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Abstract
The time-optimal k-server problem minimizes the time spent instead of the distance traveled when
serving n requests, appearing one after the other, with k servers in a metric space. The classical
distance model was motivated by a hard disk with k heads. Instead of minimal head movements,
the time model aims for optimal reading speeds.

This paper provides a lower bound of 2k − 1 on the competitive ratio of any deterministic online
algorithm for the time-optimal k-server problem on a specifically designed metric space. This lower
bound coincides with the best known upper bound on the competitive ratio for the classical k-server
problem, achieved by the famous work function algorithm. We provide further lower bounds of k + 1
for all Euclidean spaces and k for uniform metric spaces.

Our most technical result, proven by applying Yao’s principle to a suitable instance distribution,
is a lower bound of k + Hk − 1 that holds even for randomized algorithms, which contrasts with the
best known lower bound for the classical problem, which is polylogarithmic in k.

We hope to initiate further intensive study of this natural problem.
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1 Introduction

The k-server problem, introduced by Manasse et al. in 1988 [23], has been repeatedly referred
to as “the holy grail” of online computation [2,8, 12]. In particular the k-server conjectures
about the best competitive ratios achievable by deterministic and randomized algorithms
have inspired intensive research for many decades.

The k-server problem can be considered for any natural k and any given nonempty
metric space M = (M, d) together with an initial configuration C0 ∈ Mk. An instance is a
sequence r1, . . . , rn ∈ M of point requests, revealed one by one. An online algorithm answers
each request rj , knowing only the already revealed requests, with a configuration Cj ∈ Mk
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such that Cj(i) = rj for some i, which we describe as server si serving request rj . Hence,
any solution is a sequence of configurations C1, . . . , Cn ∈ Mk describing the movements
of k servers such that each requested point is served by moving a server there. The next
request is revealed only once the current request has been served. The cost of a solution is
traditionally defined as the total of all distances traveled by all servers, yielding the classical,
well-researched k-server problem.

Another – no less natural – possibility is to count towards the cost not all but only the
maximum distance traveled by any server between any two configurations. In this paper, we
explore this variant and refer to the different definitions of cost as the distance model and
the time model:
The distance model. This is the well-known classical variant. The cost incurred by the

algorithm to serve request rj is the sum of all distances traveled by the servers when
changing from configuration Cj−1 to configuration Cj . The cost of a solution C1, . . . , Cn

is thus
∑n

j=1
∑k

i=1 d(Cj−1(i), Cj(i)), the total of all distances moved by all servers. We
can imagine paying a fuel cost for all server movements.1

The time model. The cost for serving a request is the maximum distance traveled by the
servers; i.e., the total cost is

∑n
j=1 maxk

i=1 d(Cj−1(i), Cj(i)). Hence, an optimal solution
minimizes the total waiting time incurred by the requests until they are served. We thus
refer to the problem in this model as the time-optimal k-server problem.

In many situations where requests need to be served, it is more important to react as
fast as possible rather than moving less. We might consider ambulances or police cars being
called to the scene of an emergency, but a good example was already given by the famous
seminal paper [23] that used it to introduce the classical k-server problem instead: planning
the motions of a hard disk with k heads. It could be argued that rather than caring about
minimizing hidden head movements, the typical user wants optimized reading and writing
speeds. Despite this, past research has focused almost exclusively on the distance model; see
Subsection 1.1.

We hope to initiate a new line of research that focuses on the time model. As usual,
the main goal is to determine the best competitive ratios achievable by deterministic and
randomized algorithms. We prove several lower bounds in this new model, and design a
deterministic algorithm matching these bounds on uniform metric spaces.

1.1 Related Work
In this section, we review known results and open questions for the k-server problem in
both models. For the classical distance model, we restrict ourselves to the most important
milestones; and at the same time introduce some basic notions and concepts that we make
use of later. For the time model, however, we can give a full account.

The Distance Model

We note that on metric spaces with at most k points the algorithm keeping one server on
each point is trivially 1-competitive. On a clique with k + 1 or more vertices, there is a
very simple lower bound of k: for any algorithm, there is an instance that always asks for

1 We remark that moving more than one server per time step cannot save cost in this model as the
algorithm incurs the same cost for any given movement, regardless of when it occurs. However, it is
easy in the distance model to convert an algorithm that moves some servers simultaneously into a lazy
algorithm, which does not do this, but incurs at most the same cost [17].
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an unoccupied vertex, causing a cost of 1 with each request, whereas the offline strategy of
serving an unoccupied vertex with a server currently at a point that is not among the next
k − 1 requests spends at most a cost of 1 for every k requests. (The k-server problem on
cliques of size N is also equivalent to the paging problem with N pages and a cache of size
k [6, 17].) The lower bound of k can be generalized to all nontrivial metric spaces, that is, to
any metric space with at least k + 1 points [6, Thm. 10.1], [17, Thm. 4.4].

Manasse et al. already conjectured that there is a matching upper bound when they
introduced the problem in 1988 [23, Conjecture 4].

▶ Conjecture 1 (k-Server Conjecture). For any metric space and any k ≥ 1, there is a
k-competitive algorithm for the k-server problem in the distance model.

They also proved the conjecture in the two special cases of only k = 2 servers and of
k servers on metric spaces with only k + 1 points [23, Thms. 5, 6]. Note that the journal
version of this seminal paper appeared two years later under a different title [24]. This is
also how long it took for anyone to establish any upper bound on the competitive ratio
that did not grow with the input length n but only with k, albeit with an exponential
dependence [13, 14, Thm. 2]. Another four years later, Koutsoupias and Papadimitriou
provided the first subexponential bounds by analyzing the so-called work function algorithm
(wfa, independently proposed as a candidate by multiple researchers [11, Sect. 2.3]), which
lowered the upper bound to 2k − 1 [20, Thm. 4.3].

