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Abstract

In the Coloring Reconfiguration problem, we are given two proper k-colorings of a graph and
asked to decide whether one can be transformed into the other by repeatedly applying a specified
recoloring rule, while maintaining a proper coloring throughout. For this problem, two recoloring
rules have been widely studied: single-vertex recoloring and Kempe chain recoloring. In this paper,
we introduce a new rule, called color swapping, where two adjacent vertices may exchange their
colors, so that the resulting coloring remains proper, and study the computational complexity of the
problem under this rule. We first establish a complexity dichotomy with respect to k: the problem is
solvable in polynomial time for k ≤ 2, and is PSPACE-complete for k ≥ 3. We further show that the
problem remains PSPACE-complete even on restricted graph classes, including bipartite graphs, split
graphs, and planar graphs of bounded degree. In contrast, we present polynomial-time algorithms
for several graph classes: for paths when k = 3, for split graphs when k is fixed, and for cographs
when k is arbitrary.
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1 Introduction

1.1 Reconfiguring of Colorings
The field of combinatorial reconfiguration investigates reachability and connectivity in the
solution space of combinatorial problems. A combinatorial reconfiguration problem is defined
with respect to a combinatorial problem Π and a reconfiguration rule R, which specifies how
one feasible solution of Π can be transformed into another. Given an instance of Π and two
feasible solutions, the reconfiguration problem asks whether it is possible to transform one
into the other through a sequence of solutions, each obtained by a single application of R,
such that all intermediate solutions are also feasible. Combinatorial reconfiguration problems
naturally arise in applications involving dynamic systems, where solutions must be updated
while maintaining feasibility at every step. In addition, studying such problems provides
deeper insights into the structural properties of the solution spaces of classical combinatorial
problems. We refer the reader to the surveys by van den Heuvel [20] and Nishimura [31] for
comprehensive overviews of this growing area.
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33:2 Coloring Reconfiguration Under Color Swapping
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Figure 1 A reconfiguration sequence between two proper 3-colorings fs and ft under color
swapping.

Among the various reconfiguration problems, one of the most fundamental and extensively
studied is the reconfiguration of graph colorings. Let k be a positive integer. For a fixed
reconfiguration rule R, the Coloring Reconfiguration problem under R is defined as
follows: given a k-colorable graph G and two proper k-colorings f and f ′, determine whether
there exists a sequence of proper k-colorings of G starting at f and ending at f ′, where
each coloring in the sequence is obtained from the previous one by a single application of R.
The k-Coloring Reconfiguration is a special case where k is fixed. The computational
complexity of k-Coloring Reconfiguration has been the subject of extensive algorithmic
study; see Section 3 of the survey by Mynhardt and Nasserasr [30].

Two reconfiguration rules have been widely studied for k-Coloring Reconfiguration:
single-vertex recoloring and Kempe chain recoloring. In the single-vertex recoloring rule, a
new proper k-coloring is obtained by recoloring a single vertex so that the resulting k-coloring
remains proper. Under this rule, k-Coloring Reconfiguration is solvable in polynomial
time when k ≤ 3 [14], while it becomes PSPACE-complete for every fixed k ≥ 4 [8]. Notably,
this rule is closely related to Glauber dynamics in statistical physics, where a Markov chain
is defined over the space of proper k-colorings of a graph G: at each step, a vertex is selected
uniformly at random and recolored with a randomly chosen color such that the resulting
coloring remains proper. See Sokal [33] for an introduction to the Potts model and its
connections to graph coloring.

The second widely studied rule is Kempe chain recoloring. A new proper k-coloring is
obtained by selecting a connected component C of the subgraph of G induced by two color
classes (i.e., a Kempe chain) and swapping the two colors within C. Note that when C consists
of a single vertex, this operation is equivalent to single-vertex recoloring. While k-Coloring
Reconfiguration under this rule is solvable in polynomial time when k ≤ 2 [27] (in fact,
the answer is always “Yes”), it becomes PSPACE-complete for every fixed k ≥ 3 [6]. Kempe
chain recoloring was originally introduced by Kempe in 1879 in an attempt to prove the
Four Color Theorem [24]. Although his proof was later found to be flawed, the technique has
continued to play a central role in graph coloring theory [5, 27], statistical physics [28, 29],
and the study of mixing times of Markov chains [36].

These results highlight a key aspect of reconfiguration problems: even when the defin-
ition of feasible solutions remains the same, the computational complexity of finding a
reconfiguration sequence can vary greatly depending on the selected reconfiguration rule.

1.2 Our Contribution
In this paper, we introduce a new reconfiguration rule, called color swapping (CS) for
Coloring Reconfiguration. A new proper k-coloring is obtained from a given one by
swapping the colors of the endpoints of a single edge uv in G, so that the resulting coloring
remains proper. For example, Figure 1 shows a reconfiguration sequence between fs and
ft under CS, hence it is a yes-instance. We refer to Coloring Reconfiguration and
k-Coloring Reconfiguration under CS as CRCS and k-CRCS, respectively. The color
swapping rule can be seen as a restricted variant of Kempe chain recoloring, where each Kempe
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Figure 2 Our results for graph classes. Each arrow represents the inclusion relationship between
classes: A → B means that the graph class B is a proper subclass of the graph class A.

chain is limited to exactly two vertices. Interestingly, this rule is also studied in statistical
physics as (local) Kawasaki dynamics, which models dynamics in the fixed-magnetization
Ising model [12, 23, 25].

The contribution of this paper is an analysis of the computational complexity of CRCS
and k-CRCS; for an overview of our results, we refer to Figure 2. First, we prove that
CRCS is PSPACE-complete even when the input graph is restricted to bipartite or split
graphs. Furthermore, we show that there exists a positive integer k0 such that for every
fixed k ≥ k0, k-CRCS becomes PSPACE-complete even when the input graph is restricted
to chordal graphs, which is a superclass of split graphs.

We also establish a complexity dichotomy with respect to the number k of colors: k-CRCS
is PSPACE-complete for any fixed k ≥ 3, whereas for k ≤ 2, the problem can be solved
in polynomial time. In particular, we show that 3-CRCS is PSPACE-complete even when
restricted to planar graphs with maximum degree 3 and bounded bandwidth.

Complementing these hardness results, we also present several positive results. We first
show that 3-CRCS can be solved in linear time on path graphs. To this end, we introduce
an invariant for proper 3-colorings of paths, and design a linear-time algorithm that checks
whether two input colorings have the identical invariants. While the algorithm is simple, its
correctness requires a non-trivial argument.

Next, we show that CRCS can be solved in polynomial time on cographs. Our algorithm
is based on a recursive procedure over the cotree of the input cograph, inspired by prior
work [22] for Independent Set Reconfiguration on cographs. To adapt this approach
to our problem, we introduce a new notion called extended k-colorings as a generalization of
k-colorings.

Finally, we show that k-CRCS on split graphs is polynomial-time solvable for any fixed k.
This contrasts with the PSPACE-hardness of CRCS on split graphs when k is unbounded.

Due to the space limitation, we omit the proofs of statements with the symbol ⋆ marks,
which can be found in the full version of this paper.

