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—— Abstract

We study the problem of deriving compressibility measures for Piecewise Linear Approximations

(PLAs), i.e., error-bounded approximations of a set of two-dimensional increasing data points using
a sequence of segments. Such approximations are widely used tools in implementing many learned
data structures, which mix learning models with traditional algorithmic design blocks to exploit
regularities in the underlying data distribution, providing novel and effective space-time trade-offs.

We introduce the first lower bounds to the cost of storing PLAs in two settings, namely
compression and indexing. We then compare these compressibility measures to known data structures,
and show that they are asymptotically optimal up to a constant factor from the space lower bounds.
Finally, we design the first data structures for the aforementioned settings that achieve the space
lower bounds plus small additive terms, which turn out to be succinct in most practical cases. Our
data structures support the efficient retrieval and evaluation of a segment in the (compressed) PLA
for a given z-value, which is a core operation in any learned data structure relying on PLAs.

As a result, our paper offers the first theoretical analysis of the maximum compressibility achiev-
able by PLA-based learned data structures, and provides novel storage schemes for PLAs offering
strong theoretical guarantees while also suggesting simple and efficient practical implementations.
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1 Introduction

The rapid growth of data has led to the development of novel techniques for designing data
structures that leverage regularities in the underlying data distribution to deliver faster or
more succinct solutions to proper query operations. This novel line of research, known as
learned data structures [15], integrates machine learning models with traditional algorithmic
techniques to achieve improved space occupancy and query time performance.
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Succinct Data Structures for Piecewise Linear Approximations

A widely used tool in the field of learned data structures is the so-called Piecewise
Linear Approzimation (PLA), an error-bounded approximation of a two-dimensional set
of points using a sequence of segments [20]. The common use of PLAs is due to their
ability to capture linear trends in the input data, which frequently occur in many practical
applications, while using little space and providing fast inference time. In this work, we focus
on PLAs arising in two settings: (1) the compression setting, where the input sequence of
points is increasing in both coordinates but the z-values are also consecutive; and (2) the
indexing setting, where instead the y-values of the input sequence are consecutive. These
two settings are general enough to cover a broad range of applications, including rank and
select dictionaries [7, 2], time series compression [14], string indexing [24], one-dimensional
indexing [15, 13], multi-dimensional indexing [17, 4], range minimum queries [9], monotone
minimal perfect hashing [10], and range filtering [23], to mention a few.

Prior work concerning the study of theoretical properties of PLAs has primarily focused
on providing upper bounds on the optimal number of segments £ as a function of the sequence
length n and the maximum allowed error €, that is the maximum vertical distance between the
y-coordinate of any input point and its covering segment. Such a relationship is fundamental
from a theoretical perspective since it can explain the surprising performance of learned
data structures and also allow a theoretical comparison with their classical counterparts. In
this context, it is worth mentioning the pioneering study of Ferragina et al. [11] showing
that in the indexing case under the assumption that the gaps between consecutive keys are
independently and identically distributed random variables, with constant mean and variance,
the optimal number of segments ¢ is ©(n/e?) with high probability. Later works [25, 3]
provided better upper bounds, but they only considered PLAs formed by horizontal segments.

As far as lower bounds are concerned, we mention the work of Zeighami and Shahabi [26]
which was the first to limit from below the model size (e.g., the number of segments ¢ in a
PLA or the number of neurons in a neural network) of any learned data structure achieving
a given desired accuracy ¢ for a wide range of problems arising in database systems such as
one- and multi-dimensional indexing, cardinality estimation, and range-sum estimation.

In our work, we assume that the segments have arbitrary slopes and the number of
segments ¢ forming an optimal PLA is known (e.g., computed by [20]), and thus provide
the first information-theoretic lower bound to the storage complexity of that PLA in both
the compression and the indexing settings (see Theorems 6 and 8). We then compare two
representative data structures against these lower bounds, namely the LA-vector by Boffa et
al. [2] (for the compression setting) and the PGM-index by Ferragina & Vinciguerra [13] (for
the indexing setting), showing that both are optimal up to a constant factor. Finally, we
conclude our work by designing two novel data structures for the aforementioned compression
and indexing settings, that provide the same asymptotic query time as the LA-vector and
the PGM-index, but with small additive terms to the introduced lower bounds.

2 Background

We assume the transdichotomous word RAM model where the word size w matches the
logarithm of the problem size and arithmetic, logic, and bitwise operations, as well as access
to w-bit memory cells, take O(1) time. To simplify, we denote with log z the logarithm in
base 2 of x, and we assume that logarithms hide their ceiling and thus return integers.
Given a static sorted sequence S =1 <z < 29 < --- < z, < u of n elements drawn
from a finite integer universe U of size u, we consider the following fundamental operations:
rank(S, x), which for x € U returns the number of S’s elements that are smaller or equal
to z, i.e. [{x; € S|z <a}.
select(S,1), which for i € {1,2,...,n}, returns the element in S of position i, i.e.
rank(S,x) = i. We assume select(S,0) = 0.
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If S is represented with its characteristic bit vector Bg, namely, a bit vector of length
u such that Bg[i] = 1if i € S, and Bg[i] = 0 otherwise, then supporting such operations
is equivalent to support the rank;(Bg, ), which yields the number of 1s before position x,
and selecty(Bg, 1), which gives the position of the i-th 1 in Bg. These operations have been
studied extensively with many practical and theoretical results, and are at the core of any
succinct or compressed data structure (see [18] for a comprehensive treatment). For our
purposes, we briefly mention that they can be supported in O(1) time while using only o(u)
additional bits on top of the underlying bit vector.