To date, wfa remains the algorithm with the best known competitive ratio for general
metric spaces. We are thus left with a constant factor of essentially 2 between the upper and
lower bound, despite the decades-long efforts by the research community trying to improve
the upper bound or disprove the k-server conjecture. It is conjectured that wfa even attains
the best possible competitive ratio of k [20].

But at least for some special metric spaces the k-server conjecture could be proven. A
prominent example is the real line. Here, Chrobak et al. [9] were able to give the matching
upper bound of k on the competitive ratio by introducing and analyzing the so-called double
coverage algorithm (dc) with the following, somewhat unintuitive behavior. When a point
x is requested, dc moves not only one, but two servers towards x: a closest server to the
right of x and a closest server to the left of x. They move at the same speed and both stop
once one of them has reached x. This strategy was generalized to trees by Chrobak and
Larmore [10]. Lastly, wfa is also known to be k-competitive on metric spaces with at most
k + 2 points, multiray spaces, and for k = 3 on trees and circles [12,16,21].

For randomized algorithms, the proof of a lower bound of k from the deterministic
case does not work anymore. Instead, a lower bound of Ω(log k) has been known for a
long time. Let Hk :=

∑k
j=1(1/j) denote the k-th harmonic number. On a clique of k + 1

vertices, no deterministic algorithm is better than Hk-competitive in expectation on the
instance distribution that requests any vertex except the one just requested with the same
probability of 1/k. Yao’s principle [25] now transforms this lower bound for deterministic
algorithms on an input distribution into a lower bound for randomized algorithms on fixed
instances [6], [17, Thm. 2.11]. This has remained the best lower bound for multiple decades.
(A series of results [3–5] showed a lower bound that is only Ω(log k/(log log k)) instead of
Ω(log k) but in exchange works on any metric space of at least k + 1 points.) This led to the
following folklore conjecture [19, Conj. 2].

▶ Conjecture 2 (Randomized k-Server Conjecture). For any k ≥ 1, there is an O(log k)-
competitive randomized algorithm for the k-server problem in the distance model.
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Table 1 Overview of the best known upper and lower bounds (in the upper and lower row,
respectively) on the competitive ratio for the k-server problem in the distance and time model, for
deterministic algorithms on the line and general metric spaces, and additionally for randomized
algorithms on general metric spaces. Note that all lower bounds on general graphs, apart from the
deterministic lower bound of k in the distance model, are existential, i.e., they hold on specially
constructed graphs.

Distance model Time model

Deterministic Randomized Deterministic Randomized

Line General General Line General General

k [9] 2k − 1 [20] 2k − 1 [20] (k2 + k)/2 [22] 2k2 − k [20, 22] 2k2 − k [20, 22]
k [23] k [23] Ω((log k)2) [7] k + 1 [Th. 6] 2k − 1 [Th. 12] k + Hk − 1 [Th. 16]

This conjecture was refuted in 2023 by Bubeck et al. [7], who were able to slightly lift
the lower bound to Ω((log k)2) for one specific metric space. Note, however, the remaining
exponential gap between this improved lower bound and the best known upper bound for
randomized algorithms, which is still 2k − 1 and attained by the deterministic wfa.

A remarkable positive result by Bansal et al. [1] is a randomized algorithm that is, on
metric spaces with N points, O((log k)2(log N)3 log log N)-competitive in expectation, and
thus even with high probability by a general result by Komm et al. [18]. Their algorithm thus
obtains a competitive ratio that is polylogarithmic in k whenever N is polynomial in k. A
more detailed discussion of the results up until 2009 is found in a survey by Koutsoupias [19].

The most relevant results for the k-server problem in the distance model on general
metric spaces can thus be summarized as follows (see also Table 1): The best known upper
bound on the competitive ratio is 2k − 1 (for both deterministic and randomized algorithms)
and attained by the work function algorithm wfa [20]. The best known lower bound on
the competitive ratio is Ω((log k)2) for randomized algorithms [7], and k for deterministic
algorithms [23]. A matching deterministic upper bound of k is attained on the line by the
double coverage algorithm dc [9], and on trees by the generalized variant dc-tree [10].

The Time Model

Almost no research has been published on the time model, which allows us to describe all
existing results in what follows.

Clearly, changing from the distance model to the time model helps the algorithm, because
it can now move servers synchronously at no additional cost. However, this does not imply
an improved competitive ratio. Since the advantages of the time model can be utilized by
both the online algorithm and the offline solution it competes with, the ratio could, a priori,
improve, stay the same, or get worse, and in different ways for different metric spaces.

A first result distinguishing the two variants was given by Koutsoupias and Taylor [22].
As they remark [22, Sect. 5], any upper bound for the distance model implies a k times larger
upper bound for the time model: On the one hand, any algorithm for the distance model
also works for the time model with the same or even lower cost. On the other hand, the
optimal algorithm against which the online algorithm competes saves at most a factor of
k in the time model compared to its cost in the distance model. Overall, the competitive
ratio increases by at most a factor of k when an algorithm for the distance model is used in
the time model. The (2k − 1)-competitive wfa thus implies an upper bound of 2k2 − k. For
trees it immediately follows that dc-tree, which is k-competitive in the distance model, is
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k2-competitive in the time model. Koutsoupias and Taylor [22, Thm. 3] lowered this bound
to k(k + 1)/2 with a straightforward adjustment of the potential function used in the analysis
of dc-tree; note that both bounds are in O(k2). They concluded with a lower bound of 3
for k = 2 servers on the real line [22, Thm. 4], but provided no results for k ≥ 3.