1.3 Related Work
As mentioned in Section 1.1, the complexity of k-Coloring Reconfiguration has been
extensively investigated with respect to various graph classes. Under both the single-vertex
recoloring and Kempe chain recoloring rules, the problem is known to be PSPACE-complete
in general. Moreover, stronger hardness results and polynomial-time algorithms have been
established for specific graph classes.

ISAAC 2025



33:4 Coloring Reconfiguration Under Color Swapping

Under the single-vertex recoloring rule, the problem remains PSPACE-complete even on
bipartite planar graphs [8] and chordal graphs [17]. On the positive side, it is solvable in
polynomial time for 2-degenerate graphs, q-trees (for fixed q), trivially perfect graphs, and
split graphs [17]. Under the Kempe chain recoloring rule, the problem is PSPACE-complete
even on planar graphs with maximum degree 6 [6]; however, it is polynomial-time solvable on
chordal graphs, bipartite graphs, and cographs [6]. Several other algorithmic and structural
aspects of k-Coloring Reconfiguration have also been studied, including finding a
shortest reconfiguration sequence [9, 21] and bounding its length [1, 3, 10, 13].

The term color swapping is inspired by the Colored Token Swapping problem [7, 38],
a reconfiguration problem involving token placements. In that problem, one is given a graph
with an initial and a target coloring, which need not be proper, and the goal is to transform
the initial coloring into the target one using the minimum number of swaps between tokens
on adjacent vertices. Since feasibility is not restricted to proper colorings, this can be viewed
as a variant of our reconfiguration problem in which the feasibility condition is relaxed.
Yamanaka et al. [38] showed that Colored Token Swapping is NP-hard even when the
number of colors is exactly three.

2 Preliminaries

For a positive integer k, we write [k] = {1, 2, . . . , k}. For sets X and Y , the symmetric
difference of X and Y is defined as X △ Y := (X \ Y ) ∪ (Y \ X). For a map f : X → Y and
an element y ∈ Y , the preimage of y under f is defined as f−1(y) := {x ∈ X | f(x) = y}.

Let G = (V, E) be an undirected graph. We use V (G) and E(G) to denote the vertex
set and edge set of G, respectively. For a vertex v of G, NG(v) and NG[v] denote the
open neighborhood and the closed neighborhood of v in G, respectively; that is, NG(v) =
{u ∈ V | uv ∈ E} and NG[v] = NG(v) ∪ {v}. For a vertex set X ⊆ V , we define
NG(X) = {v ∈ V \ X | u ∈ X, uv ∈ E(G)} and NG[X] = NG(X) ∪ X.

For a positive integer k, a (proper) k-coloring of a graph G is a map f : V (G) → [k]
that assigns different colors to adjacent vertices; in other words, f(u) ̸= f(v) for every edge
uv ∈ E(G). An independent set of a graph G is a subset I ⊆ V (G) such that for all u, v ∈ I,
uv /∈ E(G) holds. A clique of a graph G is a subset C ⊆ V (G) such that for all u, v ∈ C

with u ̸= v, uv ∈ E(G) holds.

2.1 Our Problems
For two proper colorings f and f ′ of a graph G, we say that f and f ′ are adjacent under
Color Swapping (denoted by CS) if and only if the following two conditions hold:
1. There exists exactly one edge uv ∈ E(G) such that f(u) = f ′(v) and f(v) = f ′(u), and
2. For all other vertices w ∈ V (G) \ {u, v}, we have f(w) = f ′(w).
Intuitively, f ′ can be obtained from f by swapping the colors of two adjacent vertices.

A sequence f0, f1, . . . , fℓ of proper k-colorings of G with f0 = f and fℓ = f ′ is called
a reconfiguration sequence between f and f ′ if fi−1 and fi are adjacent under CS for all
i ∈ [ℓ]. We say that f and f ′ are reconfigurable if such a sequence exists. We now define the
Coloring Reconfiguration under Color Swapping problem (CRCS for short). In
CRCS, we are given a graph G, a positive integer k, and two proper k-colorings fs and ft

of G. The goal is to determine whether there exists a reconfiguration sequence between fs

and ft. For a fixed positive integer k, the k-CRCS problem is the special case of CRCS in
which the two input colorings are k-colorings.
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An instance (G, k, fs, ft) of CRCS is said to be valid if, for each color i ∈ [k], the number
of vertices assigned color i is the same in fs and ft; that is, |f−1

s (i)| = |f−1
t (i)|. Note that if

fs and ft are reconfigurable, then (G, k, fs, ft) must be valid. This observation implies that if
an instance (G, k, fs, ft) of CRCS is not valid, we can immediately return “NO.” Therefore,
throughout this paper, we assume that all instances of CRCS are valid.

It is easy to see that k-CRCS for k ≤ 2 can be solved in polynomial time.

▶ Observation 1 (⋆). k-CRCS can be solved in polynomial time for k ≤ 2.

3 PSPACE-completeness

We first observe that CRCS is solvable using polynomial space, i.e., CRCS belongs to the class
PSPACE. This follows from the equivalence PSPACE = NPSPACE, which is a consequence
of Savitch’s theorem [32]. To see the membership of PSPACE, consider a reconfiguration
sequence for CRCS as a certificate. Our polynomial-space algorithm reads each k-coloring
in the sequence one by one and verifies that (i) each coloring is proper and (ii) each pair of
consecutive colorings is adjacent under CS. Since each of these checks can be performed using
polynomial space, this implies that CRCS can be solved in nondeterministic polynomial
space. Therefore, by PSPACE = NPSPACE, we conclude that CRCS is in PSPACE.

In this section, we present polynomial-time reductions from three different problems to
establish the PSPACE-completeness of our problem for several graph classes. Specifically, we
reduce from the following problems: the Token Sliding problem in Section 3.1, the Color-
ing Reconfiguration problem in Section 3.2, and the Nondeterministic Constraint
Logic problem in Section 3.3.

3.1 Reduction from Token Sliding
In this subsection, we present a polynomial-time reduction from the Token Sliding problem
to CRCS. Token Sliding is also known as the Independent Set Reconfiguration
under Token Sliding [18, 22].

Let G be a graph, and let I ⊆ V (G) be a vertex subset of G. Recall that I is an
independent set of G if no two vertices in I are adjacent; that is, uv /∈ E(G) for all u, v ∈ I.
Two independent sets I and J of the same size are said to be adjacent under token sliding if
and only if |I △ J | = 2 and the two vertices in I △ J are joined by an edge in G.

In the Token Sliding problem, we are given a graph G and two independent sets
Is, It ⊆ V (G) of the same size. The goal is to determine whether there exists a sequence
I0, I1, . . . , Iℓ of independent sets of G such that Is = I0 and It = Iℓ, and for every i ∈ [ℓ],
Ii−1 and Ii are adjacent.

Token Sliding is known to be PSPACE-complete even when restricted to split graphs [2]
or bipartite graphs [26]. A graph is split if its vertices can be partitioned into a clique and
an independent set, and bipartite if its vertices can be partitioned into two independent sets.

We first show the following theorem for split graphs.

▶ Theorem 2. CRCS is PSPACE-complete for split graphs.

Proof. We have already observed that the problem is in PSPACE. To show the PSPACE-
hardness, we give a polynomial-time reduction from Token Sliding on split graphs to
CRCS.