The information-theoretic lower bound to store S is B(u,n) = log (}!). Such value is
related to the zero-order empirical entropy of its characteristic bit vector Bg, defined as
uHo(Bs) = nlog » + (u — n)log -*. In fact, with simple arithmetic manipulations one
obtains B(u,n) = uHo(Bs) — O(logw). The best upper bound to represent S with the
minimum redundancy with respect to B(u, n), and while still being able to perform rank and

select in optimal constant time, is given by the following data structure due to Patragcu [21]:

» Theorem 1 (Succincter). For any ¢ > 0, a monotone sequence S of n positive integers drawn
from a universe of size u can be stored using B(u,n) + O(u/log®(u/c)) + O(u3/* polylog u)
bits and support rank and select in O(c) time.

Theorem 1 implies constant time rank and select operations in B(u,n) + O(u/log® u)
space, which essentially matches the lower bound of Pétragcu & Viola [22]. To further reduce
the space redundancy on top of B(u,n), one must allow for slower rank or select operations.
A prominent example is given by the Elias-Fano encoding scheme [6, 5], which attains the
following space-time trade-off for the aforementioned operations [18]:

» Theorem 2 (Elias-Fano encoding). A monotone sequence S of n positive integers drawn
from a universe of size u can be stored using 2n +nlog * + o(n) bits while supporting select
in O(1) time and rank in O(min{log %, logn}) time.

Indeed, the space usage of Theorem 2 can be expressed in terms of B(u,n) as follows:
2n + nlog% +o(n) = uHo(Bg) + O(n) = B(u,n) + O(n + logu) (1)

Thus obtaining a lower redundancy term with respect to Theorem 1 whenever S is
very sparse, which, however, requires giving up the constant time rank operation. The
literature offers other trade-offs (e.g., [18, 19]) that could be adopted in our solution, leading
to corresponding time-space bounds. However, for the sake of presentation, in the remainder
of the paper we focus on the results provided in Theorems 1 and 2.

A new line of research has recently started to investigate novel methods for designing
algorithms and data structures that leverage regularities in the underlying data to deliver
faster or more succinct solutions to a wide variety of problems. Most of these methods rely on
a technique known as Piecewise Linear Approzimation (PLA), which involves approximating
a sequence of two-dimensional points using a set of segments.

» Definition 3. Given a set of n two-dimensional data points P C R?, a Piecewise Linear
Approximation of P with maximum error e > 1 is the smallest set of non-overlapping segments
{51, 82,..., 8¢} that entirely covers P, ensuring that every point in P lies within a mazimum
vertical distance € from its corresponding segment.

A PLA can always be computed optimally, hence producing the minimum number of
segments ¢ in time proportional to the sequence length using an algorithm by O’Rourke [20].
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Here, we focus on PLAs computed from monotone sequences of two-dimensional data
points, in which a point (z;,y;) is smaller than (z;41,y;+1) because it has a strictly smaller
abscissa x; < ;41 and a smaller ordinate y; < y;+1. In particular, we consider two specific
scenarios: (1) the compression setting, where PLAs are computed on sequences having
consecutive z-values (i.e., x;41 = ; + 1, with 27 = 1), and (2) the indexing setting, in
which PLAs are computed on sequences having consecutive y-values (i.e. y;4+1 = y; + 1, with
y1 = 1). As already mentioned, despite the names, such scenarios are quite general and
encompass a wide range of applications. To get a practical sense of the usage of PLAs in the
design of learned data structures, we briefly outline two prominent examples.

In the design of learned and compressed rank and select dictionaries [2], the input sequence
S=1<z; <x9 <+ <y <, is first mapped to a Cartesian plane representation where
the z-axis corresponds to the sequence of positions 1,2,...,n, while the y-axis represents
the sequence values, namely x;s. This transformation converts S into a set of monotonically
increasing two-dimensional points: {(¢,2;) |z; € S}. The key innovation of this approach is
that the Cartesian plane representation reveals inherent regularities in the underlying sequence
S. A PLA is then computed from such a sequence of points, and compression is achieved by
storing for each point (4, ;) the absolute difference between x; and the approximation of the
segment for position 4 using just log (2 + 1) bits. Performing a select(S, ) operation then
reduces to first finding the segment covering the abscissa value i, computing the approximate
sequence value from such segment in ¢, and finally adding the correction term stored in
position 4 to retrieve the exact value. A rank(S,x) operation can be naively solved by binary
searching on the select values, even if faster alternatives do exist [2].