1.2 Contribution

The goal of this paper is to popularize the time-optimal k-server problem and establish it
as a research object that is well worth the community’s attention. We believe the k-server
problem in the time model to be natural and well motivated. We also hope that the insights
gained by analyzing the time model might shed further light on the long-standing open
questions about the classical problem.

Our main contribution are lower bounds for the time-optimal k-server problem that are at
least as large as and often larger than the best known lower bounds for the classical variant.
For deterministic algorithms, we achieve the lower bound of k on all unweighted graphs with
at least k + 1 vertices (which excludes only cases where the competitive ratio is trivially 1)
in Lemma 5. We then go above this, albeit just barely, with a lower bound of k + 1 for a
large class of metric spaces that includes all Euclidean spaces, infinite grids, and large cycles
(Theorem 6). We then construct a specific metric space (superexponentially large in k, but
finite and of diameter only 3) for which we can prove a lower bound of 2k − 1, which is
exactly the best known upper bound for the classical k-server problem (Theorem 12).

Our main result for randomized algorithms is a lower bound on the expected competitive
ratio for the time-optimal k-server problem (Theorem 16). The bound is k +Hk −1, and thus
exponentially larger than the recently proven polylogarithmic lower bound in the distance
model [7].

Despite the significantly raised lower bounds, a gap still remains with a linear factor
between the upper and lower bounds.

2 Preliminaries

For any nonnegative integer n, we use the notation [n] := {1, . . . , n}. We denote by
Hk :=

∑k
j=1(1/j) the k-th harmonic number.

Online Algorithms and Competitive Analysis

An online algorithm receives an instance I consisting of n requests, I = (x1, . . . , xn), which
are presented to alg in n consecutive time steps; n is by default not known to alg a
priori. Whenever a request xi is presented, alg has to provide an answer yi to xi, where yi

depends only on the prefix x1, . . . , xi of already presented requests. The full answer sequence
alg(I) = (y1, . . . , yn) is the solution computed by alg on I. Any solution alg(I) to I is
assigned a cost denoted by cost(I, alg(I)). An optimal solution for I, denoted by opt(I), is
a solution with minimal cost across all solutions to I. Note that opt(I) and cost(I, opt(I))
can generally be computed only once I is known.

The performance of an online algorithm alg is measured in terms of its competitive ratio.
alg is called c-competitive if there is a constant α so that, for every instance I, it holds that
cost(I, alg(I)) ≤ c·cost(I, opt(I))+α. Similarly, a randomized online algorithm rand is said
to be c-competitive in expectation or have an expected competitive ratio of c if there is a constant
α so that, for every instance I, it holds that E [cost(I, rand(I))] ≤ c · cost(I, opt(I)) + α.
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The k-Server Problem

The intuition behind the k-server problem is best described by a scenario where we are given
a metric space and k servers, each occupying one point in the space. A request x is any
point of the space, and an answer must specify at least one server that is moved to x in
response. However, it is possible to move other servers as well. A request is revealed once
the previous one has been served. The goal is to minimize either the total distance traveled
after answering all requests (the distance model) or the overall time spent (the time model).

Formally, let M = (M, d) be any metric space. (In particular, the distance function
d : M2 → R is zero on the pairs (x, x) for x ∈ M , otherwise positive, symmetric, and satisfies
the triangle inequality, i.e., ∀x, y, z ∈ M : d(x, z) ≤ d(x, y) + d(y, z).) Any finite metric space
can be described as the complete undirected graph whose vertices are M with an edge weight
function {u, v} 7→ d(u, v). Conversely, we can interpret any finite, connected, weighted, and
undirected graph as the metric space whose point set is the vertex set and whose distance
function maps two points to the length of a shortest path between them.

In particular, any finite, connected, unweighted, and undirected graph also describes a
metric space in the same way. From now on we always assume graphs in this paper to be
finite, connected, undirected, and unweighted. Other important metric spaces include the
real line, the Euclidean plane, and generally the Euclidean space of any given dimension.

For any positive integer k and metric space M = (M, d), we call a map C : [k] → M a
k-configuration. In the context of the k-server problem we may describe a k-configuration
by saying that server si is at point C(i) for any i ∈ [k]. We say that a k-configuration C

covers or occupies a point p ∈ M with server si if C(i) = p for some i ∈ [k]. For a sequence
of k-configurations C0, . . . , Cn, we say, for any i ∈ [k] and j ∈ [n], that server si moves from
Cj−1(i) to Cj(i) in step j. Whenever the value of k is clear from the context, which is the
case for the remainder of this paper, we omit the k and simply say configuration instead of k-
configuration. An instance of the k-server problem on M of length n is a sequence (r1, . . . , rn)
of n points in M and an initial configuration C0 : [k] → M . A solution is a sequence of
configurations (C1, . . . , Cn) such that Cj covers rj for all j ∈ [n]. The cost of such a solution is∑n

i=j

∑k
i=1 d(Cj−1(i), Cj(i)) in the distance model and

∑n
j=1 max{d(Cj−1(i), Cj(i)) | i ∈ [k]}

in the time model.

Intricacies of the Time Model

In the distance model, any algorithm can without loss of generality be transformed into one
that is lazy, i.e., moves only one server at a time. Hence it is common and convenient to
argue only about lazy algorithms. In the time model, this simplification is no longer justified;
we also need to consider movements of the servers other than the one serving a request. This
leads to intricacies peculiar to the time model, which we briefly discuss here.