Let (G, Is, It) be an instance of Token Sliding such that |Is| = |It| and G = (V, E) is a
split graph with vertex partition (C, S), where C is a clique of G and S is an independent
set of G. Assume that |Is| = |It| ≥ 2. Note that Token Sliding remains PSPACE-complete
under this assumption since the problem is trivial when |Is| = |It| = 1.

ISAAC 2025



33:6 Coloring Reconfiguration Under Color Swapping

We construct an instance (G′, k, fs, ft) of CRCS as follows. Let G′ be the graph obtained
from G by adding a new vertex u that is adjacent to all vertices in V (G). That is, let
G′ = (V ′, E′) with V ′ = V ∪ {u} and E′ = E ∪ {uv | v ∈ V }. Since u is adjacent to all
vertices in C, the set C ∪ {u} is a clique of G′, and S is an independent set of G′. Thus, G′

is also a split graph.
Let k = |V ′| − |Is| + 1 = |V ′| − |It| + 1. We now define proper k-colorings fs and ft of G′.

For each v ∈ Is, set fs(v) = 1. Then, assign a distinct color from [k] \ {1} arbitrarily to each
vertex in V ′ \ Is so that fs is a proper k-coloring. Similarly, define ft by setting ft(v) = 1
for each v ∈ It, and assigning a distinct color from [k] \ {1} arbitrarily to each vertex in
V ′ \ It so that ft is also a proper k-coloring. Since |V ′ \ Is| = k − 1 and |V ′ \ It| = k − 1,
such proper k-colorings fs and ft exist.

This completes the construction of the instance (G′, k, fs, ft). We claim that (G, Is, It) is
a yes-instance of Token Sliding if and only if (G′, k, fs, ft) is a yes-instance of CRCS.

We first show the “only if” direction. Suppose that (G, Is, It) is a yes-instance of Token
Sliding. Then, there exists a sequence of independent sets I0, I1, . . . , Iℓ of G, with I0 = Is

and Iℓ = It, and for each i ∈ [ℓ], Ii−1 and Ii are adjacent under token sliding. For each
i ∈ {0, 1, . . . , ℓ}, we construct a proper k-coloring fi of G′ from Ii, following the same
construction as for fs and ft: for each v ∈ Ii, set fi(v) = 1, and assign a distinct color from
[k] \ {1} arbitrarily to each vertex in V ′ \ Ii so that fi is a proper k-coloring of G′.

We claim that for all i ∈ [ℓ], fi−1 and fi are reconfigurable under CS. Let f ′ be the
coloring obtained from fi−1 by exchanging the colors assigned to the vertices v ∈ Ii−1 \ Ii

and w ∈ Ii \ Ii−1. Since each vertex in Ii−1 is assigned the color 1 in fi−1, and all other
vertices are assigned distinct colors from [k] \ {1}, the modified coloring f ′ remains a proper
k-coloring of G′. Moreover, since Ii−1 and Ii are adjacent under token sliding, we have
vw ∈ E(G′). Thus, fi−1 and f ′ are adjacent under CS.

We now show that f ′ and fi are reconfigurable under CS. Recall that f ′(v) = fi(v) = 1
for all v ∈ Ii. Thus, f ′ and fi may differ only on the vertices in V (G′) \ Ii. Note that the
restrictions of f ′ and fi to V (G′) \ Ii are both bijective.

By construction, G′[V (G′)\Ii] is connected, since it contains a universal vertex u adjacent
to all others. It is known that for any connected n-vertex graph and two bijective n-colorings,
there exists a reconfiguration sequence of length O(n2) between them under CS [37]. Applying
this result, we can reconfigure f ′ into fi using color swaps only within V (G′) \ Ii. Thus, fi−1
and fi are reconfigurable under CS. This implies that we can construct a reconfiguration
sequence between fs and ft under CS. Therefore, (G′, k, fs, ft) is a yes-instance of CRCS.

We now prove the “if” direction. Suppose that there exists a reconfiguration sequence
between fs and ft under CS. Let f0, f1, . . . , fℓ be the reconfiguration sequence, where f0 = fs

and fℓ = ft. For each i ∈ {0, 1, . . . , ℓ}, define Ii = f−1
i (1). Since the number of vertices

colored 1 remains constant throughout the sequence, it follows that |Ii| = |Is| = |It| ≥ 2 for
all i. By construction, the vertex u is adjacent to all other vertices in G′, and thus cannot
be assigned color 1 in any fi; hence, Ii ⊆ V (G). Moreover, since fi is a proper k-coloring of
G, the set Ii forms an independent set of G′, and consequently also an independent set of G.

For each i ∈ [ℓ], since two consecutive proper k-colorings fi−1 and fi are adjacent under
CS, we can observe that Ii−1 and Ii are either identical or adjacent under token sliding.
By deleting any consecutive duplicate independent sets from the I0, I1, . . . , Iℓ, we obtain
the desired sequence between Is and It. Therefore, (G, Is, It) is a yes-instance of Token
Sliding.

This completes the proof of Theorem 2. ◀

The similar result holds for bipartite graphs.
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▶ Theorem 3. CRCS is PSPACE-complete for bipartite graphs.

Proof. We have already observed that the problem is in PSPACE. To show the PSPACE-
hardness, we give a polynomial-time reduction from Token Sliding on bipartite graphs to
CRCS.

Let (G, Is, It) be an instance of Token Sliding, where G is a bipartite graph with a
bipartition (S, T ), and both S and T are independent sets of G. We construct an instance
(G′, k, fs, ft) of CRCS as follows (see also Figure 3).

First, we construct G′ by adding three new vertices x1, x2, x3 to S, and three new vertices
y1, y2, y3 to T . We then make x1 adjacent to all vertices in T ∪ {y1, y2, y3}, and y1 adjacent
to all vertices in S ∪ {x1, x2, x3}. Since S ∪ {x1, x2, x3} and T ∪ {y1, y2, y3} are independent
sets of G′, the resulting graph G′ is also bipartite.

We set k = |V (G′)| − |Is| − 3, and define proper k-colorings fs and ft of G′ as follows.
For the initial coloring fs, assign color 1 to every vertex in Is ∪ {x2, x3, y2, y3}. Then, assign
a distinct color from [k] \ {1} arbitrarily to each vertex in V (G′) \ (Is ∪ {x2, x3, y2, y3}) so
that fs is a proper k-coloring of G′. Similarly, for the target coloring ft, assign color 1 to
every vertex in It ∪ {x2, x3, y2, y3}. Then, assign a distinct color from [k] \ {1} arbitrarily
to each vertex in V (G′) \ (It ∪ {x2, x3, y2, y3}) such that ft is also a proper k-coloring of
G′. Note that both V (G′) \ (Is ∪ {x2, x3, y2, y3}) and V (G′) \ (It ∪ {x2, x3, y2, y3}) contain
exactly (k − 1) vertices. Moreover, both (Is ∪ {x2, x3, y2, y3}) and (It ∪ {x2, x3, y2, y3}) form
independent sets of G′. Thus, it is always possible to assign the remaining (k − 1) colors so
that both fs and ft are proper k-colorings of G′.

This completes the construction of the instance (G′, k, fs, ft). We then claim that
(G, Is, It) is a yes-instance of Token Sliding if and only if (G′, k, fs, ft) is a yes-instance of
CRCS.