In the design of learned one-dimensional indexes [13], given the input sequence S =
1<z <29 <+ < xp < u, one performs the same mapping above onto a Cartesian
plane representation. In this case, the z-axis contains the sequence values, while the y-axis
corresponds to their respective positions 1,2,...,n. Again, this transformation converts S
into a set of monotonically increasing two-dimensional data points: {(x;,%)| x; € S}. The
data structure then consists of a PLA computed from such a set of points and a search for a
given key x proceeds in three steps. First, the segment covering z is identified through a
binary search on the first keys covered by each segment. Second, the approximate position 4
of x is obtained from such a segment. Third, since the underlying sequence is monotonically
increasing and the approximate position ¢ of = is precise up to an error €, it is corrected
via a (binary) search in the interval [i — €,7 + €]. Such queries can be sped up by applying
the same construction recursively to the sequence of first keys covered by each segment
until a single one remains (see e.g. [13, 15]). This approach implements the index as a
hierarchical structure, forming a tree of linear models. Consequently, searches involve a
top-down traversal of the tree, trading faster queries for an increased space usage.

3 Related Work

In the following, we review existing methods for the lossless compression of PLAs, focusing
on the predict(x) operation, which, given a value lying on the z-axis, identifies the segment
covering x and computes the corresponding y-value predicted by that segment.

Ferragina & Vinciguerra introduced the PGM-index [13], the first solution in the indexing
case based on the optimal PLA computed by the O’Rourke algorithm [20], i.e., the one
consisting of the minimum number of segments ¢ providing an e-approximation of the input
points. In particular, they designed two compression methods for the segments. The first
one hinges on the observation that, in the indexing setting, the intercepts are monotonically



P. Ferragina and F. Lari

increasing. Denoting with 3; the intercept of the i-th segment and with y; its first covered
y-value, this easily follows since 8; € [y; — e,y; + €] and Bi11 € [yit1 — &, Yi+1 + €], but

yi + € < y;41 — € as in this particular case a segment covers at least 2¢ keys [13, Lemma 2].

Exploiting this, they convert the monotone sequence of floating-point intercepts into integers
and store them with the data structure of Okanohara & Sadakane [19]. But, they stored
uncompressed the first covered keys and slopes of each segment. For the sake of comparison,

we provide the space usage for the PLA composing just the first layer of the PGM index.

Since the universe of the underlying sequence is u, and each slope can be expressed as a
rational number with a numerator and denominator respectively of logn and logu bits, they
obtained the following result which we specialize via two approaches, one based on binary
search (as proposed in [13]), and one using the data structure of Patragcu (see Theorem 1):

» Lemma 4 (PGM-index [13]). The PLA composing the first layer of the PGM-index can be
stored using:
£(1.92 + log "Tf + 2 logu + o(1)) bits, while supporting the predict operation in O(log{)
time via binary search.
2(1.92 + log ”Tf + logu + o(1)) +1log () + O(u/ log® u) bits for any constant ¢ > 0, while
supporting the predict operation in O(c) time.

The second compression method targets the segment’s slopes, and is based on the
observation that the O’Rourke algorithm does not compute a single segment but a whole
family of segments whose slopes identify an interval of reals. The compressor then works
greedily (and optimally) by trying to assign the same slope to most segments of the PLA,
thus reducing the number of slopes to be fully represented. This is very effective on some

real-world datasets, however, the authors did not provide an analysis of its space occupancy.

Moving to the compression setting, Boffa et al. introduced the LA-vector [2], the
first learned and compressed rank and select dictionary based on the optimal PLA. Their
compression scheme for segments hinges on the assumption that the sequence of intercepts is
monotonically increasing, which is not necessarily the case in general. This is because, in the
compression setting, segments may cover fewer than 2¢ points, as the y-value can increase by
more than one between consecutive z-values. Ferragina & Lari [9] recently showed how to
waive that assumption with a negligible impact on space occupancy, obtaining the following
bound (we drop the cost of cn bits for storing the correction vector C' in Theorem 3.2 of [2],
and we add the solution based on the data structure of Patragcu):

» Lemma 5 (LA vector, Theorem 2.3 in [2] and Theorem 5 in [9]). The PLA of the LA-vector
can be stored using

€ (2log 7 +log % + 6+ 2log (26 + 1) + o(1)) bits, while supporting the predict operation
in O(log?) time via binary search.

((2log % + 4+ 2log (2 + 1) + o(1)) + log () + O(n/log®n) bits for any constant ¢ > 0,
while supporting the predict operation in O(c).

