting data structure, with query time O(2¢ + k1)

(where k; is the output size) and space complexity O (("Q—T)t) Such a data structure is
fairly standard and is obtained by duality, see [1] and the references therein. As argued
in Section 2, OR uses at most O(1/a;) = O(Q(n)/2%) i-slabs o for its cover, so the total
query time overhead of this part is O(Q(n)); we refer to [1, Lemma 17] for further details
concerning this property.

We thus conclude that the total space complexity is

[log Q(n)] [log Q(n)] i g\t
. LEANE P 402 (2n0i/Q)*\T) _ oo n
0 ; = (2i ) =0 ; Qn)"/2 ( 21 Y Qn)3t—14)"

Recall that due to the simplex range reporting data structure stored at our second
structure, we need to add a factor of O*(n?) to the storage (and preprocessing) complexity.
The threshold for @Q(n) in Theorem 3 follows from the threshold in Lemma 7. We also
note that we require Q(n) > polylog(n), as follows from standard properties of range search
(see [1,2]).

We comment that due to the second data structure, where we use simplex range reporting,
the actual query time is O(Q(n)logn + k), however, we can easily reduce it to O(Q(n) + k)
by choosing r = Q(n)/logn (and keeping the storage complexity O*(n?)), as is easily verified.
This completes the proof of Theorem 3.
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