We first show the “only if” direction. Suppose that (G, Is, It) is a yes-instance of Token
Sliding. Then, there exists a sequence of independent sets I0, I1, . . . , Iℓ of G, with I0 = Is

and Iℓ = It, and for each i ∈ [ℓ], Ii−1 and Ii are adjacent under token sliding. For
each i ∈ {0, 1, . . . , ℓ}, we construct a proper k-coloring fi of G′ from Ii, following the
same construction as for fs and ft. for the coloring fi, assign color 1 to every vertex in
Ii ∪ {x2, x3, y2, y3}. Then, assign a distinct color from [k] \ {1} arbitrarily to each vertex in
V (G′) \ (Ii ∪ {x2, x3, y2, y3}) such that fi is also a proper k-coloring.

We claim that fi−1 and fi are reconfigurable under CS. Let f ′ be the coloring obtained
from fi−1 by exchanging the colors assigned to the vertices v ∈ Ii−1 \ Ii and w ∈ Ii \ Ii−1.
Since each vertex in Ii ∪ {x2, x3, y2, y3} is assigned the color 1, and all other vertices are
assigned distinct colors from [k] \ {1} by f ′, the modified coloring f ′ remains a proper
k-coloring of G′. Moreover, since Ii−1 and Ii are adjacent under token sliding, we have
vw ∈ E(G′). Hence, fi and f ′ are adjacent under CS.

We now prove that f ′ and fi are reconfigurable under CS. Recall that f ′(v) = fi(v) = 1
for all v ∈ Ii ∪ {x2, x3, y2, y3} Thus, f ′ and fi may differ only on the vertices in [k] \ {1}.
Note that the restrictions of f ′ and fi to V (G′) \ Ii are both bijective.

Recall that x1 is adjacent to every vertex in T ∪ {y1, y2, y3} and y1 is adjacent to every
vertex in S∪{x1, x2, x3}, so the subgraph induced by V (G′)\(Ii∪{x2, x3, y2, y3}) is connected.
As shown in the proof of Theorem 2 and using the result from [37], we see that f ′ and fi

are reconfigurable under CS, and thus so are fi−1 and fi. By repeating this process for all
i ∈ [ℓ], we obtain a reconfiguration sequence from fs to ft under CS. Therefore, (G′, k, fs, ft)
is a yes-instance of CRCS.

We now prove the “if” direction. Suppose that there exists a reconfiguration sequence
between fs and ft under CS. Let f0, f1, . . . , fℓ be the reconfiguration sequence, where f0 = fs

and fℓ = ft.

ISAAC 2025
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Figure 3 (a) The bipartite graph G for an instance of the Token Sliding problem, along with its
initial independent set I, where the vertices in I are marked in black. The vertex set of the graph G

is partitioned into independent sets S and T . (b) The bipartite graph G′, constructed from G, has a
bipartition V (G′) = (S ∪ {x1, x2, x3}) ∪ (T ∪ {y1, y2, y3}), where both parts are independent sets.
Each vertex is labeled with its color in the initial proper k-coloring fs derived from I.

Since x2 and x3 share the same neighbor y1 and are both assigned color 1 in fs, no color
swap involving x2 or x3 is allowed throughout the sequence; that is, fi(x2) = fi(x3) = 1
for all i ∈ {0, 1, . . . , ℓ}. By symmetry, we also have fi(y2) = fi(y3) = 1, which implies that
x1 and y1 are never assigned color 1. For each i ∈ {0, 1, . . . , ℓ}, define Ii = f−1

i (1) and
I ′

i = Ii \ {x2, x3, y2, y3}. Then, |I ′
i| = |Is| = |It|, and since Ii is an independent set in G′, it

follows that I ′
i is also an independent set in G.

Furthermore, since fi−1 and fi are adjacent under CS for each i ∈ [ℓ], the sets I ′
i−1 and

I ′
i are either adjacent under token sliding or identical. By removing consecutive duplicates

from the sequence I ′
0, I1, . . . , I ′

ℓ, we obtain a reconfiguration sequence of independent sets
from Is to It under token sliding. Therefore, (G, Is, It) is a yes-instance of Token Sliding.

This completes the proof of Theorem 2. ◀

3.2 Reduction from Coloring Reconfiguration
In this subsection, we give a polynomial-time reduction from the k-Coloring Reconfig-
uration problem under single-vertex recoloring to k-CRCS.

Let k be a positive integer. In k-Coloring Reconfiguration under single-vertex
recoloring, we are given a graph G and two k-colorings g and g′ of G. The goal is to
determine whether there exists a sequence of k-colorings g0, g1, . . . , gℓ with g0 = g and
gℓ = g′ such that for each i ∈ [ℓ], the colorings gi−1 and gi differ at exactly one vertex;
that is, |{v ∈ V (G) | gi−1(v) ̸= gi(v)}| = 1. We simply call the problem k-Coloring
Reconfiguration. It is known that there exists a positive integer k0 such that, for any
fixed k ≥ k0, k-Coloring Reconfiguration is PSPACE-complete on chordal graphs [17].
Recall that a graph is chordal if it contains no induced cycle of length at least 4.

We claim the following theorem.

▶ Theorem 4. There exists a positive integer k0 such that, for any fixed k ≥ k0, k-CRCS is
PSPACE-complete on chordal graphs.

Proof. We have already observed that the problem is in PSPACE. To show the PSPACE-
hardness, we give a polynomial-time reduction from k-Coloring Reconfiguration on
chordal graphs to k-CRCS.
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Let (G, gs, gt) be an instance of k-Coloring Reconfiguration, where G is a chordal
graph. We construct an instance (G′, fs, ft) of k-CRCS as follows (see also Figure 4). For each
vertex v ∈ V (G), we add (k −1) new vertices v1, v2, . . . , vk−1 and make {v, v1, v2, . . . , vk−1} a
clique in G′. Let Cv = {v, v1, v2, . . . , vk−1}. Note that the resulting graph G′ is also chordal.
We then define the k-coloring fs as follows: for each v ∈ V (G), set fs(v) = gs(v), and for
each vertex in Cv \ {v}, assign an arbitrary color distinct from fs(v) so that fs is a proper
k-coloring of G (which is always possible since |Cv| = k). Similarly, define ft(v) = gt(v) for
each v ∈ V (G), and for each vertex in Cv \ {v}, assign an arbitrary color distinct from gt(v)
so that ft is a proper k-coloring of G.

This completes the construction of the instance (G′, fs, ft). We then claim that (G, gs, gt)
is a yes-instance of k-Coloring Reconfiguration if and only if (G′, fs, ft) is a yes-instance
of k-CRCS.

We first prove the “only if” direction. Suppose that (G, gs, gt) is a yes-instance of k-
Coloring Reconfiguration. Then there exists a reconfiguration sequence g0, g1, . . . , gℓ of
proper k-colorings of G such that g0 = gs, gℓ = gt, and for each i ∈ [ℓ], gi−1 and gi differ at
exactly one vertex. For each i ∈ {0, 1, . . . , ℓ}, we construct a proper k-coloring fi of G′ from
gi, following the same construction as for fs and ft: for every v ∈ V (G), set fi(v) = gi(v),
and for each u ∈ Cv \ {v}, assign an arbitrary color distinct from fi(v) so that fi is a proper
k-coloring of G′.