Consider a graph with integer weights. Suppose that a server incident to an edge of unit
length moves across this edge to serve a request at the other end. Suppose that another
server is positioned at a vertex incident to a longer edge of length 2. Depending on the
situation to be modeled, one might want to allow or disallow a synchronous movement by
the second server to the midpoint of the longer edge. In the default formulation, servers can
only traverse edges completely; partial movements are impossible. This implies the following
perhaps unintuitive behavior: Even if a server that traversed a unit edge to serve a request
subsequently moves back to serve the next request, traveling a length of 2 in two steps, it is
impossible for another server to traverse an edge of length 2 at the same time without extra
cost. Even if the servers move synchronously as far as possible, the cost is at least 3. This
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problem does not occur in unweighted graphs, however. Indeed, if it is desired to enable the
servers to traverse a long edge over multiple steps, this is easily achieved by transforming a
given finite graph with rational weights into an unweighted one by subdividing the edges
into segments of a length that divides all occurring weights.

All of our results apply to both variants since Robin (see Definition 3) works also on
weighted graphs, and the graphs constructed for our lower bounds are all unweighted.

3 Results

We now present our results for the time-optimal k-server problem: an observation yielding an
upper bound in Subsection 3.1, the lower bounds for deterministic algorithms in Subsection 3.2,
and a lower bound for randomized algorithms in Subsection 3.3. Some proofs are summarized
for our main theorems and removed for more straightforward results and corollaries. They
can be found (in more detail) in the full version of the paper [15].

3.1 Upper Bounds
We start with some observations on a simple algorithm.

▶ Definition 3 (Algorithm Robin). Label the k servers s1, . . . , sk in arbitrary order. If a
requested point is already covered by a server, then Robin does not change its configuration.
The m-th request that requires Robin to move a server is served by si with i ≡k m, while
all other servers stay idle. In other words, Robin moves a server only when it is necessary,
only one server at a time, the first k movements are by s1, . . . , sk in this order, and then it
repeats cyclically.

Note that Robin never moves servers synchronously, thus the cost is the same in the time
model and the distance model. Essentially, Robin is a marking algorithm [6,17]. Koutsoupias
and Taylor [22] already remarked that Robin is k-competitive on uniform metrics. It is also
not hard to see that this observation can be extended to metrics of bounded aspect ratio,
where the aspect ratio of a metric space is its diameter divided by the minimal distance
between distinct points.

▶ Observation 4. On metric spaces with aspect ratio A, Robin is Ak-competitive.

3.2 Lower Bounds for Deterministic Algorithms
In this section, we provide lower bounds for deterministic algorithms on various metric spaces.

Universal Lower Bound of k on Unweighted Graphs

We begin with a bound of k for all unweighted graphs on which the problem is nontrivial.

▶ Lemma 5. Let k be a positive integer. No algorithm for the time-optimal k-server problem
can be better than k-competitive on graphs with more than k vertices.

Proof sketch. We choose any connected set S of k + 1 vertices of G and consider the metric
subspace described by the induced subgraph G[S]. The algorithm is given an instance that
always requests a point not occupied by any of its servers. We note that any configuration
where all k servers occupy k distinct locations can be reached from any other such configuration
at cost at most 1, by moving servers along a path connecting two unoccupied points. This
allows an optimal offline algorithm to serve any k consecutive requests at cost 1. ◀
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Note that, in contrast to the corresponding result for the distance model, it is unclear
whether this result can be extended to arbitrary metric spaces with more than k points.

Lower Bound of k + 1 on the Line

We now consider a special type of metric space that has received a lot of attention (see
Subsection 1.1) for the classical k-server problem: the line. As mentioned above, there are
k-competitive algorithms for k-server in the distance model on the real line, the rational line,
and the integer line. The following theorem shows that the time-optimal k-server problem is
strictly harder in all of these cases.

▶ Theorem 6. For any integer k ≥ 2, no algorithm for the time-optimal k-server problem
has a competitive ratio better than k + 1 on the line (real, rational, or integer), on any
finite unweighted cycle with an even number of at least 2k + 6 vertices, or on the continuous
one-dimensional sphere S1.

Proof. Let alg be any online algorithm for the given metric space. For a finite unweighted
cycle with an even number of N ≥ 2k + 6 vertices, label the vertices counterclockwise by
0, 1, . . . , N − 1. For the sphere S1, choose N = 2k + 6 points evenly spaced along this metric
space, label them 0, 1, . . . , N − 1 counterclockwise, and re-scale the space such that the
distance between consecutive points is 1. For simplicity, we refer to the labeled points as
integers and say that an integer neighbors another one if they are at distance 1 from each
other. In all cases, every even integer neighbors two odd ones and each odd one two even
ones. We will construct an instance phase by phase such that there is an optimal algorithm
opt satisfying the following invariant.

▶ Invariant 7. At the beginning of each phase, the k servers of opt occupy k distinct even
integers or k distinct odd integers. Moreover, at least two of these integers are consecutive
(in the sense of being separated by a distance of exactly 2).

Without loss of generality, we assume for the following description that the integers
occupied by opt at the start of the phase are all even by choosing an appropriate initial
configuration and shifting the labels of the integers by one after each phase. Any phase will
consist of potentially repeated requests for k distinct odd integers, among which at least two
are consecutive. Moreover, the requests will be chosen such that opt can cover all of them
by moving all of its k servers simultaneously, each by a distance 1 and thus at total cost 1,
at the beginning of the phase and with no movements afterwards. Any phase constructed
with these properties preserves the invariant for the next phase, allowing us to iterate the
process to construct an arbitrarily long instance of arbitrarily high optimal cost.

Since opt does not move its servers anymore after its phase-initial synchronous movements,
we can request any point covered by opt as many times as we would like without increasing
the cost of opt or changing opt’s configuration at the end of the phase. We can thus enforce
the following invariant for alg without loss of generality.

▷ Claim 8. Once alg has served a request at some point during some phase, it will always
have a server at this point during all further requests of this phase.