Lastly, Abrav and Medvedev proposed the PLA-index [1] in a Bioinformatics application
where the xz- and y-values of the underlying sequence are increasing but not necessarily
contiguous. They took an orthogonal approach to PLA compression by modifying the
O’Rourke algorithm, enforcing each segment to start from the ending point of the previous
one. This allows them to derive a more compact encoding, which may produce a suboptimal
number of segments ¢/ > £. As their approach does not guarantee optimality and targets
different sequence types, we defer comparison to the journal version.
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Figure 1 The key parameters of PLAs arising in the two considered settings. Figure la shows an
example in the compression case. The values on the z-axis are consecutive, the first segment always
begins at position 1, and each segment starts at an x-value immediately after the ending of the
previous one. Intercepts and the last y-values of each segment stay within a range of size 2¢ 4+ 1 from
the first and last covered values of the sequence. Notice how the intercepts do not necessarily form
an increasing sequence. Figure 1b considers the indexing case, which is similar to the compression
setting except that the values on the y-axis are consecutive. Hence, the last covered y-value of a
segment is implicitly determined by the first covered y-value of the next one, and the intercepts ;s
form a monotone sequence as y; +¢ < y;+1 — € since a segment covers at least 2e keys [13, Lemma 2].

We conclude by noticing that none of these results focused on studying lower bounds to the
cost of storing PLAs (possibly in compressed form). Therefore, the first novel contribution of
our work lies in deriving the first compressibility measures for PLAs in the two aforementioned
settings. It will turn out that the storage schemes for PLAs of the LA-vector and the PGM-
index are asymptotically optimal up to a constant factor. Hence, our second contribution is
to design the first data structures for the compression and indexing settings that achieve the
space lower bounds plus small additive terms, which are succinct in most practical cases.

4 Compressibility Measures for PLAs

We begin by observing that, in general, the segments of a PLA, whether in the compression
or indexing setting, have floating-point components. As discussed in Section 3, some existing
compression schemes assume that segments either start or end at an integer y-coordinate to
exploit integer compression techniques. In our context, we work under the same assumption
for two reasons: first, when establishing a lower bound on the space required to represent a
PLA, it is important to note that the class of PLAs with floating-point components is larger
than that of PLAs with integer components. Consequently, any lower bound proven for the
latter also applies to the former. Second, as proved by Ferragina & Lari [9] this reduction
has a negligible impact on the approximation error of the resulting PLA, and in fact, it only
increases that error by a constant 3. Therefore, without loss of generality, we can safely
restrict our analysis to PLAs having segments with integer starting and ending ordinates.
Under this assumption, given the optimal number of segments ¢, the approximation error
€, the universe size u, and the length of the sequence n, we consider the problem of counting
the number of possible PLAs that can be constructed using these parameters, in both the
compression and indexing cases. Then, by a simple information-theoretic argument, taking
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the logarithm of such quantities gives a lower bound on the number of bits required to
represent any PLA in the considered settings, and this provides a compressibility measure
that any compression scheme should strive to achieve. Starting from PLAs arising in the
compression setting, we prove the following theorem:

» Theorem 6. Let C({,e,u,n,y) be the set of PLAs of { segments having mazimum error
g, covering a monotone sequence of n elements drawn from a universe of size u in the
compression setting, and havingy = y1 < ys < --- < yp as the first covered y-values. Then:

IC(L,e,u,m,y)| = (n ;f; 1) (u +§ - 1) (ﬁ(yi+1 —yi+ 1)) (26 +1)*

i=1

Proof. Let us denote with z; the first position covered by the i-th segment, and let us start
by constraining each z; in such a way as to obtain a valid PLA with error €. Since the first
segment always starts from the first position, it is 1 = 1. Each segment covers at least two
elements because there is always a segment connecting two points without incurring any
error (i.e., the one connecting them), hence x;41 — z; > 2 (recall that in the compression
setting the x-values are strictly increasing and contiguous).

To ease our counting, we introduce the following change of variables Z; = 2;—(i—1). In this
way, To =29 —1>2and Zy =z, — ({ —1) < n—¢, since x5 > 3 and xy < n—1. Additionally,
Ziy1 — T; > 1 (since the Z;s are distinct) and thus z;41 — x; = Z;41 — T; + 1 > 2. Therefore,
choosing the first position of each segment while simultaneously satisfying the previous

constraint on the z;s, is equivalent to choosing ¢ — 1 distinct values from {2,3,...,n — ¢}.

Y

Let B; and y; denote, respectively, the intercept of the i-th segment and its first covered
y-value (see Figure la). Choosing 3; is equivalent to first selecting y; and then choosing a
value within the interval [y; — €, y; + €], which contains 2¢ 4+ 1 elements. In the compression
setting, the input sequence may contain repeated values, so consecutive segments can share
the same first covered y-value (i.e., y;41 = v;). Thus, choosing the first y-value of each of

The total number of ways to perform this choice is then (

the £ segments amounts to selecting an increasing sequence of £ elements from {1,2,..., u}.