We claim that for all i ∈ [ℓ], fi−1 and fi are reconfigurable under CS. Indeed, let u ∈ V (G)
be the unique vertex such that gi−1(u) ̸= gi(u). By construction, we have fi−1(u) ̸= fi(u),
while fi−1(v) = fi(v) for all v ∈ V (G) \ {u}. Let w ∈ Cu be the unique vertex such that
fi−1(w) = fi(u). We construct a k-coloring f ′ from fi−1 by swapping the colors of u and w.
Note that f ′(v) = fi(v) for all v ∈ V (G) \ {u}.

Recall that for each v ∈ V (G), the clique Cv in G′ contains exactly k vertices, and in
both colorings fi and f ′, the vertices of Cv receive pairwise distinct colors. Since vertices
in Cv \ {v} are adjacent only to those in Cv, we can freely perform color swaps within Cv

without affecting outside Cv. Thus, we can reconfigure f ′ into fi by performing a sequence
of color swaps only within cliques Cv for v ∈ V (G). This implies that fi−1 and fi are
reconfigurable under CS. Applying this argument for each i ∈ [ℓ] yields a reconfiguration
sequence from fs to ft in G′ under CS. Therefore, (G′, fs, ft) is a yes-instance of k-CRCS.

We now prove the “if” direction. Suppose that there exists a reconfiguration sequence
f0, f1, . . . , fℓ between fs and ft, where f0 = fs and fℓ = ft. For each i ∈ {0, 1, . . . , ℓ},
define the coloring gi of G by setting gi(v) = fi(v) for every v ∈ V (G). Since fi is a proper
k-coloring of G′, the construction guarantees that gi is a proper k-coloring of G.

Observe that each Cw (w ∈ V (G)) is a clique of size k. Thus, any color swap occurs only
on two vertices within some clique Cw. It follows that for every i ∈ [ℓ], the colorings gi−1
and gi are either identical or differ at exactly one vertex of G. By removing any consecutive
duplicate colorings, we obtain a desired sequence of proper k-colorings of G from gs to gt.
Therefore, (G, gs, gt) is a yes-instance of k-Coloring Reconfiguration.

This completes the proof of Theorem 4. ◀

3.3 Reduction from Nondeterministic Constraint Logic
In this subsection, we prove Theorem 5 by a polynomial-time reduction from the Non-
deterministic Constraint Logic problem [19, 35].

▶ Theorem 5. For every fixed integer k ≥ 3, k-CRCS is PSPACE-complete for planar graphs
of maximum degree 3 and bounded bandwidth.
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1
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4

G′

Figure 4 Construction of G from G′ using four colors. Vertices of G are assigned a proper
4-coloring gt, and those of G′ the corresponding proper 4-coloring ft.

We begin by formally defining the Nondeterministic Constraint Logic problem
in Section 3.3.1. Next, we introduce an auxiliary gadget used in our reduction, which is
described in Section 3.3.2. We then present the full reduction in Section 3.3.3, including
the design of two types of gadgets: and gadgets, and or gadgets. Finally, we prove the
correctness of the reduction in Section 3.3.4.

Note that our reduction is presented for k = 3; however, it holds analogously for cases
where k ≥ 4.

3.3.1 Definition of Nondeterministic Constraint Logic
A Nondeterministic Constraint Logic (NCL) machine is an undirected graph in which each
edge is assigned a weight from {1, 2} (see Figure 5 (a)). A configuration of an NCL machine
is an orientation of its edges such that, at every vertex, the total weight of incoming edges
is at least 2. Two configurations are said to be adjacent if they differ in the orientation of
exactly one edge. In the Nondeterministic Constraint Logic problem, we are given an
NCL machine M and two of its configurations, Cs and Ct. The goal is to determine whether
there exists a sequence of configurations starting from Cs and ending at Ct, such that each
consecutive pair of configurations in the sequence differs in the orientation of exactly one
edge; that is, they are adjacent.

An NCL machine M is called an and/or constraint graph if it contains only two types of
vertices: and vertices and or vertices (see again Figure 5 (a)). A vertex of degree 3 in M is
an and vertex if its incident three edges have weights 1, 1, and 2; see Figure 5 (b). Similarly,
a vertex of degree 3 in M is defined as an or vertex if all its incident three edges have weight
2; see Figure 5 (c). For the remainder of this paper, we will use the term NCL machine to
refer specifically to an and/or constraint graph. It is known that the Nondeterministic
Constraint Logic problem remains PSPACE-complete when the input NCL machine
(and/or constraint graph) is restricted to be planar, of maximum degree 3, and of bounded
bandwidth [35]. Recall that, for a graph G, the bandwidth of G is the minimum integer b

such that G has a bijection π : V (G) → [|V (G)|] with maxuv∈E(G) |π(u) − π(v)| ≤ b.

3.3.2 Auxiliary Gadgets
Before presenting our full construction, we introduce auxiliary gadgets, called forbidden
pendants, which prevent a vertex from being assigned a specific color.

Let C = {1, 2, 3} be a set of colors. Consider a vertex x adjacent to a vertex y, where
y is part of a 4-cycle, as illustrated in Figure 6. We consider two possible colorings of the
4-cycle in clockwise order starting from y: (1, 2, 1, 3) or (3, 1, 3, 2). Note that in each of these
colorings, y is assigned color 1 or 3, respectively.
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Figure 5 (a) A configuration of an NCL machine, (b) an and vertex, and (c) an or vertex. Edges
of weight 2 are shown in blue lines, and edges of weight 1 in red lines. The NCL machine in (a) is
an and/or constraint graph.

x
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3
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2
(a)

x

3

(b)

Figure 6 (a) An illustration of a 3-forbidden pendant for a vertex x, which ensures that x is
never assigned color 3. (b) A simplified depiction of the gadget used to represent this pendant.

Since x is adjacent to y, it must be assigned a color different from that of y. In particular,
x can be assigned only colors from the sets {2, 3} or {1, 2}, respectively, depending on the
color of y. Furthermore, observe that no valid color swaps can occur within the cycle or
between x and y in any reconfiguration sequence. This ensures that the color of y remains
fixed, and thus x is prevented from ever taking the same color as y.

If y is assigned color c ∈ {1, 3}, we refer to this gadget as a c-forbidden pendant for x.
For simplicity, we use the diagram shown in Figure 6 (b) to represent such a gadget.

3.3.3 AND/OR Gadgets and Our Reduction
Let I = (M, Cs, Ct) be an instance of Nondeterministic Constraint Logic. Our
reduction constructs a graph G by using two types of vertex gadgets, which simulate and and
or vertices of M , respectively. Each vertex of M is replaced by the corresponding gadget
according to its type.

For each edge e = uv in M , the vertex gadgets for u and v each contain a special vertex,
called a port vertex, which serves as an interface to the corresponding edge. These two port
vertices, denoted by ue and ve, are connected by an edge referred to as a port edge (see
Figure 7). Accordingly, the gadget corresponding to a vertex u of M with incident edges e1,
e2, and e3 includes three port vertices: ue1 , ue2 , and ue3 .