Proof of claim. Assume that alg makes a move such that some integer previously requested
in the current phase is no longer covered. Then the constructed instance could be extended
by immediately requesting this integer again after this move, at no additional cost to opt.
This can be continued until all the integers previously requested in the current phase are
covered again by alg. ◁
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s1 s2 s3 s4 s5

S1 S2

R1
R2

Figure 1 Example of the subdivision of phase-initial server positions and the corresponding
ranges used in the proof of Theorem 6. (Note that the figure does not show the entire space, which
is a cycle or the infinite line, but only a segment.)

Using this invariant of alg, we can now also assume the following without loss of
generality.

▷ Claim 9. In each phase, k distinct odd integers are requested, each exactly once.

In summary, we can assume the following properties for each phase.
1. At the beginning of the phase, the servers of alg occupy the same positions as the servers

of opt, namely k distinct even integers, at least two of which are consecutive (in the
sense of being separated by a distance of 2).

2. During the phase, k distinct odd integers are requested one by one. Each such integer
must, once requested, be covered by alg during all subsequent requests of the phase.

3. Moreover, there is a bipartite matching between the k odd requested points and the k

phase-initially covered even integers where each edge of the matching has weight exactly 1.
4. Finally, opt moves its servers along this matching at cost 1 when the first request of the

phase appears and does not move its servers anymore for the rest of the phase.

We now describe how the k requests for any given phase are chosen depending on alg’s
behavior in a way that guarantees Invariant 7 to hold for the following phase.

Consider any phase. Partition the phase-initial server positions (which are the same for
opt and alg) into ℓ ≥ 1 maximal, pairwise disjoint, nonempty sets S1, . . . , Sℓ of consecutive
even integers. We define ki := |Si| and note that

∑ℓ
i=1 ki = k. Given a metric space

M = (M, d), a point c ∈ M , and radius ρ ≥ 0, we call Dρ(c) := {p ∈ M | d(p, c) < ρ}
the open ball and Dρ[c] := {p ∈ M | d(p, c) ≤ ρ} the closed ball. For any m ∈ [ℓ], we call
Rm :=

⋃
i∈Sm

D2(i) the range of Sm; Figure 1 shows an example for k = 5.
Note that the range Rm contains exactly km + 1 odd integers. Exactly km of them are

requested during a phase in the instance family described below. This guarantees that opt
can indeed move all its servers from their phase-initial positions to the points request during
this phase at cost 1, and then keep them there for the remainder of the phase, which proves
the first part of Invariant 7. We call the range Rm saturated if the instance has already
requested km out of the km + 1 odd integers of Rm during the current phase, and unsaturated
otherwise. Recall that once an integer is requested, a server occupies it during all remaining
requests of the phase; thus any saturated Rm contains at least km servers. A phase ends
when all ranges are saturated.

Since there are two consecutive even integers in the phase-initial configuration of opt, by
renaming we can assume without loss of generality that k1 ≥ 2 and that S1 = {2, 4, . . . , 2k1}.
Since R1 contains exactly k1 + 1 ≥ 3 consecutive odd integers and k1 of them are requested
during the phase, at least two consecutive odd integers are requested. This proves the second
part of Invariant 7.



32:10 Time-Optimal k-Server

We now describe what the requests in the considered phase depend on. For this, we will
call a point distant if and only if it has distance at least 1 from all current servers, i.e., if it
lies outside of all open unit balls around the current server locations. The first request is 3,
which is indeed a distant point since all servers are phase-initially at even integers. From
then on, a further request is chosen according to the following selection procedure until k − 1
odd integers have been requested during the phase or the procedure becomes impossible:
Request an arbitrary distant odd integer not previously requested during the phase from
any unsaturated range Rm except for the integer 1. The sequence of such requests ends only
when km requests have been made in each range Rm with 1 ̸= m ∈ [ℓ] and k1 − 1 requests
have been made in R1, or if no such request is possible anymore. We will show that once
this process ends, there must be a point in R1 that no server can reach with cost less than 2
using the following simple claim.

▷ Claim 10. If a range Rm for any m ∈ [ℓ] contains at most km servers, it also contains a
distant odd integer. If the truncated range R′

1 := R1 \ (0, 4] contains at most k1 − 2 servers,
it contains a distant odd integer.

Proof of claim. A unit ball can contain at most one odd integer. Moreover, unit balls around
points outside of a range Rm cannot contain odd integers inside this range, and analogously
for the truncated range R′

1. Hence, the range Rm for any m ∈ [ℓ] containing at most km

servers means that at most km out of the km + 1 odd integers in it are not distant and thus
that there is a distant odd integer in Rm. Analogously, the truncated range R′

1 containing at
most k1 − 2 servers means that at most k1 − 2 out of the k1 − 1 odd integers in it are not
distant, and thus that there is a distant odd integer in R′

1. ◁

By this claim, if the selection procedure ends, any range Rm with 1 ̸= m ∈ [ℓ] must
contain at least km servers, whether or not it is saturated, and R′

1 must contain at least
k1 − 2 servers. We consider two different cases.

Case 1: R′
1 contains at least k1 − 1 servers. In this case, R1 contains at least k1 servers

(including the server positioned on 3). This means that all ranges Rm with 1 ̸= m ∈ [ℓ]
must contain exactly km servers and must therefore be saturated. Thus, these servers all
occupy odd integers and have a distance of at least 2 to the odd integer 1. The same
holds for any servers in R′

1.
Case 2: R′

1 contains exactly k1 − 2 servers. In this case, R′
1 contains a distant point.