The number of such choices is (“+5_1). Since each §; can then be any value of the interval

[y; — €, y; + €], the total number of possible selections for the ¢ intercepts is (“+f_1) (2 +1)%

Lastly, let ~; be the y-value given by the i-th segment evaluated on its last covered
position (see Figure la). We perform the same reasoning as for the intercepts. Let y} be
the value of the sequence on the last position covered by the i-th segment. Choosing ~; is
equivalent to first selecting y/ and then choosing any of the values inside [y} — ¢, y. + ¢]. Now,
since we are dealing with monotonically increasing sequences, to obtain a valid PLA, we need
that y, > y; and y] < y;41 for every 1 <14 < £, notice that y;, = u. Consequently, each y} can
be independently chosen from the interval [y;, y;+1], and each ~; is then selected inside the
interval [y} — €,y. + €], therefore, the total number of ways to choose the ¢ last y-values of
each segment is (Hf;ll (Yir1 — i + 1)) (2¢ + 1)"

Combining these quantities, our claim follows. <

Theorem 6 suggests the following lower bound on the number of bits that any lossless
compressor for PLAs in the compression setting must output.
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» Corollary 7. The minimum number of bits to represent any PLA from C(£,e,u,n,y) is:

/-1 {—1
Bdé,s,u,n,y):log(ng_l >+log<u+£ >

-1
+ Zlog (yi+1 — i +1) + 2¢log (2¢ + 1)

i=1

Next, we focus on PLAs arising in the indexing setting. Due to space limitations, we
present only the main result here and defer the proof to the full version of this paper [8]. We
only mention that the proof follows the same strategy as that of Theorem 6, with the only
difference that in the indexing setting, each segment (except possibly the last one) covers at
least 2¢ keys (see [13, Lemma 2]), thus reducing the possible choices for the first covered z-
and y-values.

» Theorem 8. Let Z({,e,u,n,x) be the set of PLAs of { segments having mazimum error €,
covering a strictly increasing sequence of n elements drawn from a universe of size u in the
indexing setting, and having x = x1 < x9 < --- < x4 as the first covered x-values. Then:

IZ(¢, 2, u,m, )| :(“ - E(EE - 1)) (” - E(?il) - 1) (i]‘[i(wm - 1)) (2 + 1)

Theorem 8 gives the following lower bound on the number of bits that any lossless
compressor has to produce when applied to PLAs in the indexing setting.

» Corollary 9. The minimum number of bits to represent any PLA from Z({,e,u,n,x) is:

Bz(l,e,u,n,x) = log (u —0(2e — 1)) g (n — (2 —1) — 1)+

1 (-1
-1
+ Z log (241 —x; — 1) + 201og (2 + 1)
i=1

As already mentioned, unlike in the compression setting, segments always cover at least
2¢ keys (except possibly the last one). Therefore, the lower bound of Corollary 9 can be
made independent from the choice of the first covered x-values, by noting that x;,1 —z; > 2e.
Nevertheless, this more general form of the lower bound comes at the cost of underestimating
the minimum number of bits required to store any PLA in the indexing case when segments
span more than 2e¢ elements.

Having established lower bounds on the space required to represent lossless any PLA in
both the compression and indexing settings, we now shift our focus to designing data structures
that use space close to Be(4,e,u,n,y) and Bz (¢, e, u,n,x) while efficiently supporting the
core operation of any learned data structure hinging on PLAs (e.g., [13, 2, 23, 7, 14, 9]),
namely, returning the y-value predicted by the segment covering a given z-value.

5  Succinct Data Structures for PLAs

We begin by establishing constraints on the parameters of a PLA that are commonly observed
in many practical applications. Specifically, we assume that e = O(1), £ = o(n) and n = o(u).
Next, we proceed by formalizing the core operation performed on any PLA in both the
compression and indexing settings. In particular, we define the predict(x) operation, which,
given a value lying on the z-axis, identifies the segment covering z and computes the
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corresponding y-value predicted by that segment. Designing data structures that efficiently
support this operation while achieving space usage close to the lower bounds of Section 4
is of both practical and theoretical interest since it can help to understand what the limits
of PLA-based learned data structures are in terms of the redundancy needed to store and
query the PLA itself, and possibly improve the performances of such data structures.

At the end of Section 2, we commented on the relation between the current literature
and our lower bounds, highlighting that the storage schemes for PLAs of the LA-vector and
the PGM-index are compact [18]. Due to space constraints, we sketch the main result here;
please refer to the full version of this paper for the complete proofs [8]. Starting with the LA-
vector (see Section 5.1), it turns out that the storage space of Lemma 5 can be expressed as
Be (4, e,u,n,y) with an additive term that is either O(¢log %) or O(¢log % + Tog? —) depending
if queries are answered with a binary search or with the data structure of Patragcu [21]. In
the first case, the overhead is always O (B¢ (¢, e, u,n,y)), while in the second case, that bound
holds only when ¢ = w(n/(logulog®n)). As a result, the storage space of the LA-vector
is asymptotically optimal up to a constant factor, and thus is compact. Moving to the
PGM-index (see the full version of this paper [8]), the additive term on top of the lower
bound Bz (¢, e, u,n,x) is either ©(¢logu) or O(¢logu+ lochu), depending on how queries are
answered. In the first case, the overhead is always ©(Bz(¢, e, u,n,x)), while in the second
case that bound holds only when £ = Q(u/log"" ! u). Therefore, the storage space of the
PGM-index is also compact.