Let u be an and vertex in M , incident to one weight-2 edge e1 and two weight-1 edges
e2 and e3. We construct the corresponding and gadget Gu, which consists of two internal
vertices: u0 and u1

2, along with three port vertices: u1
1 = ue1 , u2

1 = ue2 , and u3
1 = ue3 . Each

port vertex of Gu is adjacent to a 3-forbidden pendant (see Figure 8 (a)); hence, it can only
be colored with color 1 or 2 in any proper coloring. Consequently, any color swap involving
a port vertex in Gu must occur along the corresponding port edge.

Let u be an or vertex in M , incident to three weight-2 edges e1, e2, and e3. The
corresponding or gadget Gv consists of 12 vertices, denoted by vi

j for i ∈ [3] and j ∈ [4].
For each i ∈ [3], the vertex vi

4 is a port vertex of Gv, that is, vi
4 = vei

. Moreover, every vi
4

is adjacent to a 3-forbidden pendant, while each of vi
2 and vi

3 is adjacent to a 1-forbidden
pendant (see Figure 8(b)).
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u v

(a)

Gadget
for u

Gadget
for v

(b)

Port edge

Figure 7 (a) An edge uv in G, and (b) its corresponding gadgets, where the port vertices are
depicted by red circles and the shared port edge is depicted by a red line.
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Figure 8 (a) The and gadget and (b) the or gadget, corresponding to (b) and (c) in Figure 5,
respectively.

Similar to the and gadget, each port vertex in Gv is restricted to colors 1 or 2 due to its
adjacency to a 3-forbidden pendant. Consequently, any color swap involving a port vertex in
Gv must occur along the corresponding port edge. Moreover, since both vi

2 and vi
3 for i ∈ [3]

are adjacent to 1-forbidden pendants, they must be assigned distinct colors: one must be
colored 2 and the other 3. Thus, any color swap involving vi

2 or vi
3 can only occur on the

edge vi
2vi

3.

Reduction

Let I = (M, Cs, Ct) be an instance of Nondeterministic Constraint Logic. We
construct a corresponding instance (G, fs, ft) of k-CRCS.

We begin by constructing a graph G from the NCL instance M as follows. For each and
or or vertex in M , we replace it with the corresponding gadget as defined in Section 3.3.3.
Then, for each edge e = uv in M , we add a port edge between the corresponding port vertices
ue and ve in the gadgets for u and v, respectively; see Figure 7.

Let G denote the resulting graph. Then, we observe the following.

▶ Observation 6 (⋆). The constructed graph G is planar, of maximum degree 3, and has
bounded bandwidth.

We define two proper 3-colorings, fs and ft, of the constructed graph G. We begin by
assigning colors to all c-forbidden pendants for c ∈ {1, 3} according to the colorings described
in Section 3.3.2.
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Let e be an edge of M with an endpoint u. For each corresponding port vertex ue, we
set fs(ue) = 1 (resp. ft(ue) = 1) if the edge e is directed toward u in the configuration Cs

(resp. Ct); otherwise, we assign fs(ue) = 2 (resp. ft(ue) = 2).
For each and gadget Gu corresponding to an and vertex u of M , we assign colors to

the internal vertices u1
2 and u0 of Gu, which are depicted in Figure 8, so that fs becomes

a proper 3-coloring. That is, we set either fs(u1
2) = 2 and fs(u0) = 3, or fs(u1

2) = 3 and
fs(u0) = 2. We define ft similarly to fs.

For each or gadget Gv corresponding to an or vertex v of M , we assign colors to the
internal vertices of Gv depending on the coloring of its port vertices under fs (resp. ft).
Specifically, for a given coloring of the port vertices, the internal vertices are colored according
to one of the configurations illustrated in Figure 9, so that fs (resp. ft) becomes a proper
3-coloring. Since multiple valid internal colorings may exist for the same coloring of the port
vertices of Gv, we may choose any such coloring arbitrarily.

This completes our polynomial-time reduction.

3.3.4 Correctness
Before proceeding to our proof, we provide an overview of the main ideas behind our reduction
and outline the argument for its correctness.

Our reduction establishes a correspondence between the orientations of edges in a given
instance of Nondeterministic Constraint Logic and the colorings in the constructed
graph G. For each edge e = uv, we have associated two port vertices ue and ve in the gadgets
for u and v, respectively. We interpret the edge as being oriented toward vertex v if ue is
assigned color 2, and as oriented toward vertex u if ve is assigned color 2. Note that the
coloring of each pair {ue, ve} must be such that exactly one vertex is colored with 2 and the
other with 1.

We briefly describe the behavior of the and and or gadgets. The and gadget ensures
that the port vertex u1

1 can be colored with 2 only if both u2
1 and u3

1 are colored with 1. Once
this condition is satisfied, the vertex u1

2 can be recolored with 3 via a color swap with u0.
Next, we explain the behavior of the or gadgets. In an or vertex of M , it suffices that

at least one of the three incident edges is oriented inward. Accordingly, our gadget must
only prohibit the configuration in which all three port vertices v1

4 , v2
4 , v3

4 are simultaneously
colored with 2. As shown in Figure 8(b), our construction enforces this constraint: if all
three port vertices are colored with 2, then all intermediate vertices v1

2 , v2
2 , v3

2 must also be
colored with 2, which is impossible because the three vertices v1

1 , v2
1 , v3

1 form a clique. Thus,
at least one of the port vertices must be assigned color 1. See all proper colorings of the or
gadget shown in Figure 9.

To establish the correctness of our reduction, we present the following lemma.

▶ Lemma 7 (⋆). The instance (M, Cs, Ct) of Nondeterministic Constraint Logic is a
yes-instance if and only if the constructed instance (G, fs, ft) of 3-CRCS is a yes-instance.

4 Polynomial-time Algorithms

In this section, we present polynomial-time algorithms for CRCS and k-CRCS on paths,
cographs, and split graphs.

4.1 Paths
We begin by presenting the following result for path graphs:
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Figure 9 All valid orientations of the three edges incident to an or vertex v, and the corresponding
colorings of the or gadget with their adjacency. Port vertices v1

4 , v2
4 , and v3

4 are shown, and only
the colors excluding those forbidden by c-forbidden pendants are indicated. In each row, no color
swap is allowed between vertices separated by a hyphen due to the c-forbidden pendants.

▶ Theorem 8. 3-CRCS can be solved in linear time for path graphs.

To prove Theorem 8, we design a linear-time algorithm that solves 3-CRCS on path graphs.
In our algorithm, we compute and compare the invariants of the two input 3-colorings. If

the invariants are identical, the algorithm returns YES; otherwise, it returns NO. Although the
implementation of our algorithm is relatively simple, we emphasize that the core idea behind
the algorithm is conceptually nontrivial, as it captures the essential structure preserved
under CS.

4.1.1 Invariant for Coloring Strings
Before introducing the invariant, we first define several terms used throughout this subsection.