Since the selection procedure ended, a total of k1 − 1 requests must have already been
made to R1 and served. Thus, the k1 − 2 servers in R′

1 occupy distinct odd integers and
cannot reach any other odd integer in R1 with cost less than 2. Of the other ranges Rm

with 1 ̸= m ∈ [ℓ], all but possibly one must be saturated, since they contain exactly km

servers. Therefore, these servers occupy odd integers and cannot reach odd integers in
R1 with cost less than 2. Finally, one range Rm with 1 ̸= m ∈ [ℓ] may contain km + 1
servers, or a single server may occupy a point outside a range. Such a server can only
reach either the odd integer 1 or the odd integer 2k1 − 1 in R1 with cost less than 2. This
is clear if the metric space is a line.
If it is a cycle or the continuous sphere, the two ranges would have to meet at both ends.
However, this would mean that they contain all odd integers in the metric space, of which
there are at least k + 3, while they contain a maximum of (k1 + 1) + (km + 1) ≤ k + 2
odd integers. Thus, since there are two odd integers in R1 that have not been requested
yet, one of them cannot be reached by any server with cost less than 2.
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Figure 2 A small part of the construction used to prove Theorem 12 for k = 3: one of the
k(k − 1)k−1 = 12 blocks of one layer at the top (with the hub point on the left and the fringe points
in k groups of k − 1 to the right), two blocks of the next layer at the bottom left and bottom right,
and the edges induced by the corresponding choices of k − 1 groups and one fringe point per chosen
group in the block above; with dashed edges for the choice represented by the bottom right block.

We thus have, in both cases, an odd integer in R1 that is at distance at least 2 from all
servers. Such an integer is requested next, forcing alg to incur a cost of at least 2 when
serving it. From then on, additional distant points in unsaturated ranges Rm with m ∈ [ℓ]
(including R1) are requested. Such points exist by Claim 10. Once k distinct odd integers
have been requested, all ranges are saturated and the phase ends.

Recall that the first request was to the odd integer 3. Since R1 contains k1 + 1 odd
integers, k1 of which have been requested, at least one of the odd integers 1 or 5 must have
been requested, and thus indeed at least two consecutive odd integers. This means that
the final configuration of the phase is such that Invariant 7 is satisfied for an immediately
following phase.

We can thus iterate the process and construct arbitrarily many new phases such that for
each phase alg incurs a cost of at least k + 1 while opt has a cost of exactly 1. ◀

Note that Theorem 6 generalizes the lower bound of 3 given by Koutsoupias and Taylor
for the special case of k = 2 servers on the real line [22, Thm. 4]. In contrast to the distance
model, lower bounds in the time model do not trivially extend to arbitrary metric superspaces.
However, this particular result can be extended to other metric spaces, e.g., the Euclidean
plane.

▶ Corollary 11. No algorithm can solve the time-optimal k-server problem with a competitive
ratio better than k + 1 in the Euclidean space of any positive dimension.

Existential Lower Bound of 2k − 1 on General Graphs

The most celebrated result for the k-server problem is Koutsoupias and Papadimitriou’s
proof [20] showing wfa to be (2k − 1)-competitive in the distance model. Intriguingly, 2k − 1
is also our best lower bound for the time model.

▶ Theorem 12. For any k ≥ 1, there is a finite metric space on which no online algorithm
for the time-optimal k-server problem has a competitive ratio better than 2k − 1.

Proof. We first give the general idea of the proof. Consider a star with k rays of length
2, and assume that there is a server at each midpoint of a ray. The center of the star is
requested first. Any algorithm must move one server there at cost 1. With one of the k

servers at the center, one ray no longer contains a server. Its outer point is requested next,
causing a cost of at least 2. This process is then repeated k − 1 times, always requesting the
outer point of an unoccupied ray, for a total cost of 2k − 1.
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The main challenge lies in simulating this instance while making the process repeatable.
To this end, we construct a metric space given by a finite, unweighted graph.
Description of the metric space. The metric space is a tripartite graph G = (V, E), i.e., its
vertices can be partitioned into three disjoint layers L1 ∪L2 ∪L3 = V such that the edges can
be partitioned as E1 ∪ E2 ∪ E3 = E with E1 ⊆ L1 × L2, E2 ⊆ L2 × L3, and E3 ⊆ L3 × L1.

On the instances we describe later, the three layers will be used cyclically by any optimal
solution: its servers will all move synchronously first from L1 to L2, then to L3, then back to
L1, and so on. Moreover, the three subgraphs (L1 ∪ L2, E1), (L2 ∪ L3, E2), and (L3 ∪ L1, E3)
are all isomorphic. In particular, the layers all have the same size. Each layer is partitioned
into B := k(k −1)k−1 uniformly sized blocks. Each block in turn consists of one special vertex
called its hub and k(k − 1) vertices that we call its fringe points, grouped into k groups each
of size k − 1. We identify the blocks with the integers [B], and similarly denote the groups of
each block by [k] and the points of a group by [k − 1]. We denote the hub of block b in layer
Lℓ by h(ℓ, b) and the fringe point n in group g of the same block by f(ℓ, b, g, n). Thus, the
vertex set is given by

V :=
3⋃

ℓ=1

B⋃
b=1

(
{h(ℓ, b)} ∪

k⋃
g=1

k−1⋃
n=1

{f(ℓ, b, g, n)}
)

.

For notational convenience we define L4 := L1 and L0 := L3. To describe the edges of G,
we first highlight some uniform aspects of the construction. For each ℓ ∈ [3], the edges Eℓ

between Lℓ and Lℓ+1 are constructed identically.
Moreover, the edges from any layer to the next are block-uniform in the following sense:

for any ℓ ∈ [3], g ∈ [k], and n ∈ [N ], the neighborhood in Lℓ+1 is the same for every fringe
point f(ℓ, b, g, n) and for any hub h(ℓ, b) independent of b ∈ [B].

Now consider any block b of Lℓ. To each possible choice of k − 1 fringe points from k − 1
distinct groups, we assign one block c ∈ [B] from Lℓ+1 by an arbitrary but fixed bijection.
Such a bijection exists, because there are k possibilities to choose k − 1 fringe groups and
(k − 1)k−1 ways to choose one fringe point from each of these groups, which means that the
total number of possible choices is exactly B, the number of blocks in Lℓ+1.