Motivated by this, the following sections will describe the design of the first data structures
for the compression and indexing settings, achieving small additive terms to the lower bounds

of Section 4, which turn out to be succinct in most practical cases, and most importantly
provide the same asymptotic query time as the LA-vector and the PGM-index.

5.1 Using space close to B¢(¢,e,u,n,y)

Given a PLA {s1,s92,...,80} € C({,e,u,n,y), we represent a generic segment s; as a tuple
si = (x4, BisYis Vi, yi) where x; is the first covered z-value of the input sequence, f; is the
intercept, 7; is the last y-value given by the segment, y; and y} are respectively the first and
last y-values of the input sequence covered by the i-th segment (see Figure 1a). To encode
each segment, we begin by storing a bit sequence X containing the first xz-value covered
by each segment. Specifically, X encodes in unary the deltas between the first z-values of
consecutive segments (i.e., between x;11 and x;), shifted by a constant to further reduce
space usage. Such a sequence is defined as follows:
X = 0%2—=172]0%s 2221 0%~ %¢-1—2]  The sequence is well-defined since Tip1—T; > 2.
The length of X is Zf;ll(xiﬂ —x;— 1) =xzy—x1 — (£ — 1), which is upper bounded by
n—{—1since x1 =1 and zy <n — 1, and contains £ — 1 ones. The i-th element of X
can be accessed by noticing that z; = 1 and for any i > 1, x; = select) (X,i — 1) + 4.

Next, we store an integer sequence Y encoding the first covered y-values of each segment.
Given our assumption that £ = o(n), both the X and Y sequences are sparse. Since they
are also monotonically increasing by construction, we represent them using the Elias—Fano
encoding scheme?. By Theorem 2, the space in bits required to store X and Y is:

(£ —1)log (”gil) + llog (%) + 40+ o(0) 2)

2 We turn X into an integer sequence by interpreting each unary code as an integer.
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Noting that log (“+5_1) = log(y) + O(f) (since ("+ﬁ_1) = ()
(Hf;ll(u+z)/]_[f;1l(ufz)) and the second factor can be bounded by ¢!~! for some

constant ¢ > 1) and applying the Elias-Fano space bound from Equation 1, we can rewrite
Equation 2 in the following form:

(-1 -1
log (n€—1 )—Hog <u+€ >+O(€+logu) (3)

Next we consider the sequence of last covered y-values of each segment, i.e. ¥}, y5,...,9;_1,
omitting y; as it is always equal to u. Since each y; € [y;, y;+1], we store the relative values
using just log (y;+1 — y; + 1) bits and concatenate their representation in a single bit vector
B, of size |B| = Zf;ll log (yi+1 — yi + 1) bits. To access each y!, we maintain an auxiliary
array P, where each p; is the starting index of the binary representation of y; inside B.
Notice that this technique resembles the dense pointers method of Ferragina & Venturini [12].
Array P is both sparse and monotonically increasing, hence we store it with the Elias-Fano
encoding scheme using the following number of bits (recall Theorem 2):

S log (yig1 — i + 1)) +o(f) (4)

2(61)+(fl)10g< i1

Using Jensen’s inequality, and noticing that Zf;ll(yzﬂ —yi+1) =y +¢—1 which is at
most u + £ — 1 since y, < u, we obtain that |P| = O(¢loglog %) bits. Therefore, the sequence
of the last covered y-values is encoded as the bit vector B and the Elias-Fano encoding of
the array P, using the following number of bits:

-1
(Z log (yi+1 — yi + 1)) + O(loglog %) (5)
i=1

Lastly, since each segment is an e-approximation for the points it covers, it holds that
|8; — yi| < 2¢ and |y; — y}| < 2e. Therefore we store each intercept 3; and each last y-value
7; as deltas with respect to y; and y; inside two arrays Ag and A, using 2¢log (2e 4 1) bits.
Combining this with Equations 3 and 5, and recalling Corollary 7, the space usage of our
storage scheme is B¢ (¢, €,u,n,y) + O(floglog 7 + logu) bits. That is succinct space, since
O(lloglog % +logu) C o(Bc(f,e,u,n,y)) because Be(f,e,u,n,y) includes a term that is
O©(Llog %), and we consider the case that £ = Q(logu/loglogu).

Without introducing any extra space on top of this representation, performing a predict(z)
query proceeds as detailed in Algorithm 1. For simplicity, we assume that the segment
covering x is never the first one nor the last one. Corner cases can be handled in constant
time without altering the query time.