Given a string S, S[i] denotes the i-th character of S, and S[i, j] denotes the substring
from the i-th to the j-th character (inclusive). If i > j, we define S[i, j] := NIL, where NIL
denotes the empty string (a string of length 0).
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Let P = v1, v2, . . . , vn be a path on n vertices. A string S = S[1]S[2] · · · S[n] is called a
coloring string if there exists a proper 3-coloring f of P such that S[i] = f(vi) for all i ∈ [n].
We sometimes refer to S as the coloring string corresponding to f . Note that a coloring f

can be encoded into its corresponding coloring string in O(n) time.
We say that two consecutive characters in S are swappable if they can be exchanged to

produce another coloring string S′. In this case, we say that S and S′ are adjacent. If no such
pair of swappable characters exists in S, then we say that S is rigid. Note that each swap
of two characters precisely corresponds to a single color swapping operation. Finally, two
coloring strings S and S′ are said to be reconfigurable if there exists a sequence S0, S1, . . . , Sℓ

of coloring strings such that S0 = S, Sℓ = S′, and each consecutive pair Si−1, Si is adjacent
for all i ∈ [ℓ].

We next observe a condition that determines whether two adjacent characters in a
coloring string are swappable. Recall that a coloring string represents a proper 3-coloring of
an n-vertex path.

▶ Observation 9. Let S = s1s2 · · · sn be a coloring string. We can swap si and si+1 in S

for i ∈ [n − 1] if and only if the following conditions are satisfied:
If i = 1, then the three characters s1, s2, s3 are pairwise distinct.
If 2 ≤ i ≤ n − 2, then si−1 = si+2 holds.
If i = n − 1, then the three characters sn−2, sn−1, sn are pairwise distinct.

We now define the notion of contraction, which will be used to define our invariant for
a coloring string. Let S = s1s2 · · · sn be a coloring string of length n ≥ 3. We define the
following three contraction operations:
(C1.) If S = S[1, i − 2] si−1sisi+1si+2 S[i + 3, n] and si−1 = si+2 for some 2 ≤ i ≤ n − 2,

then S can be contracted to S[1, i − 2] si+2 S[i + 3, n].
(C2.) If s1, s2, s3 are pairwise distinct, then S = s1s2s3 S[4, n] can be contracted to S[4, n].
(C3.) If sn−2, sn−1, sn are pairwise distinct, then S = S[1, n − 3] sn−2sn−1sn can be con-

tracted to S[1, n − 3].
Note that in each of these cases, the contracted substring consists of three characters that
are pairwise distinct.

Let cont(S) denote the set of all coloring strings that can be obtained from S by applying
a single contraction operation. Each contraction reduces the length of the string by exactly 3,
i.e., for every S′ ∈ cont(S), we have |S′| = |S| − 3. We now define the invariant inv(S) of a
coloring string S recursively as follows:

inv(S) =


NIL if |S| ≤ 2,

inv(S′) if there exists S′ ∈ cont(S),
S otherwise. (i.e., S is rigid)

The following lemma shows that inv(S) is uniquely determined regardless of the order in
which the contractions are applied.

▶ Lemma 10 (⋆). For any coloring string S, the invariant inv(S) is well-defined.

A straightforward implementation of computing the invariant of a coloring string would
take O(n2) time, as each contraction step may require scanning the entire string, and up to
O(n) such steps may be needed. However, the procedure can be implemented in linear time
using a stack to efficiently simulate the recursive contractions.

▶ Lemma 11 (⋆). For any coloring string S of length n, the invariant inv(S) can be computed
in O(n) time.
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4.1.2 Correctness of Algorithm
In the following, we discuss the correctness of our algorithm presented in Section 4.1.1. We
begin with the following lemma, which states that taking a single swap of characters preserves
the invariant.

▶ Lemma 12 (⋆). Let S and S′ be two adjacent coloring strings. Then, inv(S) = inv(S′).

The next two lemmas are crucial for our converse direction: if two coloring strings have
the identical invariant, then they are reconfigurable.

▶ Lemma 13 (⋆). Let S be a coloring string of length at least 3. If S is not rigid, then there
exists a coloring string S′ such that S′[1], S′[2], S′[3] are pairwise distinct, and S and S′ are
reconfigurable.

▶ Lemma 14 (⋆). Let S and S′ be coloring strings, and let w1, w2, w3 and w′
1, w′

2, w′
3 be two

triples of pairwise distinct characters such that w1w2w3S and w′
1w′

2w′
3S′ are coloring strings.

If S and S′ are reconfigurable, then w1w2w3S and w′
1w′

2w′
3S′ are also reconfigurable.

The following is the main theorem in this subsection.

▶ Theorem 15. Let (P, fs, ft) be a valid instance of 3-CRCS such that P is a path of
n-vertices, and let S and S′ be the coloring strings corresponding to fs and ft, respectively.
Then, inv(S) = inv(S′) if and only if S and S′ are reconfigurable.

Proof. The “if” direction follows directly from Lemma 12. Hence, we now prove the “only-if”
direction. We show that S and S′ are reconfigurable if inv(S) = inv(S′), by induction on the
length of S (and S′).

For the base case where |S| = |S′| ∈ {0, 1, 2}, we always have inv(S) = inv(S′) = NIL,
and it is clear that S and S′ are reconfigurable.

For the induction step, assume that the claim holds for all coloring strings shorter than
n. Now consider n = |S| = |S′| ≥ 3. Since inv(S) = inv(S′), either both S and S′ are rigid,
or both are non-rigid. If both are rigid, then S = inv(S) = inv(S′) = S′, so S and S′ are
identical and thus trivially reconfigurable.

Suppose S and S′ are not rigid. By Lemma 13, there exist coloring strings Sx and Sy such
that the first three characters of each string are pairwise distinct, and S is reconfigurable to Sx,
while S′ is reconfigurable to Sy. Note that Sx and Sy can be contracted to Sx[4, n] and Sy[4, n],
respectively. Since inv(Sx[4, n]) = inv(Sx) = inv(S) = inv(S′) = inv(Sy) = inv(Sy[4, n]), by
the induction hypothesis, Sx[4, n] and Sy[4, n] are reconfigurable.

Applying Lemma 14, it follows that Sx and Sy are also reconfigurable. Consequently, by
the transitivity of reconfigurability, S and S′ are reconfigurable. ◀

4.2 Cographs
We begin by defining the class of cographs, also known as P4-free graphs [15]. For two graphs
G1 = (V1, E1) and G2 = (V2, E2), their disjoint union is defined as G1⊕G2 = (V1∪V2, E1∪E2),
and their join is defined as G1 ⊗ G2 = (V1 ∪ V2, E1 ∪ E2 ∪ {v1v2 | v1 ∈ V1, v2 ∈ V2}). A graph
G = (V, E) is a cograph if it can be constructed recursively according to the following rules:
1. A graph consisting of a single vertex is a cograph.
2. If G1 and G2 are cographs, then their disjoint union G1 ⊕ G2 is also a cograph.
3. If G1 and G2 are cographs, then their join G1 ⊗ G2 is also a cograph.
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This inductive definition yields a canonical tree representation called a cotree, where
each leaf corresponds to a vertex of the graph, and each internal node is labeled as either
a disjoint union node (⊕) or a join node (⊗). Note that, by the definition of cographs, a
cotree is a binary tree. For a cograph G, let TG denote a cotree corresponding to G, and
for a node t ∈ V (TG), let Gt denote the subgraph of G induced by the leaves of the subtree
of TG rooted at t. It is known that a cotree of a given cograph can be computed in linear
time [34].