Fix such a choice and the corresponding block c in Lℓ+1. Each of the k − 1 chosen fringe
points, as well as the hub of b, is assigned injectively to one of the k groups of fringe points
of c and then made adjacent to all k − 1 points of the assigned group. For concreteness, let
the chosen fringe point of group g in b be assigned to group g in block c, while the hub is
assigned to the remaining group of block c that is not represented in the k − 1 chosen ones.
Finally, all k − 1 chosen fringe points and the hub of b are made adjacent to the hub of c in
Lℓ+1.

More formally, identify the possible choices of k − 1 fringe points in a block of Lℓ with [B].
For each choice c ∈ [B], denote by gc ∈ [k] the unique index of the group without a chosen
point. For any g ∈ [k] with g ̸= gc, denote by ng

c ∈ [k − 1] the index of the unique point
chosen from group g. This means that the fringe points in choice c are exactly f(ℓ, b, g, ng

c)
for g ∈ [k] and g ̸= gc. Then we have the following edges between block b, which is in Lℓ,
and Lℓ+1:

E(ℓ, b) :=
B⋃

c=1
{{h(ℓ, b), h(ℓ + 1, c)}}

∪
B⋃

c=1

k−1⋃
n=1

{{h(ℓ, b), f(ℓ + 1, c, gc, n)}}
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Figure 3 The graph describing the metric space used to prove Theorem 12 for k = 2 (left) and
k = 3 (right). The layers L1, L2, and L3 are arranged counterclockwise with L1 at the top. Edges
from L1 to L2 are shown in blue, those from L2 to L3 in red, and those from L3 to L1 in green.

∪
B⋃

c=1

⋃
g∈[k]
g ̸=gc

{{f(ℓ, b, g, ng
c), h(ℓ + 1, c)}}

∪
B⋃

c=1

⋃
g∈[k]
g ̸=gc

k−1⋃
n=1

{{f(ℓ, b, g, ng
c), f(ℓ + 1, c, g, n)}} .

The full edge set is then

E :=
3⋃

ℓ=1

B⋃
b=1

E(ℓ, b) .

A visual representation of the graph G = (V, E) for k = 2 is shown in Figure 3. For
k = 3, an example of one block in L1 and two blocks in L2 is given in Figure 2, while the
full graph is shown in Figure 3. The following claim summarizes some important properties
of G. It follows directly from the construction of the edges.

▷ Claim 13. Fix any block b in Lℓ. We have the following properties:
(i) Any vertex in Lℓ−1 is adjacent to vertices of at most one fringe group of block b.
(ii) Any fringe point in Lℓ+1 is adjacent to at most one fringe point of block b.
(iii) Any hub point in Lℓ+1 is adjacent to exactly one vertex for each of exactly k − 1 of the

k fringe groups of block b.

Description of the instances. We now show that no online algorithm can be better than
(2k − 1)-competitive on the metric space described by G.

Let alg be any deterministic online algorithm. We describe an instance consisting of
distinct phases. In each phase, exactly k distinct points, all from the same layer, are requested,
potentially with many repetitions. The instances are designed such that opt can move all
its k servers by a distance of 1 at the beginning of each phase and then serve all requests
within this phase at no additional cost, while alg has cost at least 2k − 1.

At the start of each phase, the servers of opt are located in a single block b of Lℓ and
more specifically at one of its hub points and k − 1 points chosen from k − 1 distinct fringe
groups in it.
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The phase consists of vertices from the block c in Lℓ+1 corresponding to the choice
of fringe points in block b that form the configuration of opt at the start of the phase.
Specifically, it consists of the hub of block c and k − 1 fringe points chosen from distinct
groups. This means that the process can be repeated since the final configuration is equivalent
to the starting position. It also means that opt can reach the configuration at cost 1: it can
move k − 1 of its servers in block b to fringe points in block c in the unique group they are
adjacent to, and move the final server to the hub of block c.

We can assume that within each phase, alg keeps a server on each previously requested
point. Otherwise, the instance will simply request that point again, at no additional cost to
opt.

The instance starts the phase with a request to the hub of block c. alg must now move
a server to that vertex and thus incurs cost 1. Assume that s ∈ [k − 1] fringe points in block
c have already been requested by the instance in this phase. We claim that there is at least
one fringe point n in block c such that
(a) no vertex from the group in block c containing n was requested in this phase before, and
(b) no server of alg can reach n with cost less than 2.

By assumption, s + 1 servers of alg already occupy requested points in block c. These
points are not adjacent to any other point in L2, and thus in particular not to any point
in block c. There are k − s groups in block c that are not yet represented by a request in
this phase. Since there are only k − s − 1 remaining servers, by Claim 13(i) and (ii), there is
at least one group in block c such that no fringe point in this group is adjacent to a server
that is in Lℓ−1 or on a fringe point in Lℓ+1. Within this group, there are k − 1 points. Any
server of alg that can reach such a point with cost at most 1 is either on that point (in
which case it cannot reach any other point in block c with cost at most 1) or on a hub in
Lℓ+1 (in which case, by Claim 13(iii), the same holds).

Since there are k − s − 1 remaining servers, this means that such a point n exists, unless
s = 0, i.e., if the only point requested in this phase has been the hub, and all servers of alg
occupy hubs in Lℓ+1 or fringe points in Lℓ. In this case, by Claim 13(iii), a server on a hub
in Lℓ+1 can reach at most k − 1 fringe points with cost 1. A server on a fringe point in block
c can only reach one such point. Therefore, the total number of fringe points in block c that
can be reached in distance 1 by servers on such vertices is at most (k − 1)2. This is strictly
smaller than the total number of k · (k − 1) fringe points in block c; so again, a point n with
the required properties must exist.