Because of Theorem 2, all the select operations on the Elias-Fano encoded sequences
X, Y, and P take O(1) time. Reading the binary representation of numbers from B, as
well as accessing the deltas inside Ag and A, requires a O(1) number of bitwise and
bit-shifting operations (see [18, Chapter 3] for the technical details), hence O(1) time in
the transdichotomous word RAM model we are assuming. The most expensive part of
Algorithm 1 is then the predecessor search on X, which dominates the cost of a predict
query, making the overall time O(log¢).

To lower the cost of the predecessor search, and thus achieve faster query times, one
must allow for a larger additive term to the lower bound B¢ (¢, e, u,n,y). To address this, we
directly store the sequence of first covered z-values as X = xo,x3,...,2,, whose universe is
bounded by n — 1 and contains ¢ — 1 values (recall ; = 1 in the compression setting).
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Algorithm 1 Performs a predict operation on our compressed storage scheme for PLAs.

Input :The arrays of first covered z-values and y-values X and Y, the bit-vector
B, the array of offsets P, the array of deltas Ag and A, and a value =.
Output: A value y such that predict(z) = y.

i =pred(X, z) ; // predecessor search on X using a binary search
x; = select1(X, i — 1) + 4;

ZTir1 = select; (X, 1) + (i + 1);

y; = selecty (Y, i);

s; = selecty (P, 1);

e; = selecty (P, i+ 1) — 1;

Yy = read(B, $;, €;) ; // read the bit sequence Bls;,e;] representing y.
Bi = yi + Aglil;

Yi =i + A'ym§

return {(x - 177)(3(3::7?331)J + Bi;

This sequence allows the predecessor of any given position (and, consequently, the index
of the segment covering that position) to be computed via a simple rank operation. X is
then stored using Theorem 1, which guarantees that for any constant ¢ > 0, both rank and

_n_
log¢n

select operations take O(c) time while requiring log (’;:11) +0 ( ) bits of space.

Since we assumed that ¢ = o(n), we refactor the term log (’2:11) as follows:
n—1 n—0—1 T, (n— 1)
log( ) :10g< )—i—log (l__l
(-1 (-1 [T (n — )
n—¢—1 n—1
<1 1 _
= 0g( -1 )M 8 (n—2£+1>

— log (" ;f; 1) +0(0)

Where the inequality is obtained by upper-bounding each term in the numerator by n — 1
and lower-bounding each term in the denominator by n — 2¢ 4+ 1. The space usage is then:

L (6)

Be(t,e,u,n,y) + O(tloglog 5 Tog"n

We now show that the space usage of this second data structure is succinct. To this
end, we use the well-known upper and lower bounds on the logarithm of the binomial
(ie., klogZ < log () < klog(%%), where e ~ 2.718 is the Euler’s number, and thus
log (') = ©(klog 1)), to rewrite the lower bound of Corollary 7 as follows:

u

1

Be(f,e,un.y) = ©(¢(log 5 +1log 7)) = O(¢ log ) (7)

Where the Q-term comes from the first two additive terms in the formula of B¢ (¢, &, u, n,y)
and the approximation of the logarithm of the binomial coefficient written above. The O()-
term comes similarly and from upper bounding the summation in Corollary 7 using Jensen’s

inequality, as already done in Section 5.1.

Focusing on the additive term of Equation 6, it is easy to see that O(¢loglog 7 + ; o —) C
o(€log F+ 15z ), by considering £ = w(n/(log u log®n)) which implies that £log 7 = w( ).
Therefore, from Equation 7, it is O(¢loglog % + log”cn) C o(Be(¢,e,u,n,y)) for those values

of ¢ that are w(n/(logu log®n)) and do not violate our initial assumption that ¢ = o(n).
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As a result, we proved the following theorem, which gives data structures able to store
any PLA in the compression setting using space close to the lower bound of Corollary 7 while
supporting efficient predict queries.

» Theorem 10. There exist data structures storing any PLA from C(¢,e,u,n,y) as follows:
Using Be (£, €,u,n,y) + O(floglog 7 + logu) bits of space, while supporting predict in
O(log ¢) time.

Using Be (4, €,u,n,y) +O(£loglog § +n/log®n) bits of space for any constant ¢ > 0, while
supporting predict in O(c) time.

We conclude by comparing Theorem 10 with the storage scheme for PLAs of the LA-vector
(see Lemma 5). We start by considering the one solving the predict queries with a binary
search on the first covered positions, reporting its space usage in bits here to facilitate
comparison:

E(QIOg% Jrlog% +6+2log (2 + 1) + 0(1)) (8)

We notice that the term 2¢log (2 + 1) is shared by both Corollary 7 and Equation 8,
hence we only focus on the remaining parts. Since we assumed that £ = o(n), the terms £log %
and £log 7 appearing in Equation 8 can be respectively bounded as log (“+ﬁ_1) + Ol +logu)

and log (";f;l) + O(¢ +logn) (see Section 2 and 5.1). Consequently, Equation 8 can be
rewritten in the following form, which is closer to the one of Corollary 7.
—(—-1 {—1
log<n€_1 )+log<u+£ >+€logz+2£10g(25+1)+0(€+10gu) (9)

Lastly, the summation Zf;ll log (yi+1 — y; + 1) appears in the lower bound of Corollary 7,
but not in Equation 9 which in turns contain also the additive terms ¢log 7 + O({ + logu).