In this subsection, we provide a polynomial-time algorithm for CRCS on cographs.

▶ Theorem 16. CRCS can be solved in polynomial time for cographs.

4.2.1 Extended k-Colorings
To describe our algorithm, we introduce the notion of extended colorings. Let k be a positive
integer. An extended k-coloring of a graph G is a map f : V (G) → [k] ∪ {∗} such that for
every edge uv ∈ E(G), either f(u) ̸= f(v) or f(u) = f(v) = ∗. That is, we allow a special
flexible color ∗ in addition to the usual color set [k], and adjacent vertices are permitted to
share the color ∗. Given an extended k-coloring f of G, we define the set of swappable colors
with respect to f as Sf = {c ∈ [k] ∪ {∗} | |f−1(c)| = 1 or (c = ∗ and f−1(c) ̸= ∅)}. Namely,
a color c is swappable if it is used by exactly one vertex in G under f , or if c = ∗ and at
least one vertex is assigned the color ∗ under f .

Our polynomial-time algorithm solves a generalized version of CRCS, which we call the
Extended k-Coloring Reconfiguration (ECRCS) problem. In ECRCS, we are given
a graph G and two extended k-colorings fs and ft of G, and the goal is to determine whether
there exists a sequence of extended k-colorings that transforms fs into ft via color swaps.
We use the terminology for ECRCS in the same way as for CRCS. Note that ECRCS
generalizes CRCS in the following sense: for any instance (G, k, fs, ft) of CRCS, it holds
that (G, k, fs, ft) is a yes-instance of CRCS if and only if it is a yes-instance of ECRCS.
Furthermore, for any valid instance (G, k, fs, ft) of ECRCS, the initial and target colorings
fs and ft must have the same set of swappable colors, i.e., Sfs

= Sft
.

4.2.2 Polynomial-time Algorithm for Cographs
We now outline the strategy of our polynomial-time algorithm. Our approach is inspired by
the polynomial-time algorithm for Token Sliding on cographs [22]. Indeed, an extended
1-coloring of a graph G naturally corresponds to an independent set of G, and thus our
algorithm generalizes their result.

The algorithm proceeds recursively from the root to the leaves of the cotree TG of the
input cograph G, solving the ECRCS instance associated with each node t of TG.

For a k-coloring f of G, let f1 and f2 denote the restrictions of f to V (Gt1) and V (Gt2),
respectively. Suppose that we are given an instance (G, k, fs, ft) of ECRCS.

Leaf node. Let G be a cograph consisting of a single vertex v. Observe that (G, k, fs, ft) is
a yes-instance of ECRCS if and only if fs(v) = ft(v).

Union node. We consider the case where the root node of TG is a union node with children
t1 and t2. Since a union operation introduces no edges between V (Gt1) and V (Gt2), swaps
involving vertices in V (Gt1) and those in V (Gt2) occur independently. Therefore, (G, k, fs, ft)
is a yes-instance of ECRCS if and only if both (Gt1 , k, f1

s , f1
t ) and (Gt2 , k, f2

s , f2
t ) are yes-

instances of ECRCS.
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Join node. We now consider the case where the root node of TG is a join node with children
t1 and t2. Note that since t is a join node, all vertices in V (Gt1) are adjacent to all vertices
in V (Gt2). Consequently, for any k-coloring of G, no color can appear in both f1 and f2.

We perform a case analysis based on whether any of the swappable color sets Sf1
s
, Sf2

s
,

Sf1
t
, or Sf2

t
is empty. We begin with the following observation.

▶ Observation 17 (⋆). Let (G, k, fs, ft) be a yes-instance of ECRCS, where G is a cograph
and the root node of TG is a join node with children t1 and t2. Then, the following statements
hold:
1. If at least one of Sf1

s
or Sf2

s
is empty, then no color swap between a vertex in V (Gt1) and

a vertex in V (Gt2) occurs in any reconfiguration sequence from fs to ft.
2. Sf1

s
= ∅ if and only if Sf1

t
= ∅; similarly, Sf2

s
= ∅ if and only if Sf2

t
= ∅.

We first consider the case where at least one of Sf1
s

or Sf2
s

is empty.

▶ Lemma 18 (⋆). Let (G, k, fs, ft) be a valid instance of ECRCS, where G is a cograph
and the root node of TG is a join node with children t1 and t2. Suppose that at least one of
Sf1

s
or Sf2

s
is empty. Then, (G, k, fs, ft) is a yes-instance of ECRCS if and only if both

(Gt1 , k, f1
s , f1

t ) and (Gt2 , k, f2
s , f2

t ) are yes-instances of ECRCS.

We then consider the remaining case. Let (G, k, fs, ft) be a valid instance of ECRCS, where
G is a cograph and the root node of TG is a join node with children t1 and t2. For each
j = 1, 2, we define extended k-colorings f j

s∗, f j
t∗ : V (Gtj ) → [k] ∪ {∗} as follows:

f j
s∗(v) =

{
∗ if f j

s (v) ∈ Sfs ,

f j
s (v) otherwise

, f j
t∗(v) =

{
∗ if f j

t (v) ∈ Sft ,

f j
t (v) otherwise

.

By construction, both f j
s∗ and f j

t∗ are extended k-colorings of Gtj .

▶ Lemma 19 (⋆). Let (G, k, fs, ft) be a valid instance of ECRCS, where G is a cograph
and the root node of TG is a join node with children t1 and t2. Suppose that both Sf1

s
and

Sf2
s

are non-empty. Then, (G, k, fs, ft) is a yes-instance of ECRCS if and only if both
(Gt1 , k, f1

s∗, f1
t∗) and (Gt2 , k, f2

s∗, f2
t∗) are yes-instances of ECRCS.

Algorithm. The arguments for leaf, union, and join nodes naturally lead to a recursive
algorithm for ECRCS on cographs. Since the set of swappable colors at each node of TG

and the corresponding extended colorings can be constructed in polynomial time, the overall
algorithm runs in polynomial time. This concludes the proof of Theorem 16.

4.3 Split Graphs
Recall that CRCS is PSPACE-complete on split graphs, as shown in Theorem 2. In this
subsection, we show a contrasting result: k-CRCS is solvable in polynomial time on split
graphs when the number of colors k is a constant.

▶ Theorem 20 (⋆). CRCS on split graphs admits a kernel with at most k + 2k2k vertices,
where k is the number of colors of an input.

Theorem 20 immediately leads to the following Corollary 21.

▶ Corollary 21. k-CRCS can be solved in polynomial time for split graphs.
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5 Concluding Remarks

An intriguing direction is to determine the complexity of CRCS on graph classes that
include paths. For example, does CRCS admit a polynomial-time algorithm on trees or
on caterpillars? Another natural case is interval graphs, which are a subclass of chordal
graphs where k-CRCS has been shown to be PSPACE-complete (Theorem 4). Since our
algorithm for paths (Theorem 8) relies heavily on both the path structure and the restriction
k = 3, it seems difficult to generalize our approach directly to broader classes. On the other
hand, Token Sliding is known to be solvable in polynomial time on both trees [16] and
interval graphs [4, 11]. Thus, as in the case of cographs (Theorem 16), it is conceivable that
algorithms for CRCS could be derived from existing algorithms for Token Sliding.
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