The instance now requests this point, which alg must serve with cost at least 2. After
k − 1 such requests, the phase ends. alg and opt are in the promised final configuration,
and the total cost of alg in this phase is 1 + (k − 1) · 2 = 2k − 1. ◀

▶ Observation 14. The diameter of the metric space used in the proof of Theorem 12 is 3.

It follows by Observation 4 that there is a 3k-competitive algorithm on this graph.

3.3 Lower Bound for Randomized Algorithms

In this section, we provide a lower bound for randomized algorithms. We first state Yao’s
principle for infinite minimization problems [17, Thm. 2.5]. A comprehensive explanation is
found in the textbooks by Borodin and El-Yaniv [6], and Komm [17].
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▶ Fact 15 (Yao’s Principle). Let I1, I2, . . . be an infinite sequence of sets of instances of
a given (online) minimization problem. Let A1, A2, . . . be a list of all deterministic online
algorithms for this problem. Let Pri denote an adversarial probability distribution on the
instances in Ii, and let Ei denote the corresponding expected value function. If there is some
constant c ≥ 1 such that

(i) minj(Ei[cost(Aj(Ii))])
Ei[cost(opt(Ii))]

≥ c for every positive integer i, and

(ii) lim
i→∞

Ei[cost(opt(Ii))] = ∞,
then there is, for any given constant ε > 0, no randomized online algorithm for the given
problem that is (c − ε)-competitive in expectation.

Existential Lower Bound of k + Hk − 1 on General Graphs

We now provide a lower bound of k+Ω(log k) on the expected competitive ratio of randomized
online algorithms. This is achieved on a significant extension of the metric space used in the
proof of Theorem 12.

Note that it is easy to find a metric space on which no randomized algorithm can have a
competitive ratio better than Ω(k). In fact, on uniform metric spaces with N ≫ k, there is a
lower bound of k − o(1), which can be shown by requesting points uniformly at random and
using Yao’s principle. The value of Theorem 16 lies in showing a bound that is strictly larger
than k, the best known lower bound and conjectured competitive ratio for deterministic
algorithms in the classical distance model.

▶ Theorem 16. Let any positive integer k ≥ 1 be given. For any ε > 0, there is a finite
metric space on which no randomized online algorithm for the time-optimal k-server problem
has a better constant competitive ratio than k + Hk − 1 − ε.

Proof sketch. The metric space is described by a graph G = (V, E) that extends the
construction used in the proof of Theorem 12. Instead of a single hub point h(ℓ, b), each
block contains a hub group of N hub points h(ℓ, b, n) for some large number N . Each of
the k fringe groups also contains N fringe points. Correspondingly, the number of blocks is
B = kNk−1.

We describe a distribution over hard instances on which no deterministic algorithm alg
can be better than (k + Hk − 1 − ε)-competitive, and then apply Yao’s principle. The
instances are again partitioned into phases, and in each phase, points are requested from the
block corresponding to the positions of the servers of opt, so that opt has cost 1 per phase.

The instances start with a hub point chosen uniformly at random from this block. The
expected cost alg incurs serving this request is approximately 1 since there are N ≫ k

possible choices. From then on, one of the k + 1 groups (either the hub group or a fringe
group) is chosen uniformly at random. If no point from that group has been requested yet in
that phase, a point from the group is chosen uniformly at random and requested; otherwise,
the previous point is requested again.

We then show that, if s distinct points with 1 ≤ s < k have been requested, the expected
cost of alg is at least (k +1−s)/(k +1)+1/(k +1), by using the equivalent of Claim 13. The
expected number of requests until the next distinct point is requested is (k + 1)/(k + 1 − s),
so the expected cost of alg in that timeframe is at least 1 + 1/(k + 1 − s). Summing up over
all s and adding the expected cost of 1 for the first request to a hub point, the expected cost
of alg is therefore

1 +
k−1∑
s=1

(
1 + 1

k + 1 − s

)
= k + Hk − 1 . ◀
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Note that it can be shown that the graph used in the proof of Theorem 16 has diameter 3,
analogously to Observation 14. Thus there is also a deterministic algorithm with competitive
ratio 3k on that metric space.

4 Conclusion

We hope to initiate a line of research that focuses on the time-optimal k-server problem. We
started by proving a series of lower bounds, showing the time model to be harder than the
distance model on various metric spaces, including simple cycles and all Euclidean spaces,
which implies that the direct analogue of the k-server conjecture in the time model cannot
be true. Our strongest deterministic lower bound matches – intriguingly – the best upper
bound known for the classical distance-optimal k-server problem, which is attained by the
deterministic work function algorithm wfa. A priori, it could thus be true that this algorithm
is in fact exactly (2k − 1)-competitive on general metric spaces in both models.

A natural next step is to find good performance guarantees for wfa in the time-optimal
setting. Unfortunately, the analysis of Koutsoupias and Papadimitriou [20] that proved
successful for the distance model resists any straightforward adaptation; multiple key concepts,
such as the duality between the so-called minimizers and maximizers, do not translate well
to the time model. Better upper bounds in the time model will thus probably provide us
with several novel techniques.

Our preliminary attempts and experimentally gathered evidence indeed point to a
subquadratic upper bound. We believe the lower bound of Theorem 12 to be tight, i.e., we
conjecture that a competitive ratio of 2k − 1 is indeed attainable.

▶ Conjecture 17. There is a deterministic algorithm for the time-optimal k-server problem
with a competitive ratio of 2k − 1 on general metric spaces.

For randomized algorithms, we analogously suspect the existence of an expected com-
petitive ratio of c in the distance model to correspond to one of c + k − 1 in the time
model.
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