Now, the minimum of the summation is £ — 1, and this occurs when each segment covers
exactly two positions. We rule out the case in which it is zero, as this would force y;+1 = v,
thus only considering PLAs formed by a single segment. In this way, the gap between the
lower bound and the storage space of the LA-vector is thus ©(¢log %) = ©(Bc (¢, €,u,n,y)).
Hence, the storage scheme for PLAs of the LA-vector with the correction of Ferragina & Lari
is compact, because it is up to a constant factor from the optimal. Therefore, our first data
structure in Theorem 10 offers an even smaller additive term to the optimal space usage,
while having the same asymptotic query time. Specifically, assuming ¢ = Q(logu/ loglog u),
it exponentially reduces the overhead, from O(£log %) to O(¢loglog ).

Similarly, an analogous result holds for the two data structures described in Lemma 5
and Theorem 10, which answer queries in O(c) time for any constant ¢ > 0. In this case, it
is sufficient to notice that term due to the data structure of Patragcu is shared by both, and
the additive term of the LA-vector becomes O({log 7 + log#n) Therefore, using the same
argument we used for proving the succinctness of the second data structure in Theorem 10,
it is possible to show that for £ = w(n/logulog®n) the storage scheme of the LA-vector is
again compact, while ours is succinct, and thus offering a lower overhead to the optimal
space usage without altering its asymptotic query time.

In conclusion, we remark that, beyond its theoretical appeal, the first data structure of
Theorem 10 is also practical, as it leverages techniques with highly engineered implementations,
such as the Elias-Fano encoding of monotone sequences [16] and arrays of fixed- and variable-
size elements [18]. Indeed, under the same assumption that ¢ = Q(logu/loglogu), our
storage scheme asymptotically requires just O(loglog %) bits per segment over the theoretical
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minimum, while still providing practically fast predict queries. Conversely, the second data
structure is mostly theoretical, and it aims at showing how close we can approach the lower
bound of Corollary 7 while still supporting (optimal) constant time predict queries.

5.2 Using space close to Bz (4, ¢, u,n,x)

The compression and indexing settings are closely related, the only difference lies in which
axis is constrained to have consecutive values. Indeed, this similarity can also be observed in
the two lower bounds of Corollary 7 and 9 sharing the same form. As a result, the design
of a data structure that achieves space usage close to the lower bound for the indexing
setting, while supporting efficient predict queries, builds upon the same ideas and algorithmic
techniques introduced in Section 5.1. Due to space constraints, we present only the main
result in this section, deferring the complete to the full version of this paper [§].

» Theorem 11. There exist data structures storing any PLA from Z({,e,u,n,x) as follows:
Using Bz ({,e,u,n,x) + O(Lloglog } + logu) bits of space, while supporting the predict
operation in O(log{) time.

Using Bz (€, e,u,n,x)+O(Lloglog % +u/log® u) bits of space for any constant ¢ > 0, while
supporting the predict operation in O(c) time.

The storage scheme of the PGM-index is optimal up to a constant factor. Considering
the first data structure of Lemma 4, it can be expressed as Bz (¢, e, u,n,x) + O(¢logu). As a
result, Theorem 11 introduces the first data structure storing any PLA in the indexing setting
within lower-order terms to Bz (4, e, u, n,x), under the assumption that £ = Q(log u/ loglog u),
with the same asymptotic query time (see the full version of this paper [8]).

The same observations of Section 5.1 regarding the practicality of our data structures
hold. The first one is the most practical, while the second is just theoretical and shows how
close the lower bound can be approached while answering queries in (optimal) constant time.

6 Conclusions

In this work, we addressed the problem of deriving the first compressibility measures for
PLAs of monotone sequences in two distinct settings: compression and indexing, which are
general enough to cover a broad range of applications. The measures we obtained provide a
theoretical foundation for understanding the space requirements of any learned data structure
relying on PLAs in any of its components.

Based on our compressibility measures, we analyzed two representative data structures
for storing PLAs, namely the one of the LA-vector (compression setting) and the one of the

PGM-index (indexing setting), showing that they are both optimal up to a constant factor.

Motivated by this study, we proposed two novel data structures for the above settings,
which turn out to be succinct (thus optimal up to lower-order terms) in most practical cases
while retaining the same asymptotic query time of the LA-vector and PGM-index. Overall,
they offer strong theoretical guarantees and suggest efficient practical implementations,
providing valuable tools for practitioners and researchers in learned data structures.

Future works could investigate an extension of our analysis to Piecewise Non-Linear
Approzimations, for which successful applications already exist [14]. Another interesting
direction, complementary to our work, is the implementation of the proposed data structures
with a thorough experimental evaluation of their space-time trade-offs